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Abstract: Peanut allergy is a lifelong, increasingly prevalent, and potentially life-threatening disease
burdening families and communities. Dietary, particularly polyunsaturated fatty acids (PUFAs),
intakes can exert positive effects on immune and inflammatory responses, and the red blood cell
(RBC) membrane lipidome contains stabilized metabolic and nutritional information connected with
such responses. The fatty-acid-based membrane lipidome profile has been exploratorily evaluated in
a small cohort of patients (eight males and one female, age range 4.1–21.7 years old, body mass index
BMI < 25) with angioedema and/or anaphylaxis after peanut ingestion. This analysis was performed
according to an ISO 17025 certified robotic protocol, isolating mature RBCs, extracting membrane
lipids, and transforming them to fatty acid methyl esters for gas chromatography recognition and
quantification. Comparison with a group of age- and BMI-matched healthy individuals and with
benchmark interval values of a healthy population evidenced significant differences, such as higher
levels of ω-6 (arachidonic acid), lower values of ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), together with an increased ω-6/ω-3 ratio in allergic patients. A significant inverse
correlation was also found between specific immunoglobulin E (IgE) levels and ω-6 di-homo-gamma-
linolenic acid (DGLA) and total PUFAs. Results of this preliminary study encourage screenings in
larger cohorts, also in view of precision nutrition and nutraceuticals strategies, and stimulate interest
to expand basic and applied research for unveiling molecular mechanisms that are still missing and
individuating treatments in chronic allergic disorders.

Keywords: peanut allergy; allergic inflammation; red blood cell; membrane lipidome; ω-6 fatty acids;
ω-3 fatty acids; polyunsaturated fatty acids

1. Introduction

Peanut allergy (PA) is one of the most common food allergies in the pediatric age,
affecting approximately 1–3% of children in Western countries, and the prevalence has been
increasing in the last decades worldwide [1,2]. Compared with other food allergies, PA is
usually lifelong and associated with higher rates of accidental exposure, severe reactions,
and potentially fatal anaphylaxis. This, in turn, has a significant impact on the management
of the patient, also from a nutritional point of view. The immune system and impaired
immune maturation are involved in tolerance breakdown and the development of immune-
mediated diseases such as food allergies [3]. The involvement of lipids is progressively
recognized both as basic constituents of cellular structures involved in immune regulation
and components of diets [4].
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1.1. Fatty Acids as Structural and Functional Constituents of Cell Membranes and Relationship
with Diet

Fatty acids are distinguished by their structures into saturated, monounsaturated, and
polyunsaturated families (SFA, MUFA, and PUFA), with an important dietary dependence
on PUFAs, which are not directly produced by human metabolism. The omega-6 (ω-6)
and omega-3 (ω-3) precursors, linoleic and alpha-linolenic acids, are processed after intake
by desaturase and elongase enzymes to form long-chain PUFAs (LC-PUFAs), as shown in
Figure 1 [5].
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Figure 1. The omega-6 (ω-6) and omega-3 (ω-3) pathways of main long-chain polyunsaturated fatty
acid (LCPUFA) biosynthesis, with the interplay of desaturase and elongase enzymes starting from
essential (dietary) fatty acid precursors.

