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Abstract: Cancer-associated fibroblasts (CAFs), a prominent population of stromal cells, play a
crucial role in tumor progression, prognosis, and treatment response. However, the relationship
among CAF-based molecular signatures, clinical outcomes, and tumor microenvironment infiltration
remains largely elusive in pancreatic cancer (PC). Here, we collected multicenter PC data and
performed integrated analysis to investigate the role of CAF-related genes (CRGs) in PC. Firstly,
we demonstrated that α-SMA+ CAFs were the most prominent stromal components and correlated
with the poor survival rates of PC patients in our tissue microarrays. Then, we discriminated two
diverse molecular subtypes (CAF clusters A and B) and revealed the significant differences in the
tumor immune microenvironment (TME), four reported CAF subpopulations, clinical characteristics,
and prognosis in PC samples. Furthermore, we analyzed their association with the immunotherapy
response of PC patients. Lastly, a CRG score was constructed to predict prognosis, immunotherapy
responses, and chemosensitivity in pancreatic cancer patients. In summary, these findings provide
insights into further research targeting CAFs and their TME, and they pave a new road for the
prognosis evaluation and individualized treatment of PC patients.

Keywords: cancer-associated fibroblasts; molecular signature; tumor immune microenvironment;
therapeutic sensitivity; pancreatic cancer

1. Introduction

The poor prognosis of pancreatic cancer (PC) urges us to more deeply understand its
potential molecular mechanism and seek better therapies. Cancer-associated fibroblasts
(CAFs), a significant fraction of the pancreatic cancer stroma, contribute to a dense stromal
accumulation in PC [1,2]. Previous studies have demonstrated that CAFs can facilitate
the malignant phenotypes of tumors, particularly tumorigenesis and invasion, inflamma-
tion, and extracellular matrix (ECM) remodeling [3,4]. As the leading participant of the
desmoplastic stroma in PC, CAFs play a crucial part in diverse clinical responses, drug
tolerance, and the tumor immunosuppressive environment by producing ECM proteins
and cytokines and interacting with cancer cells [5–8]. The intratumoral heterogeneity of
CAFs in the stroma of PC has been extensively studied. Four major distinct subpopulations
of CAFs have been demonstrated in PC: (1) myCAF, the myofibroblastic subset (myCAF)
characterized by smooth muscle actin expression, high transforming growth factor (TGF)
signaling, and ECM components [1,9]; (2) iCAF, the inflammatory subset characterized
by high expressions of inflammatory mediators [10]; (3) apcCAF, the antigen-presenting
subset characterized by the expression of CD74 and MHC class II [11]; and (4) meCAF,
the highly activated metabolic subset characterized by high expression of PLA2G2A
and CRABP2 [12].
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Some CAF markers have been studied separately in the past few years, such as
α-smooth muscle actin (α-SMA), fibroblast activation protein, CD29, fibroblast-specific pro-
tein 1, platelet-derived growth factor receptor B, and podoplanin [13]. For instance, tumors
accumulated with the α-SMA+ fibroblasts have worse prognoses and higher invasiveness,
and they can affect therapeutic reactions [13,14]. Fibroblast activation protein-positive
CAFs can lead to immunosuppression and resistance to immunotherapy [15]. However,
whether the CAF-mediated tumor microenvironment (TME) is associated with tumor char-
acteristics and the underlying molecular mechanism remains unclear [16,17]. In addition,
the guiding significance of current pathological and molecular classification for PC treat-
ment is limited [18]. Although existing strategies targeting the stroma have suppressed
tumor growth and enhanced treatment responses in the mouse model, clinical trials have
not yet produced promising results [6,19]. Some of these strategies even lead to tumor
recurrence and metastasis [20], which suggests that accurate identification of the CAF
molecular subtypes in PC is necessary to apply stromal-targeting therapies efficiently.

This study determined that PC patients with accumulated α-SMA+ CAFs had a poor
prognosis regarding tissue microarrays, and that myCAF, apcCAF, and meCAF subsets
were highly enriched in PC. Then, we thoroughly estimated the expression profiles of
CAF-related genes (CRGs) and their influences on prognosis, clinical features, and immune
cell infiltration in PC patients. Furthermore, we constructed a CRG score to predict PC
patients’ prognoses, clinical outcomes, immunotherapy responses, and chemosensitivity.
Our findings could deepen our understanding of CRGs and smooth the way for prognosis
evaluation and personalized therapy strategies in PC patients.

