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Abstract: Although progressive wasting and weakness of respiratory muscles are the prominent
hallmarks of Duchenne muscular dystrophy (DMD) and long-COVID (also referred as the post-acute
sequelae of COVID-19 syndrome); however, the underlying mechanism(s) leading to respiratory
failure in both conditions remain unclear. We put together the latest relevant literature to further
understand the plausible mechanism(s) behind diaphragm malfunctioning in COVID-19 and DMD
conditions. Previously, we have shown the role of matrix metalloproteinase-9 (MMP9) in skeletal
muscle fibrosis via a substantial increase in the levels of tumor necrosis factor-α (TNF-α) employing
a DMD mouse model that was crossed-bred with MMP9-knockout (MMP9-KO or MMP9-/-) strain.
Interestingly, recent observations from clinical studies show a robust increase in neopterin (NPT)
levels during COVID-19 which is often observed in patients having DMD. What seems to be common
in both (DMD and COVID-19) is the involvement of neopterin (NPT). We know that NPT is generated
by activated white blood cells (WBCs) especially the M1 macrophages in response to inducible
nitric oxide synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways,
i.e., folate one-carbon metabolism (FOCM) in conjunction with epigenetics underpinning as an
immune surveillance protection. Studies from our laboratory, and others researching DMD and
the genetically engineered humanized (hACE2) mice that were administered with the spike protein
(SP) of SARS-CoV-2 revealed an increase in the levels of NPT, TNF-α, HDAC, IL-1β, CD147, and
MMP9 in the lung tissue of the animals that were subsequently accompanied by fibrosis of the
diaphragm depicting a decreased oscillation phenotype. Therefore, it is of interest to understand how
regulatory processes such as epigenetics involvement affect DNMT, HDAC, MTHFS, and iNOS that
help generate NPT in the long-COVID patients.

Keywords: lung dysfunction; coronavirus infection; multiorgan damage; disease management; neopterin

1. Introduction

The global experience and knowledge about COVID-19 (a clinical syndrome post
SARS-CoV-2 infection) keep improving towards identification of certain patterns of
SARS-CoV-2 mediated pathogenic features in various organs/tissues of the patients such
as blood vessels (vasculature), muscles, retinae, hearts, kidneys, lungs, and the joints, how-
ever; the researchers are continuously striving to help design appropriate interventional
strategies to mitigate the deleterious effects in patients who are commonly referred as the
‘COVID-19 long-haulers. Many deleterious effects in survivors are likely caused by the
hyperinflammatory host response (i.e., cytokine storm), that may lead to prothrombotic
state rather than direct toxicity by SARS-CoV-2 encoded gene product(s). Unfortunately,
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in the worst-case scenario, the obvious outcome leads to multisystem or multi-organ dys-
function including respiratory failure, and hypercoagulability phenotype which usually
results in critical illness, and death [1–4]. Further, observations from the world over have
suggested that survivors continue to have/exhibit symptoms that may persist or occur
months after the initial SARS-CoV-2 infection (generally referred to as a post-COVID con-
dition or long-COVID). Authors strongly believe that findings originating from COVID-19
related pathologic investigations, across a variety of modalities, can be extremely help-
ful not only for diagnosis, and treatment guidance but also for developing preventive
tools/methodologies to tackle future disease conditions and similar viral outbreaks that dis-
proportionately affect people who have pre-existing conditions such as Duchenne muscular
dystrophy (DMD). These patients often face high risk of severe disease from SARS-CoV-2
infection since COVID-19 induced restrictive lung function (because of low lung volume),
use of corticosteroids in DMD patients (that usually results in immunosuppression), and
co-morbidity such as obesity, and hypertension may essentially contribute to severe disease
outcomes [5–8].