LC-PUFAs incorporated into membrane phospholipids are crucial for their subse-
quent enzymatic release and, consequently, the formation of bioactive lipid mediators
(prostaglandins, leukotrienes, etc.), playing important and well-known biological roles in
the development and regulation of the immune system and inflammatory process [6,7]. It
is worth recalling that allergic patients start to exclude food(s) from their diets, and this
is an initial step for introducing fewer essential fatty acids (EFAs) or breaking the balance
between ω-6 and ω-3 intakes, i.e., between pro- and anti-inflammatory components. In-
deed, an optimal ω-6/ω-3 balance realizes the ordered sequence of ω-6 LCPUFAs derived
mediators, which initiate the “reactivity” response, followed by mediators derived from
ω-3 LCPUFAs called “specialized proresolving mediators” (SPMs), which bring resolution
and tissue repair [8,9]. Only with the balanced production of these mediators can the
overall cell response occur in a physiological manner. Dietary unbalances are recognized to
be risk factors for atopy, asthma, and allergy [2,10], and fatty acid supplementations are
proposed for the treatment of allergic conditions [11,12]. On the other hand, the association
between ω-3 and ω-6 intakes and clinical improvements in food allergy patients [13] are
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under discussion and, more importantly, are not combined yet with the examination of
the patient’s fatty acids status, per se or during supplementation, in particular utilizing
erythrocyte membrane lipidome information, which is a reliable mirror of fatty acid intake
and metabolism in the body tissues [14].

1.2. Fatty-Acid-Based Membrane Lipidome Analysis

Fatty acid detection can be performed in plasma lipids or blood cell lipids, in particular
red blood cells (RBCs), providing different types of information. Diet composition of the
days before blood withdrawal strongly affects fatty acid plasma levels, in contrast to RBC
membranes, where fatty-acid-based phospholipid composition reflects a balance between
nutritional and metabolic factors (i.e., fatty acids transformation into phospholipids). Easi-
ness of the sampling and work-up procedures leads to be more prone to choose plasma or
whole blood specimens, but knowledge of the importance of membranes for cell signaling
and precision medicine applications strongly indicates RBC membrane isolation and analy-
sis to obtain information on the stabilized metabolic and nutritional status of patients [14].
Indeed, the fatty-acid-based membrane lipidome profile of mature RBCs (mean lifetime of
120 days) was developed and used as a nutritional, homeostatic, and metabolic biomarker
in several human physiopathological states [15,16]. Certified laboratory protocol with fatty
acid identification and quantitation following ISO 17025 international requirements ensures
the reliability and repeatability of the results, as well as the quality of the data. With such a
procedure, observational clinical studies were performed identifying membrane profiles
in different health conditions [17–22]. This information opens the way to personalize the
approach of membrane lipid therapy, a natural medicine tool effective in several health
conditions [23,24].

2. Results

With the aim of exploring the relevance of the membrane lipidome profile in food
allergy, a cohort of peanut-allergic patients was selected among subjects followed along
years at the Pediatric Immunopathology and Allergology Unit of the university hospital.
As shown in the diagram of Figure 2, we recruited n = 29 subjects with a clear history of
angioedema and/or anaphylaxis, and exclusion criteria were applied (body mass index
(BMI) > 25, other food allergies, autoimmune diseases, and allergic reactions in the last
18 months). The final cohort presented n = 9 patients (age 12 ± 5.6 years old). At the same
time, 15 healthy individuals (8 females and 7 males) with BMI < 25 and age = 17 ± 4 years
old were selected from the anonymous database available at the Lipidomic Laboratory, for
which informed consent for research use was gathered at the moment of blood withdrawal,
and respect of EU general data protection regulation 2016/679 (GDPR) guaranteed by
the ISO 17025 certification. The controls did not have allergic problems. Mature RBC
membrane fatty acid values compared with those of the patients were obtained by the
same procedure. The observational study focused on the fatty acid composition of RBC
membranes addressing the following key points: (a) the status of ω-6 vs. ω-3 fatty acid
residues of the membrane phospholipids as the expression of proinflammatory tendency in
allergic patients, and (b) the correlation of membrane lipidome profile features with specific
immunoglobulin E (IgE) levels.

Clinical and laboratory data from peanut-allergic patients are described in Table 1.
All patients had a history of angioedema and/or anaphylaxis after ingestion of peanuts;
however, the recruited patients did not have any allergic reactions in the last 18 months.
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Table 1. Peanuts allergic patient characteristics.

