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Abstract: We characterized Müller cell gliosis induced by the activation of transient receptor potential
vanilloid-type 4 (TRPV4) and assessed whether statins could modulate the gliosis. The human
Müller cell line, MIO-M1, was used to analyze the gliosis caused by glaucomatous stimulation. To
induce Müller gliosis in MIO-M1 cells, GSK101 was used to activate TRPV4, and Müller gliosis was
evaluated by analyzing vimentin, nestin, and glial fibrillary acidic protein (GFAP) expression. The
expression level of TNF-α was determined by ELISA. To evaluate the GSK101 activation of the NF-κB
pathway, p65 phosphorylation was measured by Western blotting, and the nuclear translocation of
p65 and IκBα phosphorylation were assessed by immunostaining. To assess the effect of statins on
MIO-M1 gliosis, cells were pretreated for 24 h with statins before GSK101 treatment. Vimentin, nestin,
and GFAP expression were upregulated by GSK101, while statins effectively inhibited them. The
expression of TNF-α was increased by GSK101. The phosphorylation and nuclear translocation of p65
and IκBα phosphorylation, which occurs prior to p65 activation, were induced. Statins suppressed the
GSK101-mediated phosphorylation of IκBα and p65 translocation. Statins can mitigate gliosis in the
human Müller cell line. Because TRPV4 activation in Müller cells reflects glaucoma pathophysiology,
statins may have the potential to prevent RGC death.
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1. Introduction

Glaucoma is a progressive neurodegenerative eye disease characterized by irreversible
structural damage to the retinal ganglion cells (RGCs) [1,2]. RGCs play critical roles in the
transfer of visual information from the retina to the brain via their axons, i.e., the retinal
nerve fiber layer (RNFL). In glaucoma, axonal degeneration and the apoptotic cell death
of RGCs ultimately lead to irreversible vision loss. While lowering intraocular pressure
(IOP) indirectly protects RGCs, there is no proven glaucoma treatment that directly targets
RGCs. Therefore, understanding the mechanism of RGC dysfunction is important for the
development of new glaucoma treatment strategies.

RGCs receive physiological and pathological support from glial cells, such as astrocytes
and Müller cells. Healthy Müller cells are specialized radial glial cells that span the entire
retina and provide metabolic support. However, changes in Müller cells are involved in
almost all types of retinal degeneration, such as age-related macular degeneration, diabetic
retinopathy, and glaucoma, as well as normal retinal function [3,4]. When the surrounding
tissues are damaged by increased IOP or inflammation, Müller cells induce neuronal
degeneration and edema by gliotic alteration and may form glial scars, which interfere with
the repair and regeneration of retinal tissues [3,5]. In addition, Müller gliosis is induced by
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glaucomatous stimulation and implicated in RGC apoptosis. Tumor necrosis factor-alpha
(TNF-α), a detrimental cytokine, is mainly synthesized and released by activated Müller
glial cells and induces RGC apoptosis [6–11]. Thus, it can be postulated that the suppression
of Müller gliosis is neuroprotective. Studies of Müller cell function in vitro are challenging
because the cells tend to rapidly differentiate in culture, making it difficult to isolate pure
cell populations. In 2002, MIO-M1 was reported as the first spontaneously immortalized
human Müller cell line [12]. Thereafter, MIO-M1 cell lines were used in several in vivo
studies [13,14] for evaluating Müller cells. We also used MIO-M1 cells in this study.

Because the transient receptor potential vanilloid-type 4 (TRPV4) channel contributes
to the resting membrane potential of Müller cells, its specific agonist, GSK1016790A
(GSK101), was used to activate gliosis [15,16]. Then, vimentin [17], nestin [18], and glial
fibrillary acidic protein (GFAP) [19,20] were used to verify the induction of Müller gliosis.
Because GSK101 is a candidate for inducing gliosis through TNF-α, we assayed TNF-α
levels in response to GSK101 and monitored how they changed after statin treatment.