DMD is an inherited condition and is referred as an X-linked genetic disease. Briefly,
it is a severe, progressive, and muscle-wasting condition that leads to difficulties with
movement, and to assisted ventilation. The disease is most common in male children
that are usually characterized by proximal muscle weakness followed by calf muscle
hypertrophy. The patients become wheelchair-bound around 12 years of their age. Sadly,
most of them die of cardiorespiratory complications in their late teens to early twenties or
thirties. It is caused by a mutation(s) in the DMD gene that abolishes the production of
the ‘dystrophin’ protein. The DMD gene is the largest known human gene that provides
instructions for making the dystrophin protein which is located primarily in muscles that
are primarily used for movement such as the skeletal muscle. Further, the cardiac muscle is
also affected in DMD patients. It has been demonstrated that a small amount of dystrophin
is also present inside the nerve cells of brain. In skeletal, and cardiac muscles, dystrophin
serves as a part of the group of proteins (i.e., a protein complex) that work together to
strengthen the muscle fibers thus protecting cells from injury since muscle cells contract
and relax (meaning that dystrophin acts as an anchor, thus connecting each muscle cell’s
structural framework; cytoskeleton with the lattice of proteins, and other molecules outside
the cell, i.e., the extracellular matrix; ECM). It is also believed that the dystrophin complex
also plays an important role(s) in cell signaling pathways by interacting with other proteins
that send, and receive chemical signals; however, muscles without dystrophin are more
sensitive to damage, thus resulting in progressive loss of the muscle tissue, its function, in
addition to cardiomyopathy.

Recent studies have truly enhanced our understanding of the primary, and secondary
pathogenetic mechanism(s) that take place in DMD-affected patients. It is worth mention-
ing here that the guidelines for the multidisciplinary care for DMD patients that address
obtaining a genetic diagnosis and managing various aspects of the disease have been
well-established in advanced countries. In addition, several therapies that aim to restore
the missing dystrophin protein or address secondary pathology have already received
regulatory approval. Nonetheless, a few novel therapeutic approaches are currently under-
going clinical development, since safer therapies are still needed to provide a cure for this
devastating muscle disorder [9,10]. As mentioned earlier, DMD is one of the primary causes
of skeletal muscle atrophy, and myopathy [11–15]. We know that the diaphragm muscle
continuously supports cardiopulmonary function in a healthy individual by regulating
inhalation, and exhalation processes; however, in DMD patients, the lack of dystrophin
production leads to progressive diaphragm muscle (thoracic diaphragm) degeneration and
necrosis along with respiratory muscles dysfunction (Figure 1).
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Figure 1. Pulmonary dysfunction caused by the mutated dystrophin protein in DMD patients. The 
differential interplay of various molecules in DMD patients results in severe lung injury (alveolar 
leakage) that is further complicated by atrophy of the diaphragm in the affected DMD patients. 

2. Disarray in Cytoskeleton and Extra-Cellular Matric (ECM) 
Mutation in the dystrophin protein, as previously mentioned, causes severe derange-