Sex Age
(Years)

BMI
(Centil)

BMI
(Kg/mq)

Other
Food

Allergies

Inhalant
Allergies

Reaction on
Exposure to Peanuts

Allergic
Comorbidity

*

Totals
IgE

(UI/mL)

Peanut-
Specific IgE

(UI/mL)

Molecular
Diagnosis

(kU/L)

M 4.6 80 18 - + ANAPHYLAXIS R 965 >100 100 (Arah2)
M 11.7 80 22.7 - + ANGIOEDEMA A-R-AD 965 0.50 NA
M 10.1 75 20.5 - - ANGIOEDEMA R-AD 39.5 32.5 NA
M 21.7 96 28.7 Walnut + ANAPHYLAXIS R-C 152 1 10.3 (Arah9)
M 13.1 40 19.7 - + ANAPHYLAXIS A-R 340 0.54 0.27 (Arah2)
M 17.6 77 24.5 Walnut + ANAPHYLAXIS A-R-C 587 5.29 6.97 (Arah9)
F 12.7 80 23.9 - + ANAPHYLAXIS R-AD 276 >100 NA
M 12.4 10 16.5 Hazelnut - ANGIOEDEMA none 34.5 2.96 NA

M 4.1 75 17.2 Hazelnut +
ANGIOEDEMA +

INTESTINAL
symptoms

none 1833 48.8 NA

* A, asthma; R, rhinitis; C, conjunctivitis; AD, atopic dermatitis; NA, not available.

In Table 2, the results of the mature RBC fatty-acid-based membrane lipidome analysis
are shown; as in previous work, the main fatty acids of the RBC membrane phospholipids
are grouped to give a cohort of 10 SFA, MUFA, and PUFA components, the latter ones
representing the ω-6 and ω-3 metabolic cascades shown in Figure 1 [15]. Each unsaturated
fatty acid of the cohort is recognized by appropriate standards, ensuring that it is not
superimposed to geometrical or positional isomers. Calibration with standard references
allows to calculate the quantity of each fatty acid in the sample and express it as a relative
quantitative amount (% rel. quant.) over the total of the 10 fatty acid quantities. From
these values, the ω-6/ω-3 ratio, related to pro- and anti-inflammatory balance [25], and
peroxidation index (PI), as a measure of the PUFA contribution to elevating membrane
peroxidizability [26,27], were calculated. Each of the 10 fatty acids and related indexes were
compared with the 15 age- and BMI-matched healthy controls and with the benchmark of
interval values referred to a healthy population described in previous works [15–17]. In
Table 2, significant changes observed between patients and controls are reported with their
p-values.
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Table 2. Fatty acid profile of mature red blood cell membranes of peanut-allergic patients (n = 9) in
comparison with the reference interval values of healthy population reported in refs. [15–17] and
with age- and BMI-matched healthy controls (n = 15).

Fatty Acids † Reference
Interval Values

Healthy Controls
(n = 15) ‡

(% rel. quant.)

Patients
(n = 9) ‡

(% rel. quant.)

16:0 17–27 22.78 ± 1.02 22.03 ± 1.26
9-cis 16:1 0.2–05 0.26 ± 0.11 0.20 ± 0.06

18:0 13–20 18.04 ± 1.36 16.57 ± 1.07 *
9-trans 18:1 0.1–0.3 0.11 ± 0.03 0.20 ± 0.03 ***

9-cis 18:1 9–18 18.70 ± 1.39 18.83 ± 2.26
11-cis 18:1 0.7–1.3 1.03 ± 0.15 1.04 ± 0.18
18:2 ω-6 9–16 13.45 ± 1.14 12.96 ± 1.20

20:3 ω-6 (DGLA) 1.9–2.4 2.06 ± 0.44 1.95 ± 0.35
20:4 ω-6 (ARA) 13–17 16.19 ± 0.64 21.68 ± 1.9 ***

mono-trans ARA 0.1–0.4 0.07 ± 0.05 0.14 ± 0.06 **
20:5 ω-3 (EPA) 0.5–0.9 0.78 ± 0.12 0.47 ± 0.21 ***
22:6 ω-3 (DHA) 5–7 6.54 ± 1.03 3.92 ± 1.27 ***