2. Results
2.1. α-SMA+ CAFs Accumulate in PC Tissues with Worse Prognoses

Previous studies have shown that α-SMA is a marker of activated CAFs and an efficacy
evaluation indicator of targeted CAF therapy [21,22]. The Kaplan–Meier curves showed worse
overall survival (OS) in patients with high α-SMA+ CAFs accumulated in PC (Figure 1F).
Immunofluorescence staining, immunohistochemistry, and Masson staining were used to
further confirm the CAF population in PC tissue microarrays (Figure 1A–E). The results
explain that α-SMA+ CAFs, as a prominent desmoplastic stroma, were remarkably enriched
in PC tissues. To define the substantial proportion of CAFs in human PC tissues and mouse-
derived allografts, we excluded hematopoietic and epithelial cells using flow cytometry
analysis with CD45 and EpCAM markers. We also identified CAFs using human fibroblast
markers (integrin b1/CD29) and mouse fibroblast marker (PDPN). The fresh human samples
included PC patients at the time of surgery before any treatment. Figure 1G–J illustrate that
the CAFs accounted for about 30% of all cellular populations in human and mouse tumor
tissues. We further assessed the enrichment scores of four reported CAF subtypes in pancreatic
tumors and normal pancreas samples from TCGA-PAAD and GTEx cohorts, and we found
that myCAF, apcCAF, and meCAF were abundant in the tumor samples (Figure 2A). These
results suggest that CAFs are essential components of TME in PC, which may modulate
tumorigenesis and progression.

2.2. Genetic Mutation Landscape of CRGs in PC

We first determined the expression levels of the 25 CRGs in tumor specimens and
normal specimens, and we observed that almost all CRGs were abundant in the tumor
specimens (Figure 2B). To reveal the interaction of CRGs, we performed a PPI analysis.
Figure 2C displayed that COL1A1, COL11A1, COL3A1, COL5A2, COL1A2, FN1, FAP,
CDH1, POSTN, COMP, COL5A1, COL10A1, and THBS2 were hub genes. Furthermore, we
identified the total frequency of somatic mutations and copy number variations (CNVs) of
the 25 CRGs in PC. As depicted in Figure 2D, 16 of 158 (10.13%) PC samples emerged with
genetic mutations. Figure 2D also indicated that, among the 25 CRGs, VCAN, FN1, and
COL11A1 were the genes with the highest mutation rate, followed by COL5A1 and CDH1.
In addition, we demonstrated evident CNV alterations of the 25 CRGs (Figure 2E). We also
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analyzed the CNV alteration location of the 25 CRGs on chromosomes using the “circlize”
R package (Figure 2F). We concluded that CNV might act in regulating the expression of
25 CRGs. These findings reveal significant differences in the genomic background and
expression levels of the 25 CRGs between PC and normal samples, implying the latent roles
of the 25 CRGs in PC tumor progression.
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Figure 1. Pancreatic cancer (PC) tissues accumulating α-smooth muscle actin (α-SMA)-positive can-
cer-associated fibroblasts (CAFs) show a poor prognosis. (A–C) Detection of α-SMA and EpCAM 
using double immunofluorescence to differentiate CAFs and epithelial cell populations in human 
PC tissue microarrays. (D) Representative images of α-SMA immunohistochemistry staining in hu-
man PC tissue microarray. (E) Representative Masson staining in human PC tissues. Blue color: 
stroma. (F) Human PC tissues were classified into α-SMA-high or α-SMA-low CAF groups on the 
basis of α-SMA immunohistochemistry score, followed by examining patients’ overall survival us-
ing Kaplan–Meier survival analysis by log-rank test. (G,H) The t-SNE plot of CAFs (CD45−Ep-
CAM−CD29+), tumor cells (CD45−CD29−EpCAM+), and tissue leukocytes (CD29−EpCAM−CD45+) 
were measured by flow cytometry in human PC tissues. (I,J) The t-SNE plot of CAFs (CD45−Ep-
CAM−PDPN+), tumor cells (CD45−PDPN−EPCAM+), and tissue leukocytes (PDPN−EpCAM−CD45+) 
were measured by flow cytometry in mouse-derived allograft tissues. 

