
Citation: Yang, X.; Tian, Y.; Zheng, L.;

Luu, T.; Kwak-Kim, J. The Update

Immune-Regulatory Role of Pro- and

Anti-Inflammatory Cytokines in

Recurrent Pregnancy Losses. Int. J.

Mol. Sci. 2023, 24, 132. https://

doi.org/10.3390/ijms24010132

Academic Editor: Udo Jeschke

Received: 14 October 2022

Revised: 12 December 2022

Accepted: 15 December 2022

Published: 21 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

The Update Immune-Regulatory Role of Pro- and
Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses
Xiuhua Yang 1,* , Yingying Tian 1, Linlin Zheng 2, Thanh Luu 3 and Joanne Kwak-Kim 3,4,*

1 Department of Obstetrics, The First Hospital of China Medical University, Shenyang 110001, China
2 The First Hospital of China Medical University, Shenyang 110001, China
3 Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department,

Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA
4 Clinical Immunology Laboratory, Foundational Sciences and Humanities, Microbiology and Immunology,

Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
* Correspondence: xhyang@cmu.edu.cn (X.Y.); joanne.kwakkim@rosalindfranklin.edu (J.K.-K.)

Abstract: Recurrent pregnancy losses (RPL) is a common reproductive disorder with various un-
derlying etiologies. In recent years, rapid progress has been made in exploring the immunological
mechanisms for RPL. A propensity toward Th2 over Th1 and regulatory T (Treg) over Th17 immune
responses may be advantageous for reproductive success. In women with RPL and animals prone
to abortion, an inordinate expression of cytokines associated with implantation and early embryo
development is present in the endometrium or decidua secreted from immune and non-immune cells.
Hence, an adverse cytokine milieu at the maternal-fetal interface assaults immunological tolerance,
leading to fetal rejection. Similar to T cells, NK cells can be categorized based on the characteristics of
cytokines they secrete. Decidual NK (dNK) cells of RPL patients exhibited an increased NK1/NK2
ratio (IFN-γ/IL-4 producing NK cell ratios), leading to pro-inflammatory cytokine milieu and in-
creased NK cell cytotoxicity. Genetic polymorphism may be the underlying etiologies for Th1 and
Th17 propensity since it alters cytokine production. In addition, various hormones participate in
cytokine regulations, including progesterone and estrogen, controlling cytokine balance in favor of
the Th2 type. Consequently, the intricate regulation of cytokines and hormones may prevent the
RPL of immune etiologies. Local or systemic administration of cytokines or their antagonists might
help maintain adequate cytokine milieu, favoring Th2 over Th1 response or Treg over Th17 immune
response in women with RPL. Herein, we provided an updated comprehensive review regarding
the immune-regulatory role of pro- and anti-inflammatory cytokines in RPL. Understanding the
roles of cytokines involved in RPL might significantly advance the early diagnosis, monitoring, and
treatment of RPL.
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1. Introduction

Recurrent pregnancy losses (RPL) is a common reproductive disorder affecting 2–5%
of reproductive-age women [1], which is defined as two or more pregnancy losses before
20 weeks of pregnancy by the American Society for Reproductive Medicine [2]. RPL can
be caused by embryonic chromosomal, immunological, anatomical, environmental, and
thrombotic abnormalities [3,4]. Approximately 50% of RPL patients have unknown causes,
called unexplained RPL (uRPL) [5]. Rapid progress has been made in understanding the
immunological mechanisms for RPL [6]. Maternal immune abnormalities are often present
in women with uRPL [7,8], such as an increased natural killer (NK) cell count and/or
activity [9,10] and a tilted T helper (Th)1 over Th2 immune response, which is thought to
be harmful to pregnancy [11]. The classification of T cell subsets has extended beyond Th1
and Th2 cells to more complex regulatory T cell (Treg) and Th17 cell subsets [12]. Women
with RPL have the propensity to Th17 over Treg cell immunity [13]. Th17 cells produce
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interleukin (IL)-17, a pro-inflammatory cytokine that promotes inflammation and maternal-
fetal rejection and interacts with Th1 cells, further contributing to the immunopathology of
RPL [14]. Contrarily, Treg cells mediate maternal-fetal tolerance [15], allowing an embryo,
a semi-allograft, to live without rejection in the uterus [7].

Regulatory uterine NK (uNK) cells refer to highly granulated NK cells located in
the endometrium with the phenotype of CD56++/CD16− [16]. They have the ability
to secrete a range of cytokines [16]. In normal pregnancy, increased regulatory uNK
cells are pivotal for maintaining reproductive success since they play a fundamental role
in trophoblast invasion, spiral artery remodeling, and appropriate placentation [17–19].
Decreased number or dysfunction of regulatory uNK cells is closely related to RPL [20].

The interaction between tolerogenic dendritic cells (DCs) and Treg cells in pregnancy
is pivotal for sustaining maternal-fetal immune tolerance. Tolerogenic DCs promote the
proliferation and differentiation of Treg cells by increasing the expression of IL-10 [21].
These special Treg subsets play a crucial role in avoiding maternal immune response
against embryo-paternal derived antigens. Furthermore, tolerogenic DCs interacting with
trophoblasts could elevate the proportion of Tregs FoxP3+ [22]. However, this phenomenon
does not exist in DCs that do not interact with trophoblast cells [22]. Similarly, NK cells
express killer cell immunoglobulin-like receptors (KIRs), which interact with HLA-C de-
rived from extravillous trophoblast cells (EVTs). The improper combination between KIR
and HLA-C affects the ability of NK cells to secrete cytokines, including granulocyte-
macrophage colony-stimulating factor (GM-CSF), thus participating in the occurrence of
RPL [4].

Various cytokines play significant roles in the maintenance of pregnancy. The ability of
embryos to avoid immune rejection is partially facilitated by the presence of fundamental
cytokines in the peripheral blood and/or at the maternal-fetal interface. Therefore, cy-
tokine gene polymorphisms, which modify cytokine production levels and functions, may
contribute to RPL. Cytokines are classified as pro-inflammatory (Th1) or anti-inflammatory
(Th2), depending on their functions. Th1 immunity induces a cell-mediated cytotoxic re-
sponse to intracellular pathogens [7], whereas Th2 immunity primarily generates humoral
immunity and immune tolerance [23]. Th1 pro-inflammatory cytokines are mostly tumor
necrosis factor (TNF)-α, interferon (IFN)-γ, and IL-1β; Th2 cytokines are predominantly
IL-4, IL-5, IL-10, and IL-13 [24,25]. During the implantation window, pro-inflammatory
cytokines promote the invasion of trophoblast cells and endometrial neovascularization.
However, prolonged or overexposure to pro-inflammatory cytokines may harm the preg-
nancy, resulting in miscarriage.

The endometrium secretes copious amounts of cytokines throughout the follicular
and luteal phases of the menstrual cycle [26], contributing to a favorable uterine milieu
for the preparation of implantation and placental development. The CD4+ T lymphocytes
are the primary source of cytokines. Additionally, NK cells, macrophages, epithelial cells,
mesenchymal cells, and other leucocytes produce cytokines at the maternal-fetal inter-
face [27]. During trophoblast implantation, pregnancy hormones and direct stimulation by
trophoblast cells improve the endometrial receptivity while the endometrium is gradually
transformed into the decidua. Cytokines and receptors on decidual cells are primarily
responsible for interacting with trophoblast cells. Cytokines have multiple functions,
including regulation of embryo implantation, placental development, cytotrophoblast
proliferation, vascular remodeling, trophoblast invasion, cell death, and the induction of
embryo tolerance in the uterus [28,29].

Although the contribution of cytokines to RPL has been widely studied [30–32],
their precise roles need further investigation. This review analyzes the updated immune-
regulatory role of pro- and anti-inflammatory cytokines in maternal peripheral blood and
endometrium, including Th1/Th2, Treg/Th17, and NK cell-related cytokines. Although
other cells also produce cytokines at the maternal-fetal interface, such as trophoblasts, stro-
mal cells, and macrophages, they are not within the scope of this review. Understanding
the roles of cytokines involved in RPL might significantly advance the early diagnosis,
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monitoring, and treatment of RPL. This review highlights relevant studies with significant
discoveries that merit additional investigation. Two independent scholars conducted a
comprehensive publication search to collect the articles with the following keywords: “re-
current miscarriage,” “recurrent pregnancy losses,” “recurrent spontaneous abortion,” and
“cytokine” from PubMed, Web of Science, and Google Scholar database. All articles were
published in English from January 1985 to September 2022. Letters were not included.