ments in cytoskeletal, and ECM leading to activation of the innate immune system and 
subsequently prompting inflammation in the lung parenchyma. Since dystrophin is 
linked to intracellular cytoskeleton, as well as, to ECM maintenance; however, this link is 
lost during DMD disease progression causing diaphragm malfunctioning, and later the 
respiratory failure in DMD patients [16–19]. We believe that the diaphragm, being an iso-
lated muscle structure, can be stimulated to synchronize better with other respiratory 
muscles to achieve better contraction, and thus to prevent or avoid its malfunctioning. 
ECM remodeling by its very nature implies the synthesis, and degradation of matrix pro-
teins. Previous studies from our laboratory, using MMP9-/- mice crossed with the DMD 
mice, revealed an important role of MMP9 in DMD etiology. In the lung, ECM composi-
tion is unique due to its higher elastin contents compared to that of collagen contents. 
However, during ECM remodeling, replacement of degraded elastin is slower as com-
pared to rapid turnover of the collagen which, in turn, leads to fibrosis, stiffness, and ob-
structive respiration [20]. Previously, we also demonstrated that tumor necrosis factor-α 
(TNF-α) related weak inducer of apoptosis (TWEAK) induced MMP9 leading to skeletal 
muscle myopathy. Interestingly, neopterin (NPT), an inflammatory marker, is increased 
in several inflammatory disorders including in DMD patients [21–24] (Figure 1). NPT is 
generated by activated M1 macrophages via inducible nitric oxide synthase (iNOS), de-
pleting tetrahydrobiopterin (BH4) and tetrahydrofolate (FH4) one-carbon metabolism 
(FOCM) via the epigenetic cycle. Further, FOCM is regulated by DNA methyl transferase 
(DNMT), and histone deacetylase (HDAC) [25,26]. We would like to point out that deple-
tion of BH4 and FH4 causes oxidative stress through reactive oxygen species (ROS) gen-
eration, inflammasome formation, and MMP9 activation, all leading to changes in the di-
aphragm of DMD patients’ muscle towards atrophy [27]. The prominent changes in the 
muscle afflicted with dystrophin mutation are summarized in Figure 2. Concomitantly, in 
DMD patients, there is a loss of pulmonary endothelial cell barrier, and alveolar-epithelial, 
and interstitial barrier as the disease progresses over time. Together, these alterations can 
lead to blood-lung-barrier (BLB) leakage, thus resulting in pulmonary edema, and tissue 
congestion. Therefore, it is important to determine the mechanism(s) of BLB leakage, and 
pulmonary edema in DMD patients. ECM in the basement membrane consists of latent 
MMP/TIMP/NO (the “ternary complex”). During respiratory failure, the oxidative stress 
activates MMP, and that causes the inactivation of TIMP via peroxynitrite, and tyro-
sine/arginine nitrosylation [28]. Previously, our group has demonstrated the role of 

Figure 1. Pulmonary dysfunction caused by the mutated dystrophin protein in DMD patients. The
differential interplay of various molecules in DMD patients results in severe lung injury (alveolar
leakage) that is further complicated by atrophy of the diaphragm in the affected DMD patients.