Figure 1. Pancreatic cancer (PC) tissues accumulating α-smooth muscle actin (α-SMA)-positive
cancer-associated fibroblasts (CAFs) show a poor prognosis. (A–C) Detection of α-SMA and EpCAM
using double immunofluorescence to differentiate CAFs and epithelial cell populations in human PC
tissue microarrays. (D) Representative images of α-SMA immunohistochemistry staining in human
PC tissue microarray. (E) Representative Masson staining in human PC tissues. Blue color: stroma.
(F) Human PC tissues were classified into α-SMA-high or α-SMA-low CAF groups on the basis of
α-SMA immunohistochemistry score, followed by examining patients’ overall survival using Kaplan–
Meier survival analysis by log-rank test. (G,H) The t-SNE plot of CAFs (CD45−EpCAM−CD29+),
tumor cells (CD45−CD29−EpCAM+), and tissue leukocytes (CD29−EpCAM−CD45+) were measured
by flow cytometry in human PC tissues. (I,J) The t-SNE plot of CAFs (CD45−EpCAM−PDPN+), tumor
cells (CD45−PDPN−EPCAM+), and tissue leukocytes (PDPN−EpCAM−CD45+) were measured by
flow cytometry in mouse-derived allograft tissues.
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Figure 2. Genetic and transcriptional alterations of CAF-related genes (CRGs) in PC. (A) The enrich-
ment scores of four CAF subsets between normal and PC tissues. (B) Expression distributions of 25 
CRGs between normal and PC tissues from GTEx and TCGA cohorts. (C) The protein–protein in-
teraction network acquired from the STRING database among the CRGs. (D) Mutation frequencies 
of CRGs in 158 PC patients from TCGA cohort. (E) Frequencies of copy number variation (CNV) 
gain, loss, and non-CNV among CRGs, pink and green represent gain and loss of CNV, respectively. 
(F) Locations of CNV alterations in CRGs on 23 chromosomes. *** p < 0.001 and not significant (p > 
0.05) according to repeated-measures Wilcoxon test. 
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Figure 2. Genetic and transcriptional alterations of CAF-related genes (CRGs) in PC. (A) The enrich-
ment scores of four CAF subsets between normal and PC tissues. (B) Expression distributions of
25 CRGs between normal and PC tissues from GTEx and TCGA cohorts. (C) The protein–protein
interaction network acquired from the STRING database among the CRGs. (D) Mutation frequencies
of CRGs in 158 PC patients from TCGA cohort. (E) Frequencies of copy number variation (CNV)
gain, loss, and non-CNV among CRGs, pink and green represent gain and loss of CNV, respectively.
(F) Locations of CNV alterations in CRGs on 23 chromosomes. *** p < 0.001 and not significant
(p > 0.05) according to repeated-measures Wilcoxon test.

2.3. Identification of CAF Subtypes and Characteristics of the TME in PC

To better understand the expression pattern of CRGs in tumorigenesis, we performed
a subsequent analysis of 160 PC patients from TCGA-PAAD. Table S2 lists detailed in-
formation about these patients. We further performed a consensus clustering analysis to
investigate the relationships between the expression pattern of CRGs and PC subtypes, and
we classified PC patients according to the expression levels of these CRGs. Our findings
indicate that k = 2 is an optimal choice to divide the entire cohort into CAF cluster A
(n = 130) and CAF cluster B (n = 30) (Figures 3A and S1). Moreover, we used the
ICGC cohort to verify the repeatability of the clustering. We also conducted a consen-
sus clustering analysis on this cohort and classified the cohort into two distinct subtypes
(Figure S2A,B). Patients with CAF cluster A had worse OS than patients with CAF clus-
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ter B in both TCGA and ICGC cohorts (Figures 3B and S2C). We further dissected the
CAF signature of the patients in two CAF subtypes. The expression of the CAF signa-
ture in CAF cluster A was substantially higher than in cluster B (Figure 3C). Figure 3D
presents the relevant networks of CRG interactions and regulator connections. It also
illustrates the prognostic value of CRGs (Table S3) and the enrichment of the CRG-related
KEGG pathways (Table S4) in PC patients. Additionally, significant differences in the
genomic expression of CRGs and clinical variables were observed between the two CAF
clusters (Figure 3E).
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showing CAF enrichment score between CAF cluster A and CAF cluster B. (D) A network of corre-
lations including CRGs in TCGA cohort. (E) Differences in clinical features and expression levels of 
CRGs between the two distinct subtypes. Stage, gender, age, survival status, and cluster were used 
as patient annotations. (F) The enrichment score of four CAF subsets between CAF cluster A and 
CAF cluster B. (G) Correlations between the two CAF clusters and TME score. (H) The infiltration 
abundance of 33 TME cells of two CAF subtypes in PC. The Wilcoxon test analyzed the statistical 
differences between the two clusters (*** p < 0.001, ** p < 0.01, * p < 0.05, and not significant (p > 0.05)). 
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nosuppressive factors, such as TGF-β-associated ECM (Figure 3H). More importantly, we 