2. Pro- and Anti-Inflammatory Cytokines in Maternal Peripheral Blood

According to a prior animal study exploring the Th1 immune response associated with
RPL, trophoblast antigen could activate lymphocytes from abortion-prone female mice to
produce pro-inflammatory cytokines, such as TNF-α [33]. The ratios of Th1/Th2 cytokine-
producing T helper cells from RPL patients (IFN-γ/IL-4, IFN-γ/IL-10, TNF-α/IL-4 and
TNF-α/IL-10 producing Th cell ratios) were considerably higher than normal pregnant
women after in vitro stimulation of peripheral blood mononuclear cells (PBMCs) [30].
Another study investigated the Th1/Th2 cytokine ratios in the peripheral blood of uRPL
women (n = 44) and normal pregnant women (n = 42). They reported that uRPL women had
a higher IFN-γ/IL-4 cytokine ratio [34]. According to this study, the IFN-γ/IL-4 cytokine
ratio had a sensitivity of 84.09% and a specificity of 69.05% for diagnosing RPL [34]. The
area under the curve (AUC) of IFN-γ/IL-4 was 0.821 (p < 0.05) [34]. Hence, Th1/Th2
ratios may be utilized to predict pregnancy outcomes, closely monitor pregnancy, and
swiftly treat patients at risk of miscarriage. Contrarily, a Th1-to-Th2 switch was reported in
RPL patients compared to healthy pregnant women of comparable gestational weeks [35],
which was different from other studies [36–38]. Differences in these studies may be related
to the selection of the control group and the timing of the investigation. In the study of
Bates et al. [35], 25 pregnant women undergoing voluntary termination of the pregnancy
were included but obstetrical and infertility histories of the control group were not reported.
Th1/Th2 ratios vary during each developmental phase of pregnancy [39,40], but in the
study of Makhseed et al., the study and control groups were investigated in different
gestational weeks [38]. It is noteworthy that several animal studies failed to document that
a single aberrant cytokine, either Th1 or Th2 cytokine, can affect pregnancy outcome. IL-10
knock-out (KO) mice did not have altered pregnancy outcomes. Additionally, IL-4, IL-5,
IL-9, and IL-13 KO mice did not have decreased live birth rate or offspring weight [41].
Therefore, a complicated cytokine network may determine the balance between Th1/Th2
immune responses during pregnancy with a propensity toward Th2 immune response after
implantation is over, which in turn, again biased to Th1 immune response at the time of
parturition [7].

2.1. TNF-α

TNF-α is an important cytokine produced by Th1 cells and is known to have diverse
immune-modulatory functions during various stages of human reproduction. TNF-α
promotes trophoblast invasion by regulating the expression and secretion of inflammatory
factors derived from endometrial stromal cells, such as IL-17 [42] (Figure 1). Moreover, TNF-
α induces vascular endothelial growth factor (VEGF) secretion from trophoblasts, which
aids in embryo implantation in the uterus (Table 1) [43]. By coordinating angiogenesis,
VEGF is crucial for embryo implantation and placental development [43]. In addition,
TNF-α stimulates the production of IL-10, which decreases inflammatory activity [44].
After in-vitro fertilization and embryo transfer (IVF-ET), TNF-α producing CD3+/CD4+ T
cell numbers were raised in RPL patients [45]. However, despite having elevated serum
TNF-α expression, these individuals had low IL-10 levels [45]. Neuroendocrine factors such
as glucocorticoids may affect the serum TNF-α expression but do not produce a secondary
IL-10 increase [46]. Therefore, women with RPL may lack neuro-endocrine regulators,
resulting in a TNF-α/IL-10 ratio imbalance [45].
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Figure 1. The roles of pro- and anti-inflammatory cytokines in early pregnancy. IL-6, IL-11, IL-15, and
TGF-β are involved in regulating decidualization. Furthermore, IL-1β contributes to decidualization
by elevating the generation of COX2 and PGE2. Furthermore, IL-1β elevates the expression of MMP,
a critical regulator of trophoblast invasion. TGF-β1 reduces the invasion of trophoblast cells by
enhancing kisspeptin expression. TNF-α induces trophoblast invasion through increasing IL-17
production from endometrial stromal cells. Moreover, TNF-α plays an important role in implantation
by inducing VEGF generation from trophoblast cells. IFN-γ, IL-6, IL-10, IL-11, IL-1β, and IL-22
are associated with embryo implantation. In addition, IL-6, IL-10, IL-11, and IL-1β participate
in placentation.
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Table 1. Cytokines exert anti- or pro-implantation properties.

Anti-Implantation

IL-6 [47]
IL-17 [48]
IL-23 [48]

Pro-Implantation

TNF-α [49]
IFN-γ [28]
TGF-β1 [50]
IL-1 [51]
IL-1β [52]
IL-10 [53]
IL-11 [54]
IL-22 [55]
IL-33 [56]

Most researchers believe that the serum level of TNF-α in RPL women is greater than
in normal pregnant women [37,57,58] (Table 2). In addition, plasma TNF-α levels increase
in RPL patients during the first trimester regardless of the outcome of the pregnancy. Its
level in secondary RPL was higher than in primary RPL, possibly due to genetic factors [59].
Patients with secondary RPL may have been sensitized by fetal or trophoblast antigen in a
prior pregnancy and generated a humoral or cytotoxic reaction to the trophoblast antigen
in the subsequent pregnancy, resulting in inflammatory responses in early pregnancy. In
contrast, mitogen-activated PBMCs from RPL women with successful pregnancy outcomes
exhibited comparable TNF-α levels to those with miscarriages but lower than normal
pregnant females [35]. These findings raised concerns about whether TNF-α is detrimental
to pregnancy outcomes. TNF-α induces RPL mostly by increasing the expression of pro-
apoptotic genes on the embryonic membrane surface [60], which leads to membrane
degradation [61]. Additionally, TNF-α may induce antiphospholipid antibody-related
placental injury, leading to miscarriage [62].

Table 2. Alternations of cytokines in peripheral blood of RPL women compared with normal females.

Cytokines Expression Number of the
Experimental Group

Number of the
Control Group Reference

TNF-α Increased 23 24 [37]
IFN-γ Increased 23 24 [37]
TGF-β Increased 36 30 [63]

No difference 32 32 [64]
No difference 29 27 [65]

IL-33 Decreased 142 123 [66]
IL-4 Increased 19 15 [35]

No difference 32 32 [64]
IL-6 Decreased 23 24 [37]
IL-10 Decreased 23 28 [57]

Decreased 19 16 [36]
Decreased 23 24 [37]
Decreased 32 32 [64]
Decreased 30 30 [67]

IL-17 Increased 20 20 [48]
IL-22 Increased 46 28 [68]
IL-23 Increased 30 30 [67]

Increased 15 15 [69]
IL-35 Decreased 60 40 [70]

Decreased 40 120 [71]
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2.2. IFN-γ

IFN-γ is found in the human endometrium [72]. Both inflammatory cells in the decidua
and developing embryos release IFN-γ, which maintains the pregnancy by regulating
the expression of IL-6, monocyte chemotactic protein (MCP)-1, and macrophage colony-
stimulating factor (M-CSF) in early pregnancy [73]. In the rodent model, IFN-γ facilitates
implantation through vessel recasting, vascular development at the implantation site, and
maintaining decidual tissues during placental development [28]. However, an excessive
level of IFN-γ is harmful to the embryo. Most literature has reported significantly increased
IFN-γ expression in spontaneous abortion or RPL patients [37,64,74,75], although Bates
et al. discovered no difference between RPL women and normal controls [35]. IFN-γ
inhibits the production of GM-CSF, which is indispensable for a successful pregnancy [76].
Moreover, IFN-γ influences the expression of proteins involved in the endometrial adhesion
of embryos [77].

2.3. Transforming Growth Factor (TGF)-β

TGF-β is a multifunctional cytokine with various regulatory roles [78]. It may stimulate
the development of Th1 immune cells [79] (Figure 2). At the same time, it controls the
cytokine network and maintains maternal immune tolerance [80]. Controversies surround
the expression levels of TGF-β in RPL patients. Plasma TGF-β levels in RPL patients
have been reported to be significantly higher than in healthy pregnant women [63,81],
although contradictory reports were also reported [64,65]. The increased TGF-β1 could
inhibit trophoblast invasion by upregulating kisspeptin expression [82].
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Figure 2. Schematic diagram of the unbalanced Th1/Th2 cytokine network in peripheral blood of
RPL patients. TNF-α can be produced by Th1 or Th2 cells. IFN-γ is secreted by Th1 cells, which
induce the differentiation of Th1 cells. Moreover, TGF-β augments the differentiation of Th1 cells,
which release IL-1β. In addition, IL-33 can enhance Th1 or Th2 differentiation. Th2 cells produce IL-4
and IL-13. IL-4 is known to compromise the production of Th1 cells. IL-6 is found to promote Th2
cells. IL-10 is a Th2 cytokine that inhibits the Th1 immune response.