2. Disarray in Cytoskeleton and Extra-Cellular Matric (ECM)

Mutation in the dystrophin protein, as previously mentioned, causes severe derange-
ments in cytoskeletal, and ECM leading to activation of the innate immune system and
subsequently prompting inflammation in the lung parenchyma. Since dystrophin is linked
to intracellular cytoskeleton, as well as, to ECM maintenance; however, this link is lost dur-
ing DMD disease progression causing diaphragm malfunctioning, and later the respiratory
failure in DMD patients [16–19]. We believe that the diaphragm, being an isolated muscle
structure, can be stimulated to synchronize better with other respiratory muscles to achieve
better contraction, and thus to prevent or avoid its malfunctioning. ECM remodeling by its
very nature implies the synthesis, and degradation of matrix proteins. Previous studies from
our laboratory, using MMP9-/- mice crossed with the DMD mice, revealed an important
role of MMP9 in DMD etiology. In the lung, ECM composition is unique due to its higher
elastin contents compared to that of collagen contents. However, during ECM remodeling,
replacement of degraded elastin is slower as compared to rapid turnover of the collagen
which, in turn, leads to fibrosis, stiffness, and obstructive respiration [20]. Previously, we
also demonstrated that tumor necrosis factor-α (TNF-α) related weak inducer of apoptosis
(TWEAK) induced MMP9 leading to skeletal muscle myopathy. Interestingly, neopterin
(NPT), an inflammatory marker, is increased in several inflammatory disorders including
in DMD patients [21–24] (Figure 1). NPT is generated by activated M1 macrophages via
inducible nitric oxide synthase (iNOS), depleting tetrahydrobiopterin (BH4) and tetrahy-
drofolate (FH4) one-carbon metabolism (FOCM) via the epigenetic cycle. Further, FOCM is
regulated by DNA methyl transferase (DNMT), and histone deacetylase (HDAC) [25,26].
We would like to point out that depletion of BH4 and FH4 causes oxidative stress through
reactive oxygen species (ROS) generation, inflammasome formation, and MMP9 activation,
all leading to changes in the diaphragm of DMD patients’ muscle towards atrophy [27].
The prominent changes in the muscle afflicted with dystrophin mutation are summarized
in Figure 2. Concomitantly, in DMD patients, there is a loss of pulmonary endothelial
cell barrier, and alveolar-epithelial, and interstitial barrier as the disease progresses over
time. Together, these alterations can lead to blood-lung-barrier (BLB) leakage, thus result-
ing in pulmonary edema, and tissue congestion. Therefore, it is important to determine
the mechanism(s) of BLB leakage, and pulmonary edema in DMD patients. ECM in the
basement membrane consists of latent MMP/TIMP/NO (the “ternary complex”). During
respiratory failure, the oxidative stress activates MMP, and that causes the inactivation of
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TIMP via peroxynitrite, and tyrosine/arginine nitrosylation [28]. Previously, our group
has demonstrated the role of oxidative stress, and ROS involvement in the activation of
Toll-like receptor 2/4 (TLR2/4) [29–32]. Others have shown that TLR4 can trigger an innate
immune response that appears to be mediated by activated T-cells, infection, and pyroptosis
(i.e., death by infection) [33,34]. Recent studies have demonstrated NLRP3 inflammasome
formation in the skeletal muscle of DMD patients [35–37]. It is important to highlight
that gasdermin D (GSDMD) is a protein that is specifically recruited by NLRP3 and is
eventually cleaved by caspase-1 leading to pyroptosis [38,39]. Hence, it is important to
investigate the mechanism(s) of inflammation by iNOS, and TLR4 activation during DMD
disease progression [40–42]. In this context, we opine that treatment with HDAC3 (Sirt3)
inhibitor might help mitigate early alveolar epithelial, and pulmonary capillary endothelial
barriers disruption, and that may help preserve the blood-lung-barrier (BLB) functioning,
and subsequently, that might help prevent leakage, and pulmonary edema/congestion in
DMD patients [43–46]. Further, NOS, ROS, and cytokines deplete BH4 to produce NPT,
that in turn leads to the activation of TLR and downstream signaling in the muscle tissue.
Could inhibition of iNOS, and TLR4 suppress inflammatory cytokine storm (as seen in
the COVID-19 patients), and thus mitigate DMD-induced diaphragm myopathy, remains
to be seen?
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Figure 2. Mutation in the dystrophin protein causes derangements in the cytoskeletal leading to ECM
remodeling causing activation of the innate immune system, severe inflammation, and lung injury.

3. Role of Inflammation and Epigenetics in the Generation of Neopterin (NPT)

Although muscular dystrophy disease is associated with a mutation in the dystrophin
gene, it is not very clear whether this gene is stringently regulated by some kind of epige-
netic programming or modifications for the DMD gene itself, and its regulatory sequence
(promoter) or for that matter the participation of acetylation of the histone(s) proteins
that are associated with the DMD gene. In this context, HDAC3 inhibitor (Sirt3) may be
investigated to reveal the role (if any) played by the epigenetics machinery during muscle
myopathy in the DMD patients. Since some studies have already shown the putative role(s)
of DNA methyltransferases (DNMTs), and HDAC, however; the precise mechanism(s) has
remained at large, so far. Furthermore, dysfunctional FOCM as incited by DNMT (vide
supra), and the methylation modification via epigenetics regulation may also participate
in the causation of muscle atrophy but again the details for the causation, and progres-
sion of DMD disease are also lacking [47–51]. In the past, we have shown an increase
in TNF-α levels in skeletal muscle; however, it is unclear whether epigenetics controls
the expression of immune response genes directly such as the molecules and cell types,
namely the TNF-α, IL1, iNOS, Nox4, NPT, M1 macrophages, MMP9, and CD4+ and CD8+