Figure 3. Identification of CAF subtypes and characteristics of the TME in PC. (A) Consensus matrix
heatmap defining two clusters (k = 2) and their correlation area. (B) Kaplan–Meier plot of overall
survival (OS) by CAF clusters for PC patients in TCGA cohort (p = 0.003, log-rank test). (C) Box
plots showing CAF enrichment score between CAF cluster A and CAF cluster B. (D) A network of
correlations including CRGs in TCGA cohort. (E) Differences in clinical features and expression levels
of CRGs between the two distinct subtypes. Stage, gender, age, survival status, and cluster were used
as patient annotations. (F) The enrichment score of four CAF subsets between CAF cluster A and
CAF cluster B. (G) Correlations between the two CAF clusters and TME score. (H) The infiltration
abundance of 33 TME cells of two CAF subtypes in PC. The Wilcoxon test analyzed the statistical
differences between the two clusters (*** p < 0.001, ** p < 0.01, * p < 0.05, and not significant (p > 0.05)).
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Apart from the differences in prognosis and genome between CAF cluster A and CAF
cluster B, there were also distinct discrepancies in immune cell infiltration and TME score
between them. Firstly, we observed higher enrichment scores of myCAF and apcCAF
in the CAF cluster A group (Figure 3F). To investigate the roles of CRGs in the TME
of PC, we then evaluated the association among the two CAF clusters, 33 immune cell
subtypes, and the TME score (Table S5). Compared with CAF cluster B, CAF cluster
A had higher immune and stromal scores (Figure 3G) and higher infiltration levels of
immunosuppressive cells, such as regulatory T cells (Tregs), MDSC cells, and DC cells,
and other immunosuppressive factors, such as TGF-β-associated ECM (Figure 3H). More
importantly, we detected a higher enrichment score of anti-PD-1-resistant signatures and a
lower enrichment score of nivolumab-responsive signatures in CAF cluster A (Figure 3H),
indicating that patients in the CAF cluster A group may be less sensitive to immunotherapy.
These results imply that the CAF cluster A group may be closely associated with stromal
activation and immunosuppression features.

2.4. Establishment and Verification of the Prognostic CRG Score

The CRG score was created according to the LASSO and multivariate Cox (multiCox)
analysis for 25 CRGs. Eventually, we obtained five hub genes (VCAN, COL1A2, ZNF469,
SPARC, and FNDC1). The CRG score was calculated as follows:

CRG score = (0.437 × expression of VCAN) + (1.33 × expression of COL1A2)
+(−0.807 × expression of ZNF469) + (−1.282 × expression of SPARC)
+(−0.262 × expression of FNDC1).

Figure 4A displays the distribution of patients in the two CAF clusters and two CRG-
score groups. Compared with alive patients, the CRG score was significantly elevated in
patients who died during follow-up (Figure 4B), and CAF subtype A had higher CRG scores
(Figure 4C). The risk plot of the CRG score indicated that, with an increasing CRG score,
OS time decreased while mortality rose (Figure 4D,G). Patients with higher CRG scores in
both categories were associated with worse survival rates (Figure 4E). Additionally, the
AUC values of 1-, 2-, and 3-year OS were 0.63, 0.659, and 0.638, respectively (Figure 4F).
Moreover, the CRG score retained excellent predictability in assessing the prognosis of
PC patients (Figure 4H). Among multiple clinical features, multivariate Cox regression
modeling proved that the CRG score was the only independent risk factor for the OS of PC
patients in the TCGA cohort (Figure 4I).

2.5. Characteristics of the TME and Function Enrichment in Distinct Subgroups

To examine the association between CRG score and the TME of PC, we analyzed
their immune microenvironment in detail. As confirmed by different methods, the CRG
score was positively associated with M1 macrophages and neutrophils, whereas it was
negatively related to B cells, NK cells, CD8 T cells, and CD4 T cells (Figure 5A). Moreover,
we sought to explore the potential pathways related to the CRG score using GSVA. Several
cancer-associated pathways (P53, Notch, and ERBB pathways) were most closely correlated
with the CRG score (Figure 5B). Consistently, we found that the enrichment levels of B
cells, plasma cells, CD8 T cells, and CD4 T cells were markedly higher in the low-CRG-
score group than in the high-CRG-score group (Figure 5C). Figure 5D reveals a higher
enrichment score of meCAF in the low-CRG-score group. Furthermore, time-dependent
receiver operating characteristic (tROC) analysis showed that the CRG score was the most
accurate predictor for overall survival compared with other single-CAF subsets in PC
(Figure 5E). These findings indicate that patients with lower CRG scores had higher meCAF
accumulation and more immune cell infiltration.
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tively. (E) Kaplan–Meier plot of overall survival of patients with high and low CRG scores (p < 
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ificity of 1-, 2-, and 3-year survival according to the CRG score. (H) Time-dependent receiver oper-
ating characteristic curves of the nomograms compared for 1-, 2-, and 3-year OS in PC, respec-
tively. (I) Multivariate Cox regression analysis demonstrated that CRG score was the most critical 
risk factor for OS in PC among clinical factors. 
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Figure 4. Establishment of the CRG score in TCGA cohort. (A) Alluvial diagram of subtype dis-
tributions in groups with distinct CRG score and survival status. (B) CRG score was significantly
elevated in patients who died during follow-up. (C) Box plots displaying discrepancies in CRG scores
between the two CAF subtypes. (D,G) Ranked dot and scatter plots showing the CRG score distri-
bution and survival outcomes. Red and blue represent dead and alive of PC patients, respectively.
(E) Kaplan–Meier plot of overall survival of patients with high and low CRG scores (p < 0.001,
log-rank test). (F) Receiver operating characteristic curves to predict the sensitivity and specificity
of 1-, 2-, and 3-year survival according to the CRG score. (H) Time-dependent receiver operat-
ing characteristic curves of the nomograms compared for 1-, 2-, and 3-year OS in PC, respectively.
(I) Multivariate Cox regression analysis demonstrated that CRG score was the most critical risk factor
for OS in PC among clinical factors.