SFA 30–45 40.82 ± 1.34 38.60 ± 0.65 ***
MUFA 13–23 19.99 ± 1.46 20.07 ± 2.35

PUFA ω-6 24–34 31.69 ± 1.65 36.59 ± 1.93 ***
PUFA ω-3 5.7–9 7.32 ± 1.12 4.39 ± 1.43 ***
PUFA TOT 28–39 39.01 ± 1.64 40.98 ± 2.30 *
SFA/MUFA 1.7–2 2.05 ± 0.18 1.94 ± 0.21
ω-6/ω-3 3.5–5.5 4.44 ± 0.84 9.31 ± 3.47 ***
Tot Trans ≤0.4 0.18 ± 0.05 0.35 ± 0.07 ***

PI 138–151 139.81 ± 8.15 129.95 ± 12.04 *
† Fatty acids are reported from the gas chromatographic analysis (GC) after transformation of membrane phos-
pholipids of mature RBCs into fatty acid methyl esters (FAMEs); ‡ values are expressed as relative percentages
(mean ± SD) of the quantitative values of each fatty acid obtained by calibration curves of the standards and
referred to the representative 10 fatty acids cohort. Statistical analyses comparing patients with healthy controls
gave the following p-values: * ≤0.026; ** ≤0.0022; *** ≤0.0001.

As shown in Table 2, in allergic patients, we found a marked unbalance mainly
concerning the PUFA residues of cell membrane phospholipids. Compared with the cohort
of healthy controls, the patients showed a significant increase in ω-6 20:4 (arachidonic acid,
ARA), PUFA ω-6 and the ratio ω-6/ω-3, whereas ω-3 20:5 (eicosapentaenoic acid, EPA),
22:6 (docosahexaenoic acid, DHA), total PUFA ω-3, and the PI value were significantly
diminished. In addition, total saturated fatty acids (SFAs) and stearic acid (18:0) were
significantly lower than controls. The distribution of PUFA values and ratio as scattered
dot plots showing each patient is presented in Figure 3 in comparison with those found in
healthy controls, reporting also the benchmark of interval values in the healthy population.
Although the cohort of patients is small, in Figure 3, it is possible to appreciate that their
membrane fatty acid values are all positioned outside (lower or higher) both healthy
controls and benchmark interval values. It is worth underlining that levels of trans fatty
acids isomers of oleic and arachidonic acids were also evaluated since these compounds are
available as standard references [17,18] and found to be significantly increased, although
within the values reported for the benchmark (≤0.4).
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fatty acid values (Table 2).

As detailed in Table 3, significant inverse correlations were found for peanut-specific
IgE with ω-6 20:3 di-homo-gamma-linolenic acid DGLA and total PUFA (p-value = 0.033
and p-value = 0.038, respectively).
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Table 3. Correlation (expressed by the Spearman correlation coefficient, r) of the fatty acid values of
Table 2 with the peanut-specific IgE shown in Table 1. See also heatmap in Figure 4.

Correlation r (+/−) p-Value

16:0—specific IgE 0.6 0.086

18:0—specific IgE −0.469 0.205

9-cis 18:1—specific IgE 0.5 0.1

20:3 ω-6—specific IgE −0.724 0.033 *

20:4 ω-6—specific IgE −0.517 0.162

Monotrans-ARA—specific IgE −0.3 0.391

SFA—specific IgE 0.377 0.30

MUFA—specific IgE 0.519 0.155

Total PUFA—specific IgE −0.711 0.038 *

Tot trans—specific IgE −0.444 0.235
* Statistically significant correlations.