2.4. IL-1β

IL-1β promotes inflammation, induces B cell development and proliferation, and acti-
vates NK and T cells [83]. It impacts endometrial growth during embryo implantation [52]
and regulates placentation [84]. In addition, IL-1β can promote the expression of matrix
metalloproteinase (MMP), thus participating in the regulation of trophoblast invasion [85].
During pregnancy, β-HCG induces the production of IL-1β from decidual T cells [86]. In
a retrospective study of 56 RPL patients and 56 normal pregnant women with antinu-
clear antibody (ANA), IL-1β predicted RPL with a sensitivity of 76.8% and a specificity of
91.1% [87]. This study indicates that IL-1β plays a crucial role in developing RPL and may
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predict RPL in ANA-positive women [87]. In animal experiments, the pregnancy rate was
decreased when IL-1β receptor antagonist was administered prior to embryo transfer [88].

In addition to its primary function in pregnancy, IL-1β contributes to blood clotting.
IL-1β increases the amounts of proteins such as ICAM-1, aυβ3, and MCP-1, which increase
platelet stability and the risk of thrombosis [89]. The pro-thrombotic condition generated by
these proteins causes the production of microthrombi during early pregnancy, ultimately
resulting in miscarriage. Therefore, anticoagulant therapy may be useful for RPL patients
with elevated IL-1β expression.

2.5. IL-33

IL-33 belongs to the IL-1 family [90]. It enhances Th1 and Th2 immune responses [91]
and contributes to the Th17 immune response [92]. Additionally, it activates NK cells
and promotes IFN-γ production from NK cells [93,94]. During a normal pregnancy, IL-33
enhances Th2 immunity and maintains maternal immune tolerance to the fetus [95].

Serum IL-33 level was considerably lower in RPL women compared to those with
normal pregnancies (p < 0.05) [66], as validated by another investigation [96]. However,
others discovered that the serum IL-33 levels in pregnant women who were going to mis-
carry were much higher than those of normal pregnancies (>6 weeks of gestation) [97].
The elevated IL-33 may function during pregnancy as a compensating strategy to save
the fetus. However, the mechanism by which decreasing IL-33 expression and leading to
RPL remains unclear. A successful pregnancy needs the activation of the IL-33/ST2 path-
way, and IL-33 is required for embryo implantation in the mice model [56]. Furthermore,
IL-33 played a vital role in the placental formation and maintenance of healthy NF-κB
and ERK1/2 pathways [98]. These activated pathways upregulate the CCL2/CCR2 axis,
subsequently enhancing the proliferation and invasion of decidual stromal cells [98]. By
boosting Th2 immunity at the maternal-fetal interface, CCL2 creates a favorable environ-
ment for the fetus [98]. The reduced serum IL-33 level in RPL may be attributable to the
down-regulated CCL2.

2.6. IL-4

IL-4 is a Th2 cytokine, and its level in the culture supernatants of PBMCs from RPL
was lower than that of normal pregnant women [35], although a contradictory study was
reported [64]. However, the IL-4 level in the peripheral blood of RPL patients was not
linked with pregnancy outcomes [35].

2.7. IL-6

IL-6 is essential for embryo implantation and placentation [99]. During parturition,
IL-6 levels were reported to be higher in maternal serum [100], amniotic fluid [101], and
placental tissues [102] than without labor. IL-6 has multiple functions, such as promot-
ing inflammatory responses and suppressing TNF-α expression [103]. IL-6 level was
significantly higher in the culture supernatant of PBMCs from normal pregnancies than
RPL [37]. Additionally, RPL women with low IL-6 levels during early pregnancy had
poor pregnancy outcomes [57]. When PBMCs were reconstituted and stimulated with
autologous trophoblast or choriocarcinoma cell antigens, leukocytes from RPL patients
secreted persistently lower levels of IL-6 than those of healthy controls [36].

2.8. IL-10

IL-10 is a Th2 cytokine that suppresses the Th1 immune response by reducing the
expressions of TNF-α, IFN-γ, and IL-1 [104]. IL-10 is produced by activated Th2 cells and
promotes embryo development by maintaining immunological tolerance [105]. Administra-
tion of IL-10 to the abortion-prone mice reduced embryo loss [106], whereas IL-10-deficient
mice were more likely to experience miscarriages due to inflammatory changes compared
to wild-type mice [107]. Normal pregnant women had higher serum levels of IL-10 com-
pared to RPL patients [57]. The IL-10 level in the peripheral blood of uRPL women was
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significantly lower, and a higher level was related to healthy pregnancies [36,37,64,67,108].
However, there was a markedly higher amount of IL-10 in the supernatant of cultured
PBMCs from pregnant RPL women compared to those of normal pregnant controls, sup-
porting a notion that Th2 immunity was enhanced rather than repressed in RPL [35].
Moreover, the peripheral blood IL-10 level in RPL patients did not predict pregnancy
outcomes [35]. IL-10 has a significant role in linking immune responses and angiogenesis
and suppresses endoplasmic reticulum (ER) pressure, promoting protein composition and
energy stabilization [109]. Increased ER stress leads to the activation of pro-inflammatory
responses and placental abnormalities [110].

3. Treg and Th17-Related Cytokines in Maternal Peripheral Blood

A Treg/Th17 cell imbalance was identified in RPL women [13]. Compared to healthy
pregnant women, RPL patients have fewer Treg cells [111] and more Th17 cells in the
peripheral blood and decidua [14,32,69,112–114]. Due to their pro-inflammatory activities,
Th17-related cytokines, including IL-17, can cause embryo rejection, whereas Treg cell-
regulated cytokines such as IL-10 and TGF-β may enhance immunological tolerance and
improve pregnancy outcomes [112,115].

3.1. IL-6

IL-6 is a crucial cytokine that represses the proliferation of Treg cells and promotes
the differentiation of Th17 cells (Figure 3). Serum IL-6 and soluble IL-6 receptor levels
were elevated in RPL women, while the inhibitor of IL-6/IL-6R signal transduction, soluble
glycoprotein (gp)130, was reduced [116]. Following paternal lymphocyte immunotherapy,
the expression of soluble IL-6R was reduced, whereas the soluble gp130 level and Treg
cell numbers were increased [116]. These data imply that IL-6 signaling is crucial in
regulating the Treg to Th17 cell ratio. Moreover, constant Toll-like receptor (TLR) activation
or the suppression of Treg function by IL-6 has been documented [117], indicating that
the decline of Treg cell function in RPL patients was associated with the IL-6-related
inflammatory response.
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pro-inflammatory function, the possible role of IL-17 in spontaneous abortion has re-
ceived increasing interest in recent years [69,123–125]. However, a recent study revealed 
that stromal cell-derived IL-17 aggregated Th17 cells, thereby accelerating trophoblast in-

Figure 3. An illustration of the imbalanced Treg/Th17 cytokines in the periphery of RPL patients.
IL-35 is predominantly produced by Treg cells. IL-7 promotes the differentiation of Th17 cells and
compromises Treg cells, promoting inflammatory responses. Th17 cells secrete IL-17 and IL-22.
IL-6 induces the differentiation of Th17 cells. In addition, IL-23 increases the number of Th17 cells.
IL-33 contributes to the Th17 immune response. On the contrary, IL-27 impedes the expression
of Th17 cells. Accordingly, aberrant expression of these cytokines in peripheral blood may cause
Treg/Th17 immune imbalance, triggering the pro-inflammatory immune response and eventually
leading to RPL.
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3.2. IL-7

IL-7 modulates Th17 cell development from naïve T cells [48]. IL-7 was revealed to
promote the differentiation of Th17 cells via inhibiting forkhead/winged helix transcription
factor (FOXP3) expression in Treg cells and subsequently inhibit the differentiation of Treg
cells induced by TGF-β [7,118]. Then, IL-7 disturbs the Treg/Th17 equilibrium in favor
of Th17 immunity, ultimately resulting in RPL [119]. Significantly elevated expressions
of IL-7 in the decidua of women with spontaneous abortion and RPL indicate that IL-7
likely plays a significant role in promoting pro-inflammatory immune response at the
embryo-maternal interface [119]. However, the study was limited by the lack of individual
IL-17 investigation, which might be necessary for clinical work [119]. The underlying
mechanism of the IL-7 signaling pathway was investigated in RPL by evaluating the IL-7
and IL-7R expression levels in the decidua tissues of RPL patients [32]. By administering
an IL-7R inhibitor to the abortion-prone mice, FOXP3+ Treg cells (%) were dramatically
increased, and Th17 cells (%) were significantly reduced [32]. When IL-7R expression was
decreased in endometrial stromal cells, the IL-7 signaling pathway was blocked, and the
ability of trophoblast cells to invade was diminished [32]. RPL is partially mediated by the
diminished invasion of trophoblast cells [120]. In autoimmune instances, IL-7 expression is
increased to compensate for decreased IL-7R [121,122]. Based on research advancements in
autoimmune diseases, drugs targeting the IL-7 signaling pathway could be evaluated for
the treatment of RPL [119].