2.6. Association of the CRG Score with Tumor Mutation Burden (TMB) and Mutation

Previous studies have indicated that TMB is a valuable predictor of survival outcomes
and immunotherapy response in tumor patients [23]. We explored the distribution alterna-
tions of somatic mutations between two CRG-score groups in TCGA cohort (Figure 6A,B).
Patients with high CRG scores had substantially higher frequencies of TP53, KRAS, CDKN2,
SMAD4, and TTN mutations than patients with low CRG scores, implying that these gene
mutations were in charge of the poor prognosis of PC patients with high CRG scores.
However, we observed opposite results regarding the mutation levels of RNF43, MUC16,
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and RYR1 (Figure 6A,B). In addition, our analysis of the mutation data demonstrated
a higher TMB score in the high-CRG-score group compared with the low-CRG-score
group (Figure 6C).
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Figure 5. Association of CRG scores with the immune microenvironment. (A) Correlations between
the CRG score and immune infiltration. (B) GSVA performed in CRG score signature based on
TCGA. (C) The infiltration abundance of 22 TME cells of two CRG-score groups in PC. (D) The
enrichment score of four CAF subsets between the low-CRG-score group and the high-CRG-score
group. (E) tROC analysis showed that the GRC score was an accurate variable for survival prediction.
The Wilcoxon test analyzed the statistical differences between the two clusters (** p < 0.01 and not
significant (* p > 0.05)).

2.7. Clinical Outcomes and Drug Susceptibility Analysis

We investigated the CRG score’s ability to predict the impact of initial surgical treat-
ment in PC patients. As displayed in Figure 6D,E, among the patients receiving the initial
therapy of surgery, those with lower CRG scores showed significant treatment advantages.

Subsequently, to explore the efficacy of the CRG score as a biomarker for predicting
chemotherapeutic susceptibility in PC patients, we assessed the semi-inhibitory concen-
tration of 138 chemotherapeutic drugs commonly used to treat tumors. We identified
27 drugs more sensitive to patients with low CRG scores (Table S6), including EHT.1864
and PD.173074 (p < 0.01; Figure 6F,G). Nevertheless, 15 drugs responded better to patients
with high CRG scores (Table S7), including paclitaxel and lapatinib (p < 0.01; Figure 6H,I).
In brief, these findings suggest that the CRG score is associated with drug sensitivity.

2.8. Protein Expression Level of CAF-Related Risk Genes and Survival Analysis

To validate the tissue expression of risk CRGs in pancreatic normal and tumor tissues,
we obtained immunohistochemical results from the Human Protein Atlas (HPA). Except
for ZNF469, which is not available in the HPA database, consistent with the mRNA level
in Figure 2B, protein expressions of VCAN (Figure 7A,B, p = 0.011), SPARC (Figure 7C,D,
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p = 0.02), FNDC1 (Figure 7E,F, p = 0.022), and COL1A2 (Figure 7G,H, p = 0.019) were higher
in pancreatic tumor tissue, which is consistent with their correlation with the poor survival
of PC patients.
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used to analyze the statistical differences between the two groups.
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3. Discussion

Immune and stromal cells, the essential TME components, are associated with the
clinical features and prognosis of PC [24–26]. Extensive stromal involvement is a crucial
hallmark of PC, which makes it challenging to obtain accurate tumor-specific molecular
information [24]. Early studies identified that CAFs, a substantial portion of the tumor
microenvironment, drove tumorigenesis and treatment resistance [6,27,28]. Previous stud-
ies revealed how CAF patterns affect the characteristics of TME and the efficacy of im-
munotherapy in triple-negative breast cancer (TNBC) [29]. With the development of tumor
immunology and molecular biology research, immunotherapies, such as immune check-
point inhibitors, have become new treatments for various tumors [30,31]. Recently, anti-
PD-1/PD-L1 therapy has led to outstanding achievements in many malignancies [32,33].
However, due to the dense extracellular matrix acting as a physical barrier, PC patients
remain poorly responsive to PD-1 antibodies [32,34]. Moreover, single-cell analysis also
revealed that TGF-β-myCAF subtypes are related to the resistance to immunotherapy
in breast cancer [35]. Whether analyzing CAF molecular subtypes improves the clinical
response of PC remains to be determined [25]. Despite several studies having identified
various biomarkers and clinical factors to predict PC prognosis [24,36], the relationship
among CAF-based molecular signature, clinical outcome, and tumor microenvironment
infiltration remains largely elusive in PC. Here, our study found an abundance of myCAF,
apcCAF, and meCAF in the tumor tissues of PC. We also identified the alterations in ge-
nomic backgrounds and expression levels of CAF-related genes based on TCGA, GTEx,
and ICGC cohorts. Most of the expressions of CRGs were increased in PC tumor tissues
and correlated with prognosis. The aggregation of gene mutations leads to carcinogenesis,
and gene mutations in PC may significantly impact immunotherapy response [37]. Among
25 CRGs, VCAN, FN1, and COL11A had the highest mutational intensity. However, there
are currently no reports that these mutations are associated with carcinogenesis or fibrosis.