cells during DMD disease pathogenesis [16]. We opine that Sirt3 inhibitor by virtue of its
beneficial effects might mitigate some, if not all, abnormal expression levels of above the
molecules that are supposedly responsible for diaphragm atrophy, and alveolar leakage
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from the lungs in the DMD patients, and during SARS-CoV-2 infection, and subsequent
COVID-19 syndrome. Because inflammation, lung epithelial barrier dysfunction, multi-
organ damage, congestive (cardio-pulmonary) failure, and the blood-lung barrier (BLB)
leakage are important signature readouts during respiratory distress, thus understand-
ing the mechanism(s) of BLB leakage is important to develop appropriate interventional
strategies for the DMD patients [52,53]. A few studies have shown a robust increase in
neopterin (NPT) in the DMD patients [22]. Interestingly, as mentioned earlier, NPT is
generated by activated M1 inflammatory macrophages (M1) by inducible nitric oxide
synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways. Some
relevant investigations towards determining the levels of iNOS, Nox4 generated NPT, and
oxidative peroxynitrite/nitrosylation levels, and activation of macrophage MMP-9 would
be helpful too. Excessive NLRP3 inflammasome formation, and its sustained activation
contribute to skeletal muscle inflammation, and associated injury in DMD patients [54,55].
As we know that gasdermin D (GSDMD) is a protein that is recruited by formation of
the NLRP3 inflammasome for cleavage, and subsequent pyroptosis, and it is robustly
elevated during DMD disease progression [56,57]. A recent study has demonstrated that
inhibition of GSDMD reduced LPS-induced acute lung injury by reducing inflammation,
and pyroptosis [58]. It is, therefore, important to determine the levels of M1 macrophages,
inflammasome, TLR4/NLRP3/CD147, T helper, and T killer cells, and the mechanism(s) of
innate immune activation that tend to cause endothelial BLB leakage during DMD disease
progression. Furthermore, it would be a novel approach to determine whether the DMD
pathogenetic changes induce DNMT2, and HDAC3 (Sirt3) levels. If that is the case then it
may have an association with cytokine production involving the TNF-α, IL1β, iNOS, Nox4,
NPT, M1 macrophages, and MMP-9 activation, and concomitant increase in the respective
CD4+ and CD8+ cell populations. If that proves correct then Sirt3 inhibition (with inhibitor
such as YC8-02, 3-TYP, etc.) might be able to mitigate their levels along with the reduction
in diaphragm atrophy, and the lung tissue alveolar leakage [59–64].

4. Application of the Sirt Inhibitors in DMD Disease

Our unpublished study shows an increase in NPT, iNOS, Nox4, and TNF-α in the
DMD mouse model. Earlier, we demonstrated an induction of MMP9 in DMD disease,
thus, activation of MMP9 in DMD patients’ diaphragm, and lung is quite possible [16].
For example, when Sirt3 inhibition was tested, it seemed that it ameliorated the skeletal
muscle microcirculation dysfunction in a hypoxic model [45]. Therefore, treatment with
Sirt3 inhibitor might help mitigate the MMP9 activity, and levels of EMMPRIN (CD147).
We, therefore; hypothesize that under such conditions the levels of TIMPs will be opposite
to that of the MMPs, as an ‘in-built’ regulatory mechanism. In future, carefully designed
pulmonary endothelial permeability experiments might be able to reveal alveolar leakage
phenotype, and its subsequent mitigation by Sirt3 inhibition in a suitable DMD mouse
disease model. Based upon our experience, we believe that the levels of NPT, iNOS, and
Nox4 may be decreased in the DMD mice treated with Sirt3 inhibitor(s). Along the same
lines, it is reasonable to expect that the respective levels of MTHFS, methylation, DNMT,
M1 macrophages, TLR4, NLRP3, T-cells, and helper immune cells may also be decreased
in the Sirt3 blocker group of the DMD mice. Such experiments might reveal that DMD
disease is capable of inducing DNMTs, and HDACs (such as Sirt3), and that, in turn, can
instigate the inflammatory cytokines such as TNF-α, and IL1β along with iNOS, Nox4,
NPT, M1 macrophages, MMP9, and increase CD4+, and CD8+ cells. It is expected that the
Sirt3 inhibitor may be able to mitigate diaphragm atrophy, and DMD disease-associated
alveolar leakage. Although the use of a Sirt3 inhibitor makes sense, however; the use of a
DNMT inhibitor is also justified, as described earlier [65]. Since the FOCM cycle produces
homocysteine (Hcy), so measuring the Hcy levels in a genetic model of homocysteinemia,
and hypermethylation may also be undertaken [51,66]. To further dissect the role of MMP9,
the mice may be cross-bred with MMP9-KO strain [16,17]. These genetic approaches could
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further pinpoint the epigenetic mechanisms in DMD disease-associated myopathy, and
lung dysfunction, and their mitigation by the inhibitors.