3.3. IL-17

The IL-17 family consists of multiple related cytokines ranging from IL-17A to IL-17F.
Among those, IL-17A and IL-17F are the most widely studied cytokines. Due to its pro-
inflammatory function, the possible role of IL-17 in spontaneous abortion has received
increasing interest in recent years [69,123–125]. However, a recent study revealed that stro-
mal cell-derived IL-17 aggregated Th17 cells, thereby accelerating trophoblast invasion and
reducing trophoblast death, indicating a favorable effect on pregnancy maintenance [126].
This result revealed a novel role for Th17 in trophoblast implantation and placental de-
velopment. Similarly, another study confirmed that the peripheral blood IL-17 levels in
normal pregnant women were higher than those of patients with abortion, showing that
IL-17 is a protective regulatory factor for a healthy pregnancy [127]. However, the abortion
patients in this study were in the first trimester, while the normal pregnant women were in
the second or third trimester [127]. In contrast, the morbidity of uRPL is associated with an
increased level of IL-17 in peripheral blood [48]. In the mice model, intraperitoneal injection
of IL-17 into normal pregnant mice triggered miscarriages, whereas the anti-IL-17 antibody
reduced the prevalence of miscarriage in abortion-prone mice [128]. Therefore, the serum
level of IL-17 may predict pregnancy outcomes, and further clinical studies are warranted.

3.4. IL-22

Previous studies have indicated that IL-22 is advantageous for pregnancy. IL-22 has
a role in the healing process of damaged trophoblast cells at the maternal-fetal interface
because it participates in epithelial cell regeneration and tissue repair by binding to IL-
22R1 on trophoblast cells [129,130]. Significantly fewer IL-22-derived CD4+ T cells were
demonstrated in the decidua of RPL women who miscarried genetically normal embryos
than in normal pregnant women [55]. IL-22 mRNA and its transcription factor are at
the implantation site [55]. Therefore, producing IL-22 in the implantation zone is likely
essential for a healthy pregnancy. Contrary to these studies, it has been reported that serum
IL-22 level was elevated in RPL patients [68]. Further studies are needed to explore the
immunopathogenic mechanism of IL-22 in RPL.

3.5. IL-23

When the IL-23 level is increased above the initial levels, Th17 cells expand dramati-
cally, resulting in an imbalance of Treg/Th17 cells and consequential embryo rejection [131].
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Both peripheral blood and decidual levels of IL-23 were considerably higher in RPL women
than in normal pregnancies, indicating that IL-23 may be involved in the pathophysiology
of RPL [67,69].

3.6. IL-27

Th17 cell expression is inhibited by IL-27, which is present at the maternal-fetal
interface in both human and mouse studies [125,132–134]. In an experiment using mice,
decreased IL-27 expression in decidua was associated with an increased incidence of
miscarriage [133]. Decidual IL-27 expression in RPL patients was lower than in women
with spontaneous abortion or healthy pregnancies [125]. IL-27 inhibited the level of IL-17
and raised the expression of IL-10 in a dose-dependent manner but had no effect on the
expression of TGF-β in decidua [125]. Additionally, IL-27 affects IL-17 and IL-10 levels in
women with RPL, which is secreted mostly by Th17 and Treg cells [125]. These findings
suggest that IL-27 can influence specific immune cells in the decidua during pregnancy.

3.7. IL-35

CD4+ Foxp3+ Treg cells produce the majority of IL-35 [135], and trophoblast cells also
secrete IL-35 during early pregnancy [136]. IL-35 is critical for maintaining the inhibitory
action of Treg cells [135]. The expression of IL-35 in the serum of RPL patients was
considerably lower than that of normal pregnant women, indicating that IL-35 has a role in
maintaining a pregnancy [70,71].

According to the studies mentioned above, the expressions of Th1 cytokines in the
peripheral blood of RPL patients are significantly increased, including TNF-α and IFN-γ.
On the other hand, the circulating levels of Th2 cytokines, such as IL-6 and IL-10, were
remarkably lower in RPL females compared to normal pregnant women. IL-10 seems to be
a core Th2 cytokine since it inhibits the activity of Th1 cytokines and has the function of
immune regulation. Nowadays, maternal-fetal immune tolerance has gradually expanded
from the Th1/Th2 pattern to Th1/Th2/Treg/Th17 pattern. Therefore, Th17 cytokines IL-17
and IL-22 may play central roles in the etiology of RPL, which needs further research.

4. Endometrial Cytokine Imbalance in RPL

The imbalance of cytokine expression in the endometrium or decidua is relevant for
RPL (Table 3). In both women with RPL and abortion-prone animal models, an inordinate
expression of a few cytokines associated with implantation and early embryo development
was present in immune and non-immune cells in the endometrium or decidua. This creates
an adverse cytokine milieu, which assaults immunological tolerance and causes fetal
rejection. Due to the intricacy of cytokines in the endometrium, which undergo dramatic
changes during pregnancy, it is difficult to define the precise function of each cytokine in
RPL. In addition, it is hard to identify the source of a specific cytokine because numerous
immune and non-immune cells can produce the same cytokine. Despite the limitations
highlighted, some cytokines have been reported to play a significant role in this illness.

Table 3. Changes of cytokines in endometrium/decidua of RPL patients compared with healthy women.

Cytokines Expression Number of the
Experimental Group

Number of the
Control Group Reference

TNF-α Increased 35 40 [137]
IFN-γ Increased 10 10 [138]
TGF-β Decreased 35 40 [137]
IL-1β Increased 15 15 [31]
IL-4 Decreased 10 10 [138]
IL-6 Increased 35 40 [137]

Decreased 9 12 [139]
IL-10 Decreased 10 10 [138]
IL-11 Decreased 16 9 [140]
IL-17 Increased 15 15 [69]
IL-18 Increased 15 9 [141]
IL-23 Increased 15 15 [69]
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Before the blastocyst reaches the endometrium, stromal cells produce TNF-α and IL-1β
to trigger an inflammatory response during the implantation window [49]. Human endome-
trial cells can express TNF-α mRNA [142,143]. The expression of TNF-α varies throughout
the menstrual cycle and gradually increases in the late luteal phase [144]. In addition, in-
hibiting TNF-α reduces stress-induced miscarriage in mice [145]. RPL patients had elevated
levels of IFN-γ mRNA and protein in their endometrium and decidua [138]. TNF-α and
IFN-γ can impede embryo growth by inducing apoptosis of trophoblast cells [146].

In the first trimester, IL-1 family cytokines are predominant at the maternal-fetal inter-
face [76]. IL-1β contributes to decidualization by increasing the production of cyclooxygenase-
2 (COX2) and prostaglandin E2 (PGE2) [85]. In a study of placental tissues (6–13 weeks of
gestation) taken from 15 normal pregnancies and 15 RPL patients, significantly elevated levels
of IL-1β were demonstrated in the decidua of the RPL group [31]. These results illuminated
the complicated function of IL-1β at the maternal-fetal interface and its effect on abortion [31].
Furthermore, the protein expression of IL-18 in decidual tissues of RPL patients was much
higher than that of normal pregnant women, indicating that precise regulation of IL-18 was
necessary for a healthy pregnancy [141].

IL-6 plays a constructive role in decidualization and increases endometrial receptivity,
thus facilitating the regulation of maternal-fetal interaction [85]. Patients with RPL have
lower IL-6 mRNA and protein expressions in the mid-luteal endometrial tissues [139,147,148].
However, another study showed that IL-6 mRNA and protein expressions in the decidual
tissues of RPL patients were elevated compared to normal pregnant controls [137]. The
disparities in these studies may be attributable to the heterogeneity of the different populations
and the various underlying disorders.