Additionally, we divided PC patients into two CAF clusters and observed discrepant
prognoses, clinical characteristics, and immune infiltrations between them. The interac-
tion of CAFs and immunity is a critical feature of tumorigenesis, which can serve as a
therapeutic target for PC. Diverse CAF subsets play distinct roles in tumor immunosup-
pression of breast cancer. Their effects are achieved by Tregs regulating the proliferation
of effector T cells [8]. Our findings showed that CAF cluster A, with a high enrichment
of myCAF and apcCAF, had significantly higher stromal and immune scores than CAF
cluster B. Cluster A also had higher infiltration levels of immunosuppressive cells, such as
Tregs, MDSC cells, and DC cells, and other immunosuppressive factors, such as TGF-β-
associated-ECM. Previous studies have shown that myCAF is the main component of the
ECM [10]. Furthermore, apcCAF potentially modulates the immune response in pancreatic
tumors [11]. Our results imply that CAF cluster A group may be closely associated with
stromal activation and immunosuppression features, and myCAF and apcCAF abundance
may be the main factors underlying such an immunosuppressive microenvironment. More
interestingly, the higher enrichment score of anti-PD-1-resistant signatures and the lower
enrichment score of nivolumab-responsive signatures were also observed in the CAF clus-
ter A group, indicating that patients in the CAF cluster A group may be less sensitive
to immunotherapy.

Furthermore, the CRG score was constructed to quantify CAF subtypes. The CAF
subtype A with worse survival had higher CRG scores. Patients with higher CRG scores
also had worse OS, implying that high CRG scores could predict an unfavorable prognosis.
By integrating the CRG scores and clinical characteristics, we demonstrated that the CRG
score was a unique, independent risk factor of OS. Moreover, we found a higher enrichment
of meCAF in PC patients with low CRG scores. Our previous research showed that PDAC
patients with abundant meCAF had a dramatically better response to immunotherapy [12].
Consistent with the previous conclusion, the CAF cluster B with better survival had a lower
CRG score, and it also had a lower enrichment score of anti-PD-1-resistant signatures and a
higher enrichment score of nivolumab-responsive signatures. These findings indicate that
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CRGs may participate in tumor immunosuppression; therefore, patients with low CRG
scores can benefit from immunotherapy.

Due to PC patients’ distinctive molecular and clinical features, it is necessary to classify
them precisely. We further identified potentially sensitive drugs in patients in different
CRG-score groups. We expected that targeting CAFs combined with these drugs could
reduce drug resistance and improve clinical outcomes.

4. Materials and Methods
4.1. Human Tissue Specimens

The Human Ethics Committee of Shanghai Renji Hospital, Shanghai Jiao Tong Uni-
versity School of Medicine (Shanghai, China), reviewed and approved research on human
pancreatic cancer under informed consent from all patients.

4.2. Cell Lines and Mouse Pancreatic Cancer Model

Mouse pancreatic cancer cell lines KPC1199 were obtained from Jing Xue lab (Shanghai,
China) and cultured in DMEM with 10% FBS. A total of 1 × 106 KPC1199 cells were resus-
pended in 100 µL of PBS and injected subcutaneously into 6-week-old female C57BL/6 mice
from Shanghai Laboratory Animal Center. The tumor tissues were ultimately weighed in
15 days and collected for flow cytometry analysis.

4.3. Masson’s Trichrome Staining

Formalin-fixed tissues were immersed in paraffin, and 5 µM sections were stained
with Masson trichrome reagent to show collagen. First, the samples were partially dewaxed
and rehydrated, fixed in Bouin’s liquor, and then washed and rinsed in distilled water
overnight. Next, the slides were stained in Meyer hematoxylin solution for 5 min, and
then placed in 0.5% hydrochloric acid and 70% ethanol for 5 s. After the specimens were
washed three times and dissolved in 1% phosphomolybdic acid aqueous solution, the slides
were stained with aniline blue or bright green for 5 min. Subsequently, we dehydrated the
samples in 95% ethanol 10 times and added xylene to make them transparent. Finally, all
slides were scanned and digitized using the digital pathological slice scanner system (Leica
Biosystems Wetzlar, Germany). The collagen fibers were dyed blue, the nuclei were black,
and the background was red.