5. Role(s) of iNOS and TLR2/4

The induction of macrophage population and iNOS are the hallmarks of inflamma-
tion [67]. The iNOS utilizes BH4 to generate NO, but unfortunately during inflammation,
and oxidative stress response the ROS production creates peroxynitrite, and nitrotyro-
sine [68]. These events cause depletion of BH4 and generate neopterin (NPT) leading to the
activation of MMPs to initiate the tissue remodeling process. This change is downstream
from epigenetics programming or induction. Going further, in establishing the causative
role(s) of iNOS in diaphragm dysfunction and lung injury, it is important to inhibit the
iNOS in the DMD disease mouse model. Previously, we showed that inhibition of iNOS
helped mitigated the vascular remodeling in hyperhomocysteinemic (HHcy) mice [67]. We
have also shown the role of iNOS in lung ischemia-reperfusion injury [18]. Thus, it would
be good to demonstrate the role of iNOS in the induction of TNF-α, IL1β, Nox4, NPT, M1
macrophages, MMP9, and increases CD4+ and CD8+ cells in DMD disease progression.
The iNOS inhibitor is expected to mitigate these levels, diaphragm atrophy, and alveolar
leakage. It will also be important to determine the contribution of macrophage iNOS in the
induction of TNF-α, IL1β, Nox4, NPT, M1 macrophages, and MMP9, and the levels of CD4+

and CD8+ cells during DMD pathogenesis. Because iNOS is downstream of epigenetics
modifications, we anticipate no effect(s) on the levels of DNMT2, HDAC3, and MTHFS.
In our previous work we have shown the induction of iNOS in lung ischemia-reperfusion
injury, thus one may anticipate that iNOS will be increased in DMD disease lungs, and
the skeletal muscle. Since iNOS depletes BH4, this would lead to the unavailability of
endothelial eNOS, therefore, it can be assumed that there would be a decrease in endothelial
function in the pulmonary artery, and hence some contribution to leakage. We hope that
future experiments will determine the precise role of iNOS in pulmonary vascular remod-
eling during DMD disease progression. In this context, we anticipate mitigation of DMD
disease induced-iNOS, and cytokine levels of TNF-α, IL1β, Nox4, NPT, M1 macrophages,
MMP9, and the increase in CD4+, and CD8+ cells, diaphragm atrophy, and alveolar leakage
in the DMD disease mice treated with iNOS inhibitor. There appears to be a link between
dystrophin, and iNOS. Hence, to determine the role of iNOS in DMD disease, it would
be wise, and important to use an iNOS blockade strategy. In addition, one can create
double knockouts using DMD disease mice, and cross them with the iNOS knockout. In
the double knockout mice (DMD/iNOS-/-), a clear mitigation of DMD induced-iNOS,
cytokines (TNF-α, and IL1β), Nox4, NPT, M1 macrophages, MMP9, and increase in CD4+

and CD8+ cells, diaphragm atrophy, and alveolar leakage might be observed.
Again, TLR2/4 activation is part of inflammation, and oxidative stress response in