IL-10 expression at the maternal-fetal interface was documented [149,150]. It is a potent
cytokine that induces the production of tolerogenic DCs [151], which are essential for sus-
taining maternal-fetal immunological tolerance [152]. Patients with RPL whose decidual tis-
sues express low levels of IL-10 have an impaired immune protection system [138,153–155].
Decreased production of IL-10 with the increased synthesis of inflammatory factors, may
provide a condition that induces early miscarriage [156]. In addition, IL-10 and other
cytokines, such as TGF-β, can help coordinate the development of Treg cells in the de-
cidua [157]. Furthermore, the expression of IL-4 was remarkably lower in the decidua of
RPL patients compared with normal pregnancies [138,158]. However, the IL-17A expres-
sion in the decidua tissue of RPL patients was considerably higher than in healthy pregnant
women [112].

A recently published report indicates that IL-35 is expressed in primary early tro-
phoblast cells and the HTR-8 trophoblast cell line. Trophoblasts could transform naive
conventional T cells into iTR 35 cells in the presence of IL-35. Murine spontaneous abor-
tion models have decreased expressions of both IL-35 and iTR 35 cells at the fetomaternal
interface, suggesting that IL-35 is crucial for sustaining fetomaternal tolerance [159].

IL-11 is a crucial cytokine associated with decidualization [160] and placentation [161].
The reduced expression of IL-11 in the endometrial tissues of RPL shows that it plays a
significant role in preventing abortion [140]. Therefore, RPL might be potentially addressed
by correcting IL-11 signaling deficiencies in the endometrium [162]. Defective decidual-
ization and reduced proliferation of uterine stromal cells were observed in IL-11R KO
animals [163,164]. However, these in vivo intervention experiments conducted in mice can
not fully reflect changes in humans. Defective implantation and placentation are major
concerns in human pregnancy since spontaneous miscarriage occurs in 30% of human
pregnancies, most happening before a clinical pregnancy test [165]. In addition, IL-11 is
expressed in the human endometrium [166]. Thus, it is necessary to conduct a relevant
investigation to identify whether the changes in IL-11 and its receptors are related to RPL.

It is known that RPL is related to a reduction in decidual TGF-β compared to healthy
pregnant women due to a decreased production of TGF-β from decidual DCs [153], a
decreased mRNA expression of TGF-β [137], or a smaller proportion of TGF-β+ Tregs in
the decidua [154]. Furthermore, when trophoblast cells obtained after uterine curettage
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were investigated, those from RPL women (n = 11) had substantially decreased expression
of TGF-β3 compared to those from normal pregnant women (n = 20) [167]. Since TGF-β is
involved in stimulating implantation and early embryo development, a reduction in TGF-β
may be causally related to the immunological etiology of RPL. Furthermore, a recent study
showed that the TGF-β signaling pathway promotes the differentiation of placental EVTs
into decidual EVTs, playing a vital role in decidualization [168].

According to a previous report [169], Th1 cytokines stimulate pro-coagulant factors on
vascular endothelial cells, leading to the production of thrombus and inflammation at the
maternal-fetal interface. When fibrinogen-like protein 2 (fgl2), one of the pro-coagulants,
is blocked by anti-fgl2, spontaneous abortions were prevented in the mice model. In
human pregnancies, enhanced fgl2 expression was demonstrated in the trophoblast cells
of failed human pregnancies [170]. Fgl2 plays a role in the conversion of prothrombin to
thrombin, the accumulation of fibrin, and the activation of polymorphonuclear leukocytes,
which in turn impairs placental blood flow. Th2 cytokines suppress and counteract the Th1
response. In addition, Th1 cytokines can promote apoptosis and destroy the trophoblast
barrier between a semi-autogenous fetus and the maternal immune system, leading to
miscarriage. Th1 cytokines can also exert their effects by increasing the proliferation of
NK cells, lymphokine-activated killer (LAK) cells, and cytotoxic T lymphocyte (CTL) cells,
which destroy trophoblast cells and result in fetal absorption in murine pregnancies [171].

5. Cytokines Produced by NK Cells

Similar to T cells, NK cells can be categorized based on the cytokines they secrete [172–175].
In the peripheral blood of non-pregnant women, IFN-γ or TNF-α-producing and IL-4, IL-5,
IL-13, TGF-β or IL-10-non-producing CD56bright NK cells and CD56dim NK cells (NK1) are the
most abundant cells (60%) [176]. However, the proportion of IL-4, IL-5, and IL-13-producing,
IFN-γ, TNF-α, IL-10, or TGF-β-non-producing NK2 cell populations is extremely low [176].
NK3 cells refer to the TGF-β-producing, IFN-γ, TNF-α, IL-4, IL-5 or IL-13-non-producing cells,
and the IL-10-producing cells might be NKr1 cells [176]. In a normal pregnancy, NK cells
switch from type 1 to type 2 immune response [177,178]. The numbers of circulating NKr1 and
decidual NK3 cells are reduced in spontaneous abortion patients, suggesting that these cells are
key players in maintaining pregnancy by regulating maternal immune response [176].

Elevated NK cell cytotoxicity has been reported in the peripheral blood of RPL pa-
tients [179]. In RPL patients, NK cytotoxicity may be utilized as a biomarker to predict
future abortions [180,181]. However, a contradictory study was reported [182], which could
be attributed to the different experimental methodologies and study designs.

RPL patients had a considerably greater number or proportion of circulating NK
cells than normal pregnant women [183–185]. In women with RPL, endometrial NK cell
counts were significantly higher during the mid-luteal phase compared to the normal fertile
controls [186]. dNK cells exhibited increased NK1/NK2 ratios (IFN-γ/IL-4 producing
NK cell ratios) in women with RPL [187]. However, TNF-α and IFN-γ producing uNK
cells in RPL patients were lower than in normal pregnant women [188]. The proportion
of IL-4 and IL-10-producing CD56bright NK cells in the peripheral blood was lower in
non-pregnant women with a history of RPL than in normal fertile women [189]. In contrast,
the proportion of TNF-α and IFN-γ producing NK cells increased significantly [189]. These
findings indicate the presence of increased NK1/NK2 ratios in women with RPL [189].

Moreover, RPL patients have higher absolute numbers of CD56+ NK cells with intra-
cellular IFN-γ, TGF-β, and IL-4 expressions, demonstrating that the immune system is
activated in RPL women compared to normal controls [190]. Decidual NK22 cells are the
primary cells to produce IL-22. IL-22 participates in host defense, mucosal homeostasis,
and trophoblast cell invasion [191]. CD56bright/IL-22+ cells were negatively correlated
with CD56bright NK cells producing IFN-γ or TNF-α both in peripheral blood and en-
dometrium [191]. The mRNA and protein expressions of IL-22 in the decidua of RPL were
considerably reduced [192], and diminished IL-22 levels in the decidual tissues of RPL may
compromise decidual homeostasis and ultimately result in embryo rejection [192].
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5.1. Cytokine in the Micro Milieu of NK Cells

The maternal-fetal interface contains IL-15 and IL-18, activating NK cells to secrete var-
ious cytokines. IL-15 is also present in the female reproductive tract [193] and stimulates the
proliferation of uNK cells in both mice and humans [194,195]. By activating progesterone
receptors, stromal cells released IL-15, and the level of IL-15 was positively correlated with
the number of uNK cells [196]. In animal studies, uNK cells cannot differentiate in the
uterus without IL-15 [197]. Similarly, IL-15 KO mice lacked uNK cells. However, a lack
of uNK cells did not impact on embryo implantation and development [197]. Endome-
trial stromal cells produce more IL-15 during decidualization [198]. In humans, higher
endometrial IL-15 expression was closely associated with RPL [199]. Similarly, IL-15 mRNA
and protein expressions were significantly increased in the placental tissues of RPL pa-
tients [200]. Over-expression of IL-15 in the decidua of RPL patients may lead to the failure
of implantation and angiogenesis, followed by placental injury and fetal loss [200].

IL-18 can stimulate the production of IFN-γ from uNK cells with the presence of Th1
cytokine IL-12 [201]. It may augment the level of pro-inflammatory cytokines released
by macrophages at the embryo-maternal interface, followed by the activation of uNK
cells. Additionally, IL-18 increases NK cell cytotoxicity [202] and stimulates Th2 cytokine
production from NK cells, such as IL-4 and IL-13 [203]. IL-18 expressions in peripheral
blood and endometrium of RPL patients were considerably greater than those of healthy
fertile females [204]. Briefly, cytokine variations in the micro milieu of NK cells may
influence NK cell activity and contribute to the pathogenesis of RPL.