4.4. Immunohistochemistry and Tissue Microarrays

Tissue microarrays included 91 PC samples. The histopathology of all cancer speci-
mens was reassessed, and representative regions were labeled. Table S1 lists the prognosis
information of individual patients in tissue microarrays. The immunohistochemistry
staining was carried out to identify α-SMA and EpCAM marker expressions in tissue
microarrays. As previously described, we conducted a semi-quantitative scoring system
according to the distinct percentages of positively stained cells and staining intensity [38].
The frequency of positively stained cells was defined as 1+ (less than 25%), 2+ (25% to
50%), 3+ (50% to 75%), or 4+ (greater than 75%). Additionally, the intensity was scored as
0 (negative), 1+ (weak), 2+ (moderate), or 3+ (strong).

Finally, we multiplied the score of the positive area by the score of staining intensity to
obtain the final immunohistochemistry score (range 0–12). We classified the 30 specimens
in the tissue microarrays into five grades according to the above scores: 1+ (score 0),
2+ (score 1–2), 3+ (score 3–4), 4+ (score 6–8), and 5+ (score 9–12). The overall staining
score of 5–12 was deemed high expression, while 0–4 was defined as low expression.
The immunohistochemistry experiment used the following antibodies: anti-α-SMA rabbit
polyclonal antibody (1:100, Cell Signaling, 3 Trask Lane, USA, #19245) and anti-EpCAM
rabbit polyclonal antibody (1:100, Abcam, London, UK, ab223582).
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4.5. Flow Cytometry Analysis

Briefly, the fresh tissue samples from two human PC tissues and seven mouse-derived
allografts of KPC1199 cells were mechanically chopped and digested by collagenase IV at 37 ◦C
for 30 min. The digested suspension was combined with DNase at room temperature for 5 min,
washed twice with phosphate-buffered saline buffer containing 2% serum, and then filtered
through the 100 µm filter. We used markers of CD29, PDPN, EpCAM, and CD45 to separate
tumor epithelial cells (CD45−CD29− or PDPN−EpCAM+), CAFs (EpCAM−CD45−CD29− or
PDPN+), and tissue leukocytes (CD29− or PDPN−EpCAM−CD45+) in human and mouse
tumor specimens, respectively. The digested single cells were washed twice and centrifuged
for 5 min at 500× g, and then 1 µg/mL of antibody was added. Then, the samples were
kept at 4 ◦C for 30 min in a dark place. Flow cytometry was employed using a BD Flow
Cytometry Analysis Celesta cell sorter (Becton Dickinson, New York, NY, USA). The side-
scatter width versus side-scatter region and the forward-scatter width versus forward-scatter
height were applied to remove dead cells and cell clumps. Antibodies including anti-EpCAM-
PerCR/Cy5.5 (BioLegend, San Diego, CA, USA, #324214), anti-CD45-APC-Cy7 (BioLegend,
#368515), and anti-CD29-Alexa Fluor® 488 (BioLegend, # 303015) were verified according to
the manufacturer’s website.

4.6. PC Transcriptome Data Sources

The normalized transcriptome data, CNV files, somatic mutation data, and relevant
clinicopathological and survival information of PC were acquired from the public database
TCGA (https://xenabrowser.net/datapages/?cohort=TCGA%20Pancreatic%20Cancer%20
(PAAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 (accessed on 1
June 2021)) and ICGC (https://dcc.ICGC.org/ (accessed on 1 June 2021)). In addition, the
RNA expression data of normal pancreatic tissues were retrieved from the public database
GTEx (https://xenabrowser.net/datapages/?cohort=GTEX&removeHub=https%3A%2F%
2Fxena.treehouse.gi.ucsc.edu%3A443 (accessed on 1 June 2021). A total of 261 PC samples
were acquired from TCGA (n = 160) and ICGC (n = 101) cohorts, and 167 normal pancreas
samples were obtained from the GTEx cohorts. We excluded specimens from patients
deficient in important clinicopathological or survival information.

4.7. Consensus Clustering Analysis of CRGs

Initially, 25 CRGs were identified from previous studies [24]. Then, we used the
“ConsensusClusterPlus” package [39,40] to perform a consensus clustering analysis by the
k-means algorithm to identify different CAF-associated subtypes. Furthermore, a protein–
protein interaction (PPI) analysis through the string website (https://cn.string-db.org/
(accessed on 1 January 2022) was constructed to determine the interplay of CRGs.

4.8. Correlations of Molecular Patterns with the Clinical Features and Prognosis of PC

We explored the correlation of molecular subtypes, clinical variables, and survival
outcomes to assess the clinical value of the two CAF subtypes. The clinical features
included age (≥65 and <65 years), gender (male and female), tumor location (left and
right side), TNM stage (stage I–IV), KRAS mutation status (abnormal and normal), and
TP53 mutation status (abnormal and normal). In addition, the differences in OS between
the two subtypes were estimated by Kaplan–Meier analysis using the “survival” and
“survminer” packages [41].