3. Discussion

This is the first study to explore the relevance of the membrane lipidome profile in
patients with peanut allergy. We observed a clear unbalance between ω-6 and ω-3 fatty
acids in this cohort of patients, mainly due to an increase in ω-6 20:4 (ARA) and a decrease
in ω-3 (EPA and DHA). Considering the role of ARA as a precursor of proinflammatory
eicosanoids [9], but also as a result of the metabolism of omega-6 linoleic acid taken from
the diet (see Figure 1), our data support the synergy of metabolism and diet to build
up a specific profile of the cell membranes of peanut-allergic patients [28]. The role of
omega-3, both as essential components of the diet and as modulators of the immune and
anti-inflammatory processes, is well known [28], and in our cohort, a significant reduction
in ω-3 fatty acids involves EPA and DHA. Examining in detail the patients’ values in
Figure 3, in nine patients, the DHA values resulted to be in the lower ranges compared with
both healthy controls and the benchmark of the healthy population. As shown in Figure 1,
EPA and DHA are the members of the ω-3 cascade containing the highest number of double
bonds among all PUFAs (see Figure 1). Besides their transformation into bioactive lipid
mediators with immune-stimulating and anti-inflammatory activities [12], DHA exerts
a greater influence on membrane biophysical properties such as flexibility, fluidity, and
thickness [29,30]. It is also clear that the quantity and quality of fat intake directly from
seafood (fish, algae) can influence the levels of these fatty acids in cells; however, all
patients apparently had regular fish consumption in their nut-free diet, not different from
the healthy controls. Another cause of EPA and DHA diminutions can be the efficiency of
the metabolic transformations in these patients, as shown in Figure 1. Indeed, humans have
a limited capability to synthesize LC PUFA from the precursor alpha-linolenic acid [31], so
that daily intakes of 250 mg EPA and DHA are indicated by the most relevant food safety
agencies, such as EFSA (European Food Safety Authority) [32]. These preliminary data on
ω-3 deficiency must be deepened in a study with larger cohorts.

We also consider it relevant that the ω-6 components came into the scenario of al-
lergic patients, in particular with an increase in arachidonic acid, with known roles in
the propagation of inflammatory responses and cellular reactivity. Moreover, ω-6 DGLA,
which is a precursor of arachidonic acid and prostaglandins (PG series 1) [33], showed an
inverse correlation with specific IgE levels. Literature data connect DGLA supplementation
with an increase in PGD1 and improvement in atopic dermatitis, although in an animal
model [34]. Moreover, prostaglandin E1 (PGE1) originates from DGLA, and a synthetic
analog misoprostol has been reported to modulate histamine release from basophils [35]. It
must be underlined that clinical trials on gamma-linolenic acid (GLA) supplementation as
a precursor of DGLA (see Figure 1) gave very heterogeneous results, but no data are yet
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reported on the follow-up of the GLA-DGLA metabolic transformation and incorporation
of DGLA in membrane phospholipids. Evidently, the possibility of monitoring DGLA
levels in the RBC membrane offers the best strategy to follow up subjects during treatments.
Moreover, total PUFA levels were negatively correlated with specific IgE, and both cor-
relations underline the importance of deepening the PUFA status in patients in view of
its importance for cell signaling. On the other hand, despite multiple evidence for PUFA
relevance in different health conditions [6,7,9,13,33], the punctual follow-up of patients is
still missing in clinical approaches.

The exclusion of subjects with a BMI > 25 from our cohort, as well as from the healthy
controls, takes into account that overweight and obesity are known to increase arachidonic
acid levels in RBC membranes [22,36], and we wanted to exclude interferences from known
proinflammatory conditions. In addition, the distance of 18 months from the last allergic
episode in patients and the exclusion of allergic conditions in the healthy cohort were
carefully checked to eliminate interferences from immune reactivity. It is interesting to
observe that in obesity, the membrane fatty acid asset had some common features with
that of allergic patients (such as low levels of DHA and increased levels of ARA and
omega-6/omega-3 ratio) [22,36], whereas an increase in the SFA/MUFA ratio was not
found, which is known to influence membrane properties through an increased rigidity of
RBC membranes [37].