5.2. uNK Cells and Angiogenic Cytokines

RPL is associated with increased endometrial vascular density, suggesting that RPL
is implicated in the premature maturation of the vascular network [205]. It has been
reported that uNK cells produce extensive angiogenic factors, such as VEGF-C, angiopoietin
(Ang), and platelet-derived growth factor (PLGF), which are vital for angiogenesis in the
endometrium [29]. During the implantation window, CD56+ uNK cells are one of the major
sources of angiogenic cytokines in the endometrium [206]. Angiogenic cytokine gene array
study demonstrated that the expressions of VEGF-A, Ang, and basic fibroblast growth
factor (bFGF) in CD56+ uNK cells from RPL patients were considerably higher than those of
normal pregnant women [206]. Differences in results may be attributed to the test method
(angiogenic cytokine array vs. ELISA), experiment sensitivity, and study participants.

6. Cytokine Gene Polymorphisms in RPL

The increased expressions of pro-inflammatory cytokines may be caused partly by gene
polymorphisms, and women with cytokine gene polymorphisms might be genetically prone
to RPL. In addition, gene polymorphisms may affect the expression levels of cytokines,
as well as their functions, which play an important role in the pathogenesis of RPL [207].
Therefore, cytokine gene polymorphisms might be utilized to predict abortion, stratify
pregnancy management, and improve maternal and fetal pregnancy outcomes by increasing
the surveillance of the high-risk abortion group.

6.1. TNF-α Gene Polymorphisms in RPL

In RPL patients, polymorphisms in the TNF-α gene have been extensively investi-
gated (Table 4). Previous meta-analyses indicated that TNF-α -308G/A and -238G/A
polymorphisms had no relationship with the risk of RPL [208,209]. However, subsequent
meta-analyses demonstrated that the TNF-α -308G/A polymorphism was related to an
increased risk of RPL [210,211] but not for TNF-α -238G/A [210,211].
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Table 4. Studies for TNF-α gene polymorphisms and RPL.

Gene
Polymorphism Authors Race Number of Study

and Control Groups
Genotype

Test Method Conclusions
Study Group Control Group

−238G/A

Zammiti, W. et al.,
2009 [212] Tunisian 372 vs. 274 264/88/20 a 215/52/7 a PCR-RFLP

The polymorphism of the
−238G/A gene was
associated with the
occurrence of RPL.

Finan, R. et al.,
2010 [213]

Bahraini
Arabs 204 vs. 248 148/52/4 a 200/48/0 a PCR-RFLP

−238G/A variants were
independent risk factors
for RPL.

Liu, C. et al.,
2010 [214] Chinese 132 vs. 152 128/4/0 a 135/17/0 a PCR

A statistical difference was
exhibited in −238G/A
polymorphism.

Gupta, R. et al.,
2012 [215] Indian 300 vs. 500 121/63/16 a 154/113/33 a PCR-RFLP RPL women tended to

carry the G allele.

Alkhuriji, A. et al.,
2013 [216] Saudis 65 vs. 65 57/8/0 a 55/7/3 a PCR NS

Lee, B. et al.,
2013 [217] Korean 357 vs. 236 330/26/1 a 228/8/0 a PCR-RFLP

TNF-α −238G > A
variants elevated the
incidence of RPL.

Ma, J. et al.,
2017 [207] Chinese 775 vs. 805 732/41/2 a 745/57/3 a PCR-RFLP NS

−308G/A

Babbage, S. et al.,
2001 [218] Caucasian 43 vs. 73 30/13 b 56/17 b PCR NS

Daher, S. et al.,
2003 [219] Brazilian 48 vs. 108 36/12 b 89/19 b PCR NS

Pietrowski, D. et al.,
2004 [220] Caucasian 168 vs. 212 133/33/2 a 167/41/4 a PCR NS

Prigoshin, N. et al.,
2004 [221] Argentinean 41 vs. 54 35/6 b 49/5 b PCR-SSP NS

Kamali-Sarvestani,
E. et al., 2005 [222] Iranian 139 vs. 143 117/14 b 122/21 b PCR NS

Zammiti, W. et al.,
2009 [212] Tunisian 372 vs. 274 319/39/14 a 222/47/5 a PCR-RFLP NS

Finan, W. et al.,
2010 [213]

Bahraini
Arabs 204 vs. 248 164/32/8 a 212/32/4 a PCR-RFLP NS

Liu, C. et al.,
2010 [214] Chinese 132 vs. 152 110/22/0 a 138/13/1 a PCR NS

Gupta, R. et al.,
2012 [215] Indian 300 vs. 500 229/62/9 a 425/70/5 a PCR-RFLP

The A allele was more
likely to be present in RPL
women.

Alkhuriji, A. et al.,
2013 [216] Saudis 65 vs. 65 33/24/8 a 47/14/4 a PCR

The −308G > A gene
polymorphisms were
associated with RPL.

Lee, B. et al.,
2013 [217] Korean 357 vs. 236 319/36/2 a 213/21/2 a PCR- RFLP NS

Ma, J. et al.,
2017 [207] Chinese 775 vs. 805 683/86/6 a 726/76/3 a PCR- RFLP NS

−1031T/C

Finan, R. et al.,
2010 [213]

Bahraini
Arabs 204 vs. 248 152/36/16 a 219/29/0 a PCR-RFLP

The frequency of the
−1031C allele in RPL was
significantly increased.

Lee, B. et al.,
2013 [217] Korean 357 vs. 236 230/115/12 a 191/45/0 a PCR-RFLP

TNF-α − 1031T > C
variants augmented the
chance of experiencing
RPL.

−376G/A Finan, R. et al.,
2010 [213]

Bahraini
Arabs 204 vs. 248 174/20/10 a 226/22/0 a PCR-RFLP

Patients with RPL had a
higher incidence of
carrying the −376A allele.

a Genotype for TNF-α − 238G/A, GG/GA/AA; for TNF-α − 308G/A, GG/GA/AA; for TNF-α − 1031T/C,
TT/TC/CC; for TNF-α − 376G/A, GG/GA/AA; b Genotype for TNF-α − 308G/A, GG/GA+AA; PCR, poly-
merase chain reaction; RFLP, restriction fragment length polymorphism; SSP, sequence specific primers; NS,
no significance.

6.2. IFN-γ Gene Polymorphisms in RPL

IFN-γ 874A > T gene polymorphism affects the level of IFN-γ, and the T allele increases
the cytokine expression [223]. Genotype frequency of IFN-γ 874A > T polymorphism
was significantly different in Argentine women with RPL from that of healthy pregnant
women [221]. The frequency of AT genotype was significantly higher, and that of the AA
genotype was considerably lower in patients with RPL compared with those of normal
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fertile women [221]. It has been observed that the TT genotype that increases IFN-γ
production conspicuously boosts the risk of RPL [219]. However, other studies reported a
lack of association between IFN-γ 874A > T polymorphism and RPL [207,208,222].

6.3. IL-10 Gene Polymorphisms in RPL

Different alleles at sites −1082, −592, and −819 regulate IL-10 expression [224,225]. The
IL-10−1082 GG,−592 AA, and−819 TT genotypes may enhance IL-10 expression [224,225]. It
is hypothesized that phenotypes related to the underproduction of IL-10 may induce pregnancy
complications. Certain IL-10 genotypes increase the chance of RPL, whereas others protect
against abortion (Table 5). A recent meta-analysis of 2047 RPL patients and 2055 control
pregnant women revealed an association between −1082 A/G and the incidence of RPL [226].
However, no significant association was seen between the −819C/T, 592C/A genotypes
and RPL [208,226]. Four meta-analyses produced contradictory results about the association
between the most extensively investigated −1082 A/G genotype and RPL. The first meta-
analysis comprised six studies with 635 RPL patients and concluded that −1082 A/G1082 was
unrelated to RPL [208]. The second meta-analysis comprised six studies and reached the same
conclusion [227]. The third meta-analysis, which included the previous six studies [208,227]
and their own data from India, indicated that the wild-type allele of−1082 A/G was protective
for RPL [228]. A recent publication of the fourth meta-analysis, including 13 studies, suggested
that the GG genotype increased the risk of RPL [229]. The conflicting results may be related to
the diverse study populations.

Table 5. Studies for IL-10 gene polymorphisms and RPL.