4.9. Association of Molecular Subtypes with Tumor Immune Microenvironment of PC

We assessed PC patients’ immune and stromal scores using the ESTIMATE algo-
rithm [42]. Then, the infiltrating fractions of 33 immune cell subtypes and four CAF subsets
of each patient were computed with a single-sample gene set enrichment (ssGSEA) analysis
algorithm [43].

https://xenabrowser.net/datapages/?cohort=TCGA%20Pancreatic%20Cancer%20(PAAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=TCGA%20Pancreatic%20Cancer%20(PAAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://dcc.ICGC.org/
https://xenabrowser.net/datapages/?cohort=GTEX&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=GTEX&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://cn.string-db.org/
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4.10. Relationship of CAF Subtypes with Immunotherapy Responses in PC

As CAFs play a vital role in regulating tumor immune evasion [44], to further deter-
mine the association of CAF subtypes with immunotherapy responses of PC, we performed
ssGSEA analysis to dissect the gene expression profiles of immunotherapy responses in the
PC patients according to the nivolumab-responsive and anti-PD-1-resistant signatures [45].

4.11. Development of the CAF-Related Gene Risk Signature

We performed univariate and multivariate Cox regression analysis in TCGA-PAAD
cohort to construct a novel CRG-based signature for predicting prognosis. Initially, the
univariate Cox regression analysis was employed to assess the prognostic values of 25 CRGs
in PC patients. Then, p < 0.05 was selected as a screening threshold, and 22 prognostic CRGs
related to the survival of patients with pancreatic cancer were screened out. We further
performed a multivariate Cox regression analysis and the penalized Cox regression model
with the least absolute shrinkage and selection operator (LASSO) according to 22 prognostic
CRGs. We obtained five hub prognostic CRGs (VCAN, COL1A2, ZNF469, SPARC, and
FNDC1) and their corresponding coefficients. Finally, a scoring algorithm named CRG
score was established to quantify the CAF state at the transcriptomic level. The CRG score
was calculated as follows: CRG score = Σ (expression × correlative coefficient).

Additionally, we executed tROC curve analysis and independent prognostic analysis
to validate the predictive capability of this novel CRGs-based signature and other clinical
variables at 1-, 2-, and 3-year OS using the R package “survivalROC”.

4.12. Expression Level Validation of CAF-Related Risk Gene Expression

Immunohistochemical results of CRGs involved in the risk signature were obtained
from the HPA database (https://www.proteinatlas.org/ (accessed on 1 January2022) to
validate CRG expression in normal and tumor tissue.

4.13. Identification of Immune Microenvironment Affected by CRGs

We investigated the association between CRG score and immune microenvironment
with several common methods, including XCELL, TIMER, QUANTISEQ, MCPOUNTER,
EPIC, CIBERSORT-ABS, and CIBERSORT.

4.14. Correlation of CRG Score Signature with Signal Pathways, Tumor Mutation, and
Chemosensitivity

To identify the differences in somatic mutations of PC patients between high- and
low-CRG-score groups, the mutation annotation format was created with the “maftools”
R package [46]. We further examined the dependence of the CRG score, clinical outcome,
and TMB. Moreover, to explore diversities in chemotherapy drug efficacy between the
two subgroups, we estimated the half maximal inhibitory concentration values (IC50)
of chemotherapy drugs for each patient using the “pRRophetic” package [47], which is
based on drug sensitivity data from the Genomics of Drug Sensitivity in Cancer dataset
(https://www.cancerrxgene.org/ (accessed on 1 January2022)). A ridge regression model
fitted the standardized expression data using predictor genes and the drug sensitivity (IC50)
values as the outcome variables [48].

4.15. Additional Bioinformatics and Statistical Analyses

We applied the Wilcoxon test to analyze the inter-group differences, conducted Spear-
man analysis for correlation tests, and performed the log-rank and Kaplan–Meier tests to
draw survival curves. The R 3.6.3 software (Bell Laboratories, New York, NY, USA) and its
corresponding packages were used to process, analyze, and present the data. By comparing
different groups, p < 0.05 was considered to indicate statistical significance.

https://www.proteinatlas.org/
https://www.cancerrxgene.org/
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5. Conclusions

In this study, we systematically analyzed the genomic backgrounds and expression
levels of CRGs and inferred their latent role in PC patients’ prognosis and tumor microenvi-
ronment. We also constructed a novel CAF-associated gene signature as a robust biomarker
to predict the prognosis, chemotherapeutic drug sensitivity, and immunotherapy impacts
in PC. These results reveal the vital clinical significance of CRGs and put forward new ideas
about the molecular classification of PC, which may be applied to precision medicine.
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