The overall oxidative reactivity estimated with the peroxidizability of RBC mem-
branes (peroxidation index, PI; cfr., Table 2) in allergic patients was lower than in controls.
However, it must be underlined that we did not perform direct measurements of per-
oxidation processes through a measure of oxidation metabolites, and this is a limitation
of the present study. In our analysis, we also measured trans fatty acid (TFA) isomers
of oleic and arachidonic acids, which are known markers of endogenous cis-trans iso-
merization of the corresponding cis MUFA and PUFA caused by increased free radical
production [38,39]. Previously, we reported TFA to increase in the blood cell membranes
of children affected by atopic eczema/dermatitis syndrome [40]. In our allergic cohort,
we found TFA significantly increased compared with healthy controls (0.35 ± 0.07 vs.
0.18 ± 0.05, p-value ≤ 0.0001) [15]; however, the threshold value of the benchmark (0.4%)
was not overcome.

The detection of fatty acids and isomers is one of the various aspects of the analytical
protocol that starts from the choice of mature RBC membranes for sampling, as detailed in
the experimental part and discussed in previous research papers and reviews [16,20–22].
Precision medicine must rely on analytical data not only obtained by protocols unified
among laboratories but also certified for the results and reliability by a competent auditing
process, usually provided by national bodies of accreditation through compliance with
the ISO 17025 regulation. The use of gas chromatographic methodology, with cis and
trans fatty acid references and calibration procedures, allows to examine fatty acid levels
with the highest molecular identification and sensitive quantification, and this is needed
when membrane lipidome profiles are developed to identify disease onset [14,16,18,20].
Moreover, the inclusion of a robotic platform in the certified protocol reduces errors due to
manual operations. Our small cohort certainly took advantage of such precise measures
to evidence significant results, but we are aware that the sample size must be increased
to achieve greater statistical power. Here, we preliminarily showed results of membrane-
based diagnostics in peanut allergy patients, supporting the importance of this tool that
has reached maturity and technological advancement to serve larger screenings.

Further studies will be able to address an integrated vision in allergic patients in
which specific alterations found in RBC membrane lipidome profiles mirror crucial changes
in molecular components and related signaling to develop allergic reactivity [41]. Some
of these changes are indicated in Figure 5, starting from the formation of the fatty acid
pool, influenced by nutritional and metabolic contributions specific to each individual,
and the consequences on the composition of membrane phospholipids. Once membranes
are formed, they present different qualities and quantities of PUFAs that, in turn, can
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bring a balance/unbalance of bioactive lipids created in cells after the release of PUFA
residues from phospholipids. An increase in ARA and a diminution in DGLA, EPA, and
DHA in allergic patients can contribute to an unbalance of signaling with an influence on
inflammatory and anti-inflammatory cytokine productions, as well as on a diminution in the
protection from antigen-induced activation given by ω-3 proresolving mediators (epoxins,
resolvins, protectins) [41], resulting in a general cellular response toward hypersensitivity
and augmented IgE production [42].
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Figure 5. The individual fatty acid pool, derived from diet and metabolism, influences the formation
of phospholipids, and an unbalance occurs in allergic patients among dihomo-gamma-linolenic acid
(DGLA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA)
residues present in cell membranes. The fatty acid composition has impact on formation of bioactive
lipids and balance/unbalance of transcription factors (NF-kB, among others) for the production of
inflammatory/anti-inflammatory cytokines influencing the cellular IgE production and the final
hypersensitivity reaction.