Gene
Polymorphism Authors Race Number of Study

and Control Groups
Genotype

Test Method Conclusions
Study Group Control Group

−1082A/G Babbage, S. et al.,
2001 [218] Caucasian 43 vs. 73 8/23/12 a 20/41/12 a PCR NS

Karhukorpi, J.
et al., 2001 [230] Finnish 38 vs. 131 13/16/9 a 44/64/23 a PCR NS

Daher, S. et al.,
2003 [219] Brazilian 43 vs. 104 13/19/11 a 45/43/16 a PCR NS

Kamali-Sarvestani,
E. et al., 2005 [222] Iranian 139 vs. 143 62/41/24 a 62/47/21 a PCR-RFLP NS

Zammiti, W. et al.,
2006 [231] Tunisian 350 vs. 200 87/185/72 a 54/107/39 a PCR-ASA NS

Parveen, F. et al.,
2013 [228] Indian 200 vs. 300 86/99/15 a 180/108/12 a PCR

The A allele has a
significant
protective effect.

Kim, J. et al.,
2014 [232] Korean 385 vs. 232 333/50/2 a 198/34/0 a PCR-RFLP NS

Ma, J. et al.,
2017 [207] Chinese 775 vs. 805 683/88/4 a 685/113/7 a PCR-RFLP NS

−819C/T Kamali-Sarvestani,
E. et al., 2005 [222] Iranian 139 vs. 143 77/49/13 a 61/56/15 a PCR-RFLP NS

Zammiti, W. et al.,
2006 [231] Tunisian 350 vs. 200 182/120/48 a 124/57/19 a PCR-ASA

The −819C/T
polymorphisms were
genetically associated
with RPL.

Parveen, F. et al.,
2013 [228] Indian 200 vs. 300 59/111/30 a 122/142/36 a PCR RPL females tended to

own the CT genotype.

−592C/A Kamali-Sarvestani,
E. et al., 2005 [222] Iranian 139 vs. 143 83/35/14 a 61/56/15 a PCR-RFLP

−592C/A polymorphism
variants were one of the
genetic causes of RPL.

Zammiti, W. et al.,
2006 [231] Tunisian 350 vs. 200 206/93/51 a 134/41/25 a PCR-ASA NS

Parveen, F. et al.,
2013 [228] Indian 200 vs. 300 91/79/30 a 148/116/36 a PCR NS

a Genotype for IL-10− 1082A/G, AA/AG/GG; for IL-10− 819C/T, CC/CT/TT; for IL-10− 592C/A, CC/CA/AA;
ASA, allele-specific amplification.
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6.4. Other Cytokines Gene Polymorphisms in RPL

Gene polymorphisms in other cytokines are summarized in Table 6 (IL-18), Table 7
(IL-6), and Table 8 (IL-1β and IL-1 RN). Furthermore, no significant correlation was present
between the two IL-4 polymorphisms and the probability of RPL [222,233]. Additionally,
women who carry the IL-2RN*2 allele are less likely to have clinical pregnancies after
IVF [234].

Table 6. Researches about IL-18 gene polymorphisms in RPL.

Gene
Polymorphism Authors Race Number of Study

and Control Groups
Genotype

Test Method Conclusions
Study Group Control Group

−607C/A Naeimi, S. et al.,
2006 [235] Iranian 102 vs. 103 37/23/42 a 32/17/54 a PCR NS

Ostojic, S. et al.,
2007 [236] Slovenian 125 vs. 136 43/68/14 a 41/79/16 a PCR NS

Yue, J. et al.,
2015 [237] Chinese 484 vs. 468 87/216/181 a 79/211/178 a PCR NS

−137G/C Naeimi, S. et al.,
2006 [235] Iranian 102 vs. 103 57/40/5 a 56/39/8 a PCR NS

Ostojic, S. et al.,
2007 [236] Slovenian 125 vs. 136 59/54/12 a 62/63/11 a PCR NS

Al-Khateeb, G.
et al., 2011 [238] Bahraini 282 vs. 283 146/98/38 a 152/113/24 a PCR NS

Messaoudi, S. et al.,
2012 [239] Tunisian 235 vs. 235 122/82/31 a 126/92/19 a PCR NS

Yue, J. et al.,
2015 [237] Chinese 484 vs. 468 338/108/38 a 357/102/9 a PCR

−137G/C variants had
statistical relationship
with RPL in additive and
recessive genetic models.

−656C/A Al-Khateeb, G.
et al., 2011 [238] Bahraini 282 vs. 283 80/144/58 a 140/119/30 a PCR −656C/A variants were

related to RPL.

Messaoudi, S. et al.,
2012 [239] Tunisian 235 vs. 235 66/120/49 a 114/97/24 a PCR

The genotype frequency
of −656C/A was
significantly correlated
with the occurrence
of RPL.

−119A/C Al-Khateeb, G.
et al., 2011 [238] Bahraini 282 vs. 283 157/99/26 a 155/109/25 a PCR NS

Messaoudi, S. et al.,
2012 [239] Tunisian 235 vs. 235 132/82/21 a 127/89/19 a PCR NS

−105G/A Al-Khateeb, G.
et al., 2011 [238] Bahraini 282 vs. 283 98/94/90 a 146/110/33 a PCR

−105G/A variant was
prominently associated
with RPL.

Messaoudi, S. et al.,
2012 [239] Tunisia 235 vs. 235 82/78/75 a 120/89/26 a PCR

The genotype frequency
of −105G/A was
significantly different
between the two groups.

Yue, J. et al.,
2015 [237] Chinese 484 vs. 468 349/129/6 a 332/128/8 a PCR NS

a Genotype for IL-18− 607C/A, CC/CA/AA; for IL-18− 137G/C, GG/GC/CC; for IL-18− 656C/A, CC/CA/AA;
for IL-18 − 119A/C, AA/AC/CC; for IL-18 − 105G/A, GG/GA/AA.

Table 7. Studies for IL-6 gene polymorphisms and RPL.

Gene
Polymorphism Authors Race Number of Study

and Control Groups
Genotype Test

Method Conclusions
Study Group Control Group

−174G/C Unfried, G. et al.,
2003 [240]

White Middle-
European
Caucasian
women

161 vs. 124 66/72/23 a 43/58/23 a PCR NS

Daher, S. et al.,
2003 [219] Brazilian 44 vs. 108 39/5 b 99/9 b PCR NS

Prigoshin, N et al.,
2004 [221] Argentinean 38 vs. 54 35/3 b 49/5 b PCR-SSP NS

Saijo, Y. et al.,
2004 [241] Japanese 76 vs. 93 76/0 c 93/0 c PCR NS
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Table 7. Cont.

Gene
Polymorphism Authors Race Number of Study

and Control Groups
Genotype Test

Method Conclusions
Study Group Control Group

Demirturk, F. et al.,
2014 [242] Turkish 113 vs. 113 72/36/5 a 100/11/2 a PCR-RFLP

−174G/C
polymorphisms had a
relationship with an
elevated incidence
of RPL.

Ma, J. et al.,
2017 [207] Chinese 775 vs. 805 484/248/43 a 463/291/51 a PCR- RFLP NS

−634C/G Saijo, Y. et al.,
2004 [241] Japanese 76 vs. 93 58/18 c 56/37 c PCR

Women with the G
allele were more likely
to develop RPL than
those with the
wild-type allele C.

Ma, X. et al.,
2012 [243] Chinese 162 vs. 156 116/46/0 a 93/52/11 a PCR-RFLP

The distributions of the
GG genotype and G
allele were significantly
decreased in RPL.

Ma, J. et al.,
2017 [207] Chinese 775 vs. 805 554/197/24 a 478/277/50 a PCR- RFLP

Women with CG and
GG genotypes were less
likely to develop RPL.

−572G/C Demirturk, F. et al.,
2014 [242] Turkish 113 vs. 113 81/28/4 a 88/21/4 a PCR-RFLP NS

−597G/A Demirturk, F. et al.,
2014 [242] Turkish 113 vs. 113 96/16/1 a 87/26/0 a PCR-RFLP NS

−1363G/T Demirturk, F. et al.,
2014 [242] Turkish 113 vs. 113 95/18/0 a 94/19/0 a PCR-RFLP NS

−2954G/C Demirturk, F. et al.,
2014 [242] Turkish 113 vs. 113 107/6/0 a 112/1/0 a PCR-RFLP

−2954G/C
polymorphism variants
were related to an
elevated risk of RPL.

a Genotype for IL-6 − 174G/C, GG/GC/CC; for IL-6 − 634C/G, CC/CG/GG; for IL-6 − 572G/C, GG/GC/CC;
for IL-6 − 597G/A, GG/GA/AA; for IL-6 − 1363G/T, GG/GT/TT; for IL-6 − 2954G/C, GG/GC/CC; b Genotype
for IL-6 − 174G/C, GG+GC/CC; c Genotype for IL-6 − 174G/C, GG/GC+CC; for IL-6 − 634C/G, CC/CG+GG.