NF-κB (p50/p65), an inducible nuclear transcription factor, regulates inflammatory
factors, including TNF-α [21,22]. NF-κB is inactive when bound to IκB (inhibitor κB).
When NF-κB is released from IκB, it is free to translocate to the nucleus, where it acts as a
transcription factor. Thus, p65 and phospho-p65 were assayed in the nucleus and cytosol,
respectively, after GSK101 and statin treatments. IκB kinase (IKK) complex phosphorylation
occurs in response to upstream signals after the activation of the IκB kinase complex
(IκBα/IκBβ/IκBγ). Active IKK induces IκB degradation, and NF-κB is released. Thus,
we analyzed the concentration of phospho-IκBα by immunostaining after GSK101 and
statin pretreatments.

Statins, widely used as hyperlipidemia treatments, not only regulate cholesterol biosyn-
thesis but also exert pleiotropic effects, such as fibrosis, inflammation, and immune response
control [23–25]. Statins’ neuroprotective effects have been reported in many central ner-
vous system (CNS) diseases, such as ischemic stroke, Alzheimer‘s disease, and multiple
sclerosis [26]. Therefore, we expected statins would have beneficial effects on the optic
nerve and RNFL. In fact, several previous studies have indicated an association between
glaucoma and statins [27–34]. As clinical evidence about the protective effect of statins
on glaucoma development and progression has increased, in vitro studies have also been
published. The secreted protein, acidic and rich in cysteine (SPARC), and the extracellular
matrix (ECM) protein have emerged as major modulators of IOP through changing the
outflow facility, and lovastatin inhibits the expression of TGF-β2-mediated SPARC in hu-
man trabecular meshwork cells [35]. In addition, we reported that statins exert antifibrotic
effects by inhibiting the expression of TFG-β2-mediated ECM molecules in astrocytes of
the human optic nerve head (ONH) [36,37]. However, no research about the direct effects
of statins on Müller glial cells as protection for dysfunctional RGCs has been conducted.

In this paper, we assessed whether Müller gliosis could be induced by the activation of
TRPV4, a mechanosensor that may respond to increased IOP. To do this, we evaluated the
expression of gliosis markers, TNF-α expression, and the activation of the NF-κB pathway.
Then, we determined whether statins could modulate TRPV4-mediated Müller gliosis.

2. Results
2.1. Evaluation of Müller Gliosis in MIO-M1 Cells and the Effect of Statins

To evaluate Müller gliosis by TRPV4 activation, the expression of the Müller gliosis
indicators vimentin, nestin, and GFAP was analyzed by immunostaining. Treatment
with the TRPV4 agonist GSK101 upregulated vimentin, nestin, and GFAP expression
(Figure 1A–C). Pretreatment with simvastatin, atorvastatin, and lovastatin effectively
suppressed the induction of gliosis marker proteins.
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Figure 1. GSK treatment induces the reactivation of MIO-M1 cells and gliosis, and statins suppress
these events. MIO-M1 cells were treated with GSK101 alone for 24 h or pretreated with each statin
for 6 h, followed by GSK101 treatment for 24 h. Then, cells were stained for the expression of
(A) vimentin, (B) nestin, and (C) GFAP, which are the indicators of gliosis. The nucleus was labeled
with DAPI. GSK101 at 25 nM increased vimentin, nestin, and GFAP expression. Statins pretreatment
at 10 nM attenuated these expressions. n = 4 for each figure.
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2.2. TNF-α as a Candidate to Induce Gliosis and Its Reduction by Statins

Then, we asked how the response of Müller gliosis to TRPV4 activation leads to
detrimental effects on RGC. The most plausible candidate is TNF-α, because it can induce
RGC apoptosis [6–11,38]. Therefore, we asked whether TNF-α production increases in
GSK101-treated MIO-M1 cells. The cells were treated with GSK101 concentrations ranging
from 1 to 50 nM. TNF-α expression was significantly induced at GSK101 concentrations
≥ 10 nM (Figure 2A). We also tested whether statins could suppress GSK101-induced
TNF-α expression. With 50 nM GSK101, TNF-α production was induced 14-fold more
than with 1 nM GSK101. Pretreatment with statins suppressed TNF-α production, even at
concentrations as low as 1 nM (Figure 2B–D).