Alteration of the PUFA composition in membranes is basic information to acquire
and translate into precision medicine and nutrition strategies. In fact, the type and dosage
of fatty acids able to rebalance the molecular status of patients can be personalized for
each distinct profile and regularly monitored. This is particularly important in children, in
which PUFAs are used to sustain the exponential growth of cells for all tissues, and their
exact levels must be determined [43] in order to promptly individuate deficiency or excess
with impact on normal tissue functioning [44,45]. Our exploratory study highlights cell
membranes for effecting PUFA detection exactly in the active site of their immunomodula-
tory effects, evidencing molecular mechanisms that are still missing in the evaluation of
PUFA treatments in chronic allergic disorders.

4. Materials and Methods
4.1. Study Subjects

This study was conducted in accordance with the ethical principles of the Declaration
of Helsinki and obtained ethical clearance from the ethics committee at Policlinico Tor
Vergata, University of Rome Tor Vergata (n.82.21). Informed consent was obtained from
each patient or patient’s legal guardians and each of the healthy controls. As reported in
Figure 2, a total of 29 Italian native patients with peanut allergy (18 M and 11 F, age range
4.1–21.7 years) were identified at the Pediatric Immunopathology and Allergology Unit,
Policlinico Tor Vergata, University of Rome Tor Vergata. Peanut allergy was defined by the
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following criteria: (a) history of significant peanut-related clinical symptoms, (b) positive
skin prick test to peanut allergen (wheal ≥ 3 mm larger than the saline control), and
(c) positive in vitro serum peanut IgE (CAP-FEIA) > 0.1 Ku/L. Exclusion criteria were as
follows: (a) BMI > 25 Kg/mq, (b) other concomitant food allergies, and (c) autoimmune
diseases. A final number of 9 peanut-allergic patients (8 males), age range 4.1–21.7 years,
were included in the study. These criteria allowed appropriateness of patient enrollment in
the study. Further, blood samples for the lipidome profile of red blood cell membranes were
obtained ≥18 months since last allergic reaction to standardize time of testing and reduce
the risk of interfering factors. Component-resolved diagnostics (CRDs) for Arah2 and
Arah9 were available in 4 patients. As healthy controls, 15 healthy individuals (8 females
and 7 males) with BMI < 25 and age 17 ± 4 years old were selected from an anonymous
database available in the Lipidomic Laboratory, for which informed consent was gathered
at the moment of blood withdrawal, and respect of EU general data protection regulation
2016/679 (GDPR) was ensured by the ISO 17025 certification. All controls did not have
any history of allergic reactivity. The benchmark of reference interval values for mature
RBC membranes served for observing controls and patients using the data reported for
populations [15–17].

4.2. Isolation of Fatty Acids from RBC Membrane Phospholipids and Gas
Chromatographic Analysis

Fatty-acid-based membrane lipidome analyses were performed by the Lipidomic
Laboratory of Lipinutragen (Bologna, Italy). Blood samples (0.5 mL) collected in vacu-
tainer tubes with ethylenediaminetetraacetic acid (EDTA) were treated according to the
ISO17025 certified procedure (accredited Lab. #1836L) by robotic equipment and processed
as described in previous studies [21,22,36,46]. Briefly, the mature cell fraction was isolated
based on the higher density of the aged cells with control of diameter controlled by cell
counter (Scepter 2.0 with Scepter Software Pro, EMD Millipore, Darmstadt, Germany) [47].
After phospholipid extraction, derivatization to fatty acid methyl esters (FAME) was
performed, transforming membrane glycerophospholipids (mainly phosphatidylcholine,
phosphatidylethanolamine, phosphatidylserine, phosphatidyl inositol, and plasmalogens)
to examine up to 80% of the RBC membrane lipidome [48]. Fatty acids analysis was per-
formed by gas chromatography (GC), and percentages are given as % relative quantitative
(% rel. quant.), as previously described [21,22,36,46], comparing with the benchmark of the
interval values of each fatty acid and index [15].

4.3. Statistical Analysis

Statistics were performed using GraphPad Prism 8.0 software (GraphPad Software,
Inc., San Diego, CA, USA), applying unpaired t-test and Spearman correlation with a 95%
confidence interval.
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