Table 8. Studies for IL-1β, IL-1RA, and IL-1RN gene polymorphisms and RPL.

Gene
Polymorphism Authors Race Number of Study

and Control Groups
Genotype

Test Method Conclusions
Study Group Control Group

IL-1β +
3954C→T
on exon 5

Hefler, L. et al.,
2001 [83] Caucasian 131 vs. 68 79/46/6 a 47/16/5 a PCR NS

Reid, J. et al.,
2001 [244] British 17 vs. 43 11/6/0 b 26/14/3 b PCR NS

Ma, X. et al.,
2012 [243] Chinese 162 vs. 156 124/38/0 c 130/26/0 c PCR-RFLP NS

Ma, J. et al.,
2017 [207] Chinese 775 vs. 805 602/168/5 c 632/166/7 c PCR-RFLP NS

IL-1β −
511C/T

Hefler, L. et al.,
2002 [245] Caucasian 130 vs. 67 29/90/11 c 20/38/9 c PCR NS

Linjawi, S. et al.,
2005 [246] British 206 vs. 224 69/117/20 c 85/110/29 c PCR NS

Ma, X. et al.,
2012 [243] Chinese 162 vs. 156 38/84/40 c 46/84/26 c PCR-RFLP NS

Kim, J. et al.,
2014 [232] Korean 385 vs. 232 96/190/99 c 39/120/73 c PCR–RFLP −511C > T polymorphism

was relevant to RPL.

Ma, J. et al.,
2017 [207] Chinese 775 vs. 805 178/384/213 c 156/392/257 c PCR-RFLP NS

IL-1 RA Unfried, G. et al.,
2001 [247] Austrian 105 vs. 91 0.9/0.34/0.5 d 0.97/0.11/0.5 d PCR Allele 2 was a genetic risk

factor for RPL.

IL-1 RN Wang, Z. et al.,
2002 [248] Caucasian 118 vs. 60 88/26/2/2 e 39/20/1/0 e PCR-RFLP NS
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Table 8. Cont.

Gene
Polymorphism Authors Race Number of Study

and Control Groups
Genotype

Test Method Conclusions
Study Group Control Group

Karhukorpi, J.
et al., 2003 [249] Finnish 37 vs. 800 12/19/2/4 f 374/343/66/17 f PCR

The frequency of the
IL-1RN*3 allele was
significantly increased in
RPL patients.

Linjawi, S. et al.,
2005 [246] British 206 vs. 259 12/79/115 g 17/92/150 g PCR NS

a Genotype for IL-1β + 3954, E1/E1: E1/E2: E2/E2; b Genotype for IL-1β + 3954, 1, 1/1, 2/2, 2; c Genotype for
IL-1β + 3954, CC/CT/TT; for IL-1β − 511C/T, CC/CT/TT; d Genotype for IL-1 RA, 1/2/3; e Genotype for IL-1
RN, 1/2/3/4; f Genotype for IL-1 RN, 1/1: 1/2: 2/2: 1/3 or 2/3; g Genotype for IL-1 RN, 2, 2: 2, 4: 4, 4.

Inconsistent results in expression levels and gene polymorphisms of various cytokines
in women with RPL could be due to other factors affecting the expression levels of cy-
tokines, differences in study design, study population, and lifestyle. Moreover, it is vital to
investigate whether the reported genotype frequency of particular cytokine polymorphism
can be applicable to RPL of other ethnic backgrounds, as some of the studies mentioned
above only applied to a certain ethnic population and not others [250]. Multiple cytokine
polymorphisms may contribute to RPL rather than a single gene polymorphism. Moreover,
altered cytokine production by gene polymorphisms may not represent the immune and
inflammatory change at the maternal-fetal interface since cytokines exert their effect in both
autocrine and paracrine manners. Finally, the association between cytokine gene polymor-
phisms and RPL warrants further studies with larger study populations. Meta-analysis
may solve the decreased statistical significance caused by the small sample size and obtain
more accurate results.

7. Hormonal Regulation of Cytokines and RPL

Various hormones regulate the expression of pregnancy-maintaining Th2 cytokines.
The decrease of estrogen (E2) and progesterone (P4) induced the production of Th1 pro-
inflammatory cytokines [251]. In addition, E2 and P4 enhance Th2 anti-inflammatory
response and reduce the activity of pro-inflammatory macrophages and NK cells [252].
P4 levels are similar at the maternal-fetal interface throughout implantation and early
pregnancy. In humans, P4 promotes the cytokines production by T cells, such as IL-4, IL-5,
leukemia inhibitory factor, and M-CSF in decidua [253], while suppressing the production
of IFN-γ and TNF-α [254,255] and impeding the production of Th17 related cytokines, such
as IL-17A and IL-23 in peripheral blood [256]. A few studies investigated the indications
for the use of P4 in treating RPL. A large sample study involving 826 subjects revealed
that compared with the placebo group, vaginal micronized progesterone plays a weak or
no difference in improving the living birth rate of RPL patients [257]. Similarly, the proof
of dydrogesterone for treating RPL is low certainty compared to placebo [257]. There is
no sufficient data to analyze the effect of 17-α-hydroxyprogesterone or oral micronized
progesterone on increasing the living birth rate of RPL patients [257]. In another study, the
subgroup analysis of three experiments contained patients with three or more recurrent
miscarriages [258]. P4 significantly reduced the abortion rate compared with placebo or no
therapy [258]. It seems that P4 has a significant therapeutic effect on RPL. Therefore, they
pointed out that P4 could be considered for treating RPL women since the abortion rate
was lower and there was no augment in side effects of mothers and neonates [258].

E2 also has immunomodulatory effects. E2 levels during pregnancy have been shown
to affect the Th1/Th2 cytokine balance, maintaining maternal-fetal tolerance [259]. E2
regulates cytokine expression in a dose-dependent manner. It increases IFN-γ and IL-
12 levels in the peripheral blood before ovulation. However, it increases IL-10 levels
throughout pregnancy, reducing the IFN-γ/IL-10 ratio during human pregnancy [260]. In
the human PBMC culture study, E2 decreased the secretion of IL-2 and IFN-γ but did not
affect the level of TNF-α, IL-17A, and IL-23 [256]. However, E2 administration significantly
reduced the circulating IL-17 expression in allergic encephalitis mice [261]. These discrepant
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results imply that it is necessary to explore the effect of E2 on Th17 cytokines in pregnant
women. Like P4, E2 increases peripheral blood IL-6 levels in humans [256]. Since E2 can
suppress the serum levels of Th1 cytokines, such as IL-2 and IFN-γ, and increase the serum
level of Th2 cytokine IL-6, it can regulate the cytokine balance in favor of the Th2-type
immune response.

8. Conclusions

RPL is a disorder with numerous potential causes. Dysregulation of cytokine expres-
sion may be one of the underlying pathologies, but the mechanisms need to be explored
further. Cytokines rarely exhibit activity independently; rather, they comprise a regu-
latory network that maintains equilibrium. Moreover, the ultimate effect of an altered
cytokine level is determined by the overall modulation of the immune response rather than
a mechanism by a specific cytokine. The gaps between the highest and lowest levels of a
particular cytokine can be as much as tenfold; hence, one mechanism by a single cytokine
cannot account for RPL. Consequently, understanding the intricate mechanisms of various
cytokines may aid in establishing therapeutic modalities for RPL of immune etiologies and
achieving a successful pregnancy.

Currently, available data do not support a routine check for cytokine or cytokine gene
polymorphisms in women with RPL, and most obstetrical guidelines do not recommend
testing cytokine levels [250]. It may be unnecessary to do cytokine testing in RPL patients
who clearly have an endocrinologic or infectious etiology. Noteworthily, Th1/Th2 cell
ratios have been utilized to diagnose and monitor women with RPL. Even though a
variety of immunomodulatory treatments, including corticosteroids, paternal lymphocyte
immunization, progesterone, intralipid infusion, TNF-α inhibitors, granulocyte colony-
stimulating factor (G-CSF), low molecular weight heparin (LMWH), and intravenous
immunoglobulin (IVIg) therapy, have been utilized in the treatment of RPL women, their
efficacy is still the subject of contention [262–264]. Hence, not a single gene or a cytokine
but a panel of cytokines and cytokine genes is likely to be necessary to assess women
with RPL, considering the complexity of the immune network and the multifactorial
nature of treatment responses. In women with RPL and dysregulated cytokine profiles,
local or systemic administration of cytokines or their antagonists may be a potential
therapeutic approach for maintaining immunological balance and improving maternal and
fetal outcomes. Well-designed large-scale clinical trials are needed in the future.
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