Figure 2. GSK treatment induces TNF-α and pretreatment with statins suppress it. TNF-α production
was 14-fold greater than at a 1 nM concentration (A). GSK101-mediated induction of TNF-α levels
suppressed by pretreatment with statins. MIO-M1 cells were treated either with GSK101 alone for
24 h or pretreated with (B) simvastatin, (C) atorvastatin, or (D) lovastatin for 1 h and then followed
by GSK101 treatment for 24 h with 50 nM GSK101. Pretreatment with statins suppressed TNF-α
production from 1 nM concentrations. Asterisks indicate statistical significance. * p < 0.05, ** p < 0.01.
n = 4 for each figure.

2.3. NF-κB Pathway in MIO-M1 Cells

Because we confirmed that TRPV4 activation induces NF-κB activation and TNF-α
secretion, and statins inhibit these events, we determined which step of the NF-κB pathway
was inhibited to suppress TNF-α expression and consequently protect RGCs. NF-κB forms
homo- or hetero-dimers with DNA-binding proteins. p65 is a major component of these
dimers; when NF-κB is activated, p65 is phosphorylated, and the complex translocates to the
nucleus. Therefore, we assayed p65 phosphorylation in cytosolic and nuclear fractions with
GAPDH and lamin B1 as respective internal controls. We observed the robust induction of
p65 phosphorylation in both the cytosolic and nuclear fractions by treatment with GSK101
in a dose-dependent manner (Figure 3). These data suggest that TNF-α induction by
GSK101 is mediated by the NF-κB pathway in MIO-M1 cells.
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Figure 3. Phospho-p65 levels were induced by GSK101 in primary Müller cells. MIO-M1 cells were
treated with increasing does of GSK101 for 24 h. Cell lysates were fractionated into nucleus and
cytosol fractions and then subjected to Western blot. From 6 nM GSK101, p65 phosphorylation was
significantly induced in both the cytosolic and nuclear fractions in a dose-dependent manner. GAPDH
and Lamin B1 were served as the internal controls for cytosol and nucleus fractions, respectively.
Asterisks indicate statistical significance. * p < 0.05, ** p < 0.01. n = 4.

2.4. Statins Inhibit the NF-κB Pathway

Because statins can suppress TNF-α induction, we tested whether they could suppress
GSK101-mediated p65 phosphorylation. Treatment with 25 nM GSK101 consistently in-
duced p65 phosphorylation in cytosolic and nuclear fractions (Figure 4A–C). Pretreatment
with 0.2 nM of any of the statins significantly decreased p65 phosphorylation in the nu-
cleus, and pretreatment with 0.2 nM simvastatin, 1 nM atorvastatin, and 10 nM lovastatin
decreased p65 phosphorylation in the cytosol (Figure 4A–C).

2.5. Statins Reduce IκBα Phosphorylation

To confirm that statins suppress the NF-κB pathway, we assessed the phosphorylation
of the inhibitory protein IκBα by immunocytochemistry. IκBα functions as an inhibitor
through interaction with the NF-κB complex. However, IκBα phosphorylation by stimula-
tory signals promotes IκBα ubiquitination and degradation, which induces NF-κB complex
activation. Consistent with Figures 3 and 4, GSK101 treatment increased the immunore-
activity for phospho-IκBα in the cytoplasm and nucleus. Treatment with statins prior to
GSK101 treatment suppressed IκBα phosphorylation. All three statins were potent attenua-
tors of GSK-mediated IκBα phosphorylation upstream of p65 activation in MIO-M1 cells
(Figure 5).
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Figure 4. Cont.
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Figure 4. GKS101-mediated phosphorylation of p65 attenuated by statins. MIO-M1 cells were
treated either with GSK101 alone for 24 h or pretreated with (A) simvastatin, (B) atorvastatin, or
(C) lovastatin for 6 h, followed by GSK101 treatment for 24 h. The cytosol and nucleus fractions were
subjected to Western blot analysis. P65 phosphorylation significantly decreased in the nucleus after
pretreatment with 0.2 nM of all three statins and decreased in the cytosol after pretreatment with
0.2 nM simvastatin, 1 nM atorvastatin, and 10 nM lovastatin. GAPDH and Lamin B1 were served
as the internal controls for cytosol and nucleus fractions, respectively. Asterisks indicate statistical
significance. * p < 0.05, ** p < 0.01. n = 4 for each figure.