various diseases including DMD disease [69,70]. Further, in DMD disease, the interac-
tion of TLR4 with the ligand DAMP, creates an environment that stimulates cytokines
production, metabolic alterations, and epigenetics programming that can lead to innate
immune activation and macrophage polarization towards inflammatory phenotype [71].
Although corticosteroids help improve the mobility, and longevity of DMD patients, the
mechanism is not yet fully clear [72–74]. In previous studies, steroid treatment in DMD
patients did reduce cytotoxic/suppressor T cells including T cell infiltration in the muscle
fibers resulting in reduced inflammation, and damage suggesting an important role for
T cells in skeletal muscle injury [75,76]. However, whether TLR4 signaling mediates T
cell priming in DMD diaphragm, and lung remains unknown. In addition, long-term
steroid usage is associated with severe side effects that may hinder the quality of life in
patients. It is, therefore, important to study the interaction between TLR4, and T cells in
DMD disease and to investigate whether TLR4 inhibition suppresses the T cell population
(CD4+/CD8+) and priming to reduce diaphragm, and lung injury. Recent studies have
shown that TLR4-NLRP3-GSDMD mediates pyroptosis that causes liver injury in septic
mice and contributes to tubular injury in the diabetic kidney [77,78]. Pyroptosis occurs
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due to the cleavage of GSDMD by caspase-1 or caspase-4, -5, and -11 via the canonical or
non-canonical pathways [79]. It is therefore essential to delineate whether TLR4 activation
leads to NLRP3 inflammasome formation and pyroptosis in DMD patients.

Earlier studies have shown that diaphragm fibrosis is a contributing factor to res-
piratory insufficiency in DMD patients [80,81]. A recent study has further revealed that
changes in extracellular matrix (ECM) reorganize transverse collagen muscle fibers in the
diaphragm to increase stiffness as the disease progresses [82]. It is, therefore, important to
elaborate further on the role of matrix metalloproteinase-9 (MMP9) in ECM metabolism
in the DMD patients’ diaphragm. We would like to re-emphasize that since TLR4 is
downstream to epigenetics programming, and the iNOS pathway, it is envisaged that no
change in the levels of epigenetic factors DNMT2, HDAC3, and MTHFS, and iNOS may
be observed. However, the factors: TNF-α, IL1β, Nox4, NPT, M1 macrophages, MMP9,
and increase in CD4+ and CD8+ cells may be affected in DMD patients and the TAK242
treated mice. In TAK242 treated mice, the reduction of inflammatory cytokines, and T
cells indicate the TLR4 activation, and signaling that may be the cause of enhanced T cell
proliferation in DMD lung, and diaphragm. An increase in GSDMD and caspase-1 may
suggest pyroptosis in DMD patients by the canonical pathway. An increase in caspases
4, -5, and -11 might also suggest the activation of the non-canonical pathway. In short,
diaphragm atrophy, and alveolar leakage in DMD mice and reduced fibrosis, and leakage
following TAK242 treatment could be expected. Interestingly, if epigenetics markers DNMT,
HDAC, and MTHFS are affected, it would mean that the promotor of TLR4 has certainly
been epigenetically modified. If iNOS is affected, one can suggest that the promotor of
iNOS is also epigenetically programmed. Since there exists heterogeneity in the TLR2/4
receptor, the blockade with TAK242 may not be specific, so to demonstrate the specific role
of TLR4 in the diaphragm muscle remodeling, researchers can generate double knockouts
of DMD by crossing with TLR4KO as described in our previous studies [29–32]. This will
demonstrate unequivocally the role of TLR4 in the lung, and diaphragm remodeling during
DMD pathogenesis.

6. Trans-Sulfuration and Renal Dysfunction during Hyperhomocysteinemia (HHcy)

Epigenetically governed methylation by gene writer (DNMTs) generates the homo-
cysteine (Hcy) [83,84]. The primary function of the trans-sulfuration pathway for the
kidney is to help convert Hcy into cysteine to sulfites (SO32−), and sulfates (SO42−) during
the metabolism of methionine (Figure 3) [85]. A defect in the trans-sulfuration pathway
can create homocystinuria, renal dysfunction, and cysteine stones [86]. It is known that
TRPV1 regulates calcium (Ca2+) ion exchange in the kidney, thus a dysfunctional TRPV1
can accumulate calcium, and that may lead to calcified stones. Therefore, it would be
nice to understand the mechanism(s) of renal trans-sulfuration, and generation of kid-
ney cysteine stones. Interestingly, during epigenetically enforced hypermethylation, Hcy
levels are elevated (i.e., hyperhomocysteinemia, HHcy), and HHcy is one of the causes
for the formation of cysteine stones. The 3-mercaptopyruvate sulfotransferase (3-MST)
generates sulfites, however; a decrease in 3-MST levels can cause cystinuria, and stones, as
well. The epigenetics cycles of methylation/demethylation, acetylation/de-acetylation, and
acetyl-CoA/CoA are the hallmarks of gene regulation, and mitochondrial bioenergetics,
respectively (Figure 3). In brief, the defective epigenetics pathways can create homocystin-
uria, dysregulation of mitochondrial bioenergetics, and malfunctioning of trans-sulfuration,
cysteine stone formation, and renal dysfunction [51,83,84,87,88].
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7. Summary and Future Perspectives

We believe that dysfunctional epigenetics, DNMTs, HDACs, MTHFS, and iNOS
generate NPT, and oxidative peroxynitrite/nitrosylation to activate MMP9/CD147 path-
way. In this context, the M1 macrophages induce inflammasome formation via the
NPT/NLRP3/TLR4 axis. Regarding the cell damage, GSDMD mediates pyroptosis, and
increases immune response (↑ CD4+ and CD8+ cells), causing diaphragm dysfunction, and
alveolar leakage during DMD disease pathogenesis. Therefore, it is worth to study that a
treatment with epigenetic inhibitor, such as Sirt3 may mitigate diaphragm muscle atrophy,
and the lung injury. We surmise that the use of Sirt3, iNOS, and TLR4 inhibitors in the
lung, and diaphragm muscle remodeling during DMD, is novel as this will demonstrate
the mechanistic role of progressive diaphragm, and lung associated pathology. Further,
in our opinion, the mitigation of systemic remodeling of skeletal muscle that takes place
in DMD disease sounds like an innovative approach. In that context, the lung specific
MMP9 can be inhibited by Sirt3, iNOS, and TLR4 inhibitors. This approach can prove
therapeutically novel. The oxidative peroxynitrite/nitrosylation activates MMP9 via CD147.
As mentioned earlier, the M1 macrophages induce inflammasome formation via NPT/TNF-
α/TLR4/NLRP3, and gasdermin D (GSDMD) mediated pyroptosis, which increases the
immune response (↑ CD4+, and CD8+ cells), causing diaphragm dysfunction, and alve-
olar leakage during DMD, and COVID-19 infection. Since NPT levels are also robust in
COVID-19 patients, the mitigation of co-morbid conditions such as long-COVID associated
pulmonary dysfunction is important in understanding, and treating DMD patients, and the
long-COVID patients.
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LI lung injury
RDS respiratory distress syndrome
CK creatinine kinase
DAMP damage associated molecular pattern
DMD Duchenne muscular dystrophy
DNMT DNA methyl transferase
HDAC histone deacetylase (also known as Sirt)
MTHFS methyl tetrahydrofolate synthase
iNOS inducible nitric oxide synthase
Nox4 NADPH oxidase subunit 4
MMP matrix metalloproteinase
TLR4 Toll-like receptor 4
NLRP3 nod-like receptor family pyrin domain containing 3
CD147/EMMPRIN extracellular matrix metalloproteinase inducer
NPT neopterin
TNF-α tumor neurosis factor-α
IL1β interleukin-1 β
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