Figure 5. Statins attenuate GSK-mediated IκBα phosphorylation, which occurs upstream of p65 acti-
vation. MIO-M1 cells were treated either with GSK101 alone for 24 h or pretreated with simvastatin,
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atorvastatin, or lovastatin for 6 h, followed by GSK101 treatment for 24 h. Then, cells were fixed
and stained for pIκBα. Pretreatment with 10 nM statins prior to GSK101 treatment suppressed IκBα
phosphorylation. All three statins were potent attenuators of GSK-mediated IκBα phosphorylation
upstream of p65 activation in Müller glial MIO-M1 cells. n = 4.

3. Discussion

Glaucoma can cause blindness due to progressive, irreversible optic nerve damage.
The major risk factor for glaucoma is increased IOP, which is the only adjustable factor
to modify glaucoma development and progression. Proposed mechanisms linking RGC
injury and IOP elevation include the compressive effect of IOP on the lamina cribrosa [39],
pressure-induced tissue ischemia [40,41], and local cellular inflammatory mechanisms [42].
Although studies have elucidated how glaucoma develops and progresses, there are no
proven, commercial RGC-protecting and -regenerating glaucoma treatments, besides IOP
reduction, to minimize stress on the ONH. This study is noteworthy because it suggests
the use of statins as novel glaucoma treatment agents with neuroprotective effects.

Statins are prescribed for hyperlipidemia treatment; they lower blood cholesterol by
competitively inhibiting HMG-CoA reductase, the rate-limiting enzyme of the mevalonate
pathway. Since statins are structurally similar to HMG-CoA, the active site of the enzyme
competes with the native substrate. This competition reduces the rate at which mevalonate
is produced, the molecule needed to synthesizes cholesterol. In addition, the inhibition
of HMG-CoA by statins hampers the downstream synthesis of isoprenoids, which are
crucial lipid attachments for intracellular signaling molecules, such as Rho, Rac1, and
CDC42 [43,44]. The suppression of protein prenylation is thought to be involved in the
modulation of immune function, the improvement of endothelial function, and other
pleiotropic cardiovascular benefits [43,45–47].

Considerable clinical evidence indicates that statins have beneficial effects on glaucoma
patients. De Castro et al. [29] showed that statins may slow the progression of suspected
glaucoma as measured by confocal scanning laser ophthalmoscopy. McGwin et al. [28]
demonstrated that the prevalence of open-angle glaucoma (OAG) was lower in patients who
had taken statins for more than 24 months. Additionally, Leung et al. [48] have reported
that simvastatin may stabilize visual field progression. In a retrospective longitudinal
cohort analysis, statin use was associated with a significant reduction in OAG risk [27]. A
systemic review and meta-analysis indicated that short-term statin use was associated with
reduced glaucoma incidence, but the effect of statins on glaucoma progression and IOP
was unclear [49]. Furthermore, a large cohort study suggested that statin use significantly
reduced OAG risk in hyperlipidemic patients [27]. Our recent study also showed that
statins aided RGC survival by inhibiting ECM remodeling of the ONH [37]. As clinical
evidence for the protective effect of statins on OAG development and progression has
accumulated, in vitro studies on astrocytes and trabecular meshwork cells have also been
published [35,37,50]. However, this study is the first to elucidate the protective effect of
statins against glaucomatous stimuli in Müller glial cells.

Müller glia play crucial roles in RGC survival, and Müller gliosis contributes to glau-
coma pathogenesis [51,52]. Müller glia span the entire retina and have neuroprotective, as
well as detrimental, effects in response to glaucoma-related neuronal injury via signaling
cascades [4,5,53–57]. After retinal insults, Müller glia undergo reactivation, so-called Müller
gliosis, characterized by the increased expression of intermediate filaments, such as vi-
mentin, nestin, and GFAP [53]. TRPV4 is a membrane calcium channel activated by osmotic
or mechanical pressure-related insults, causing calcium flow into the cell, increasing the
intracellular calcium ion concentration [58,59]. TRPV4 induces gliosis and neurodegenera-
tion in the brain [60,61] and is expressed in the retina, specifically in Müller glia. TRPV4
activation appears to be involved in RGC apoptosis. In a study using dissociated RGC
cultures, RGC apoptosis and Müller gliosis increased due to TRPV4-agonist induced TRPV4
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activation [62,63]; in a study using porcine retinal explants treated with the TRPV4-specific
antagonist RN-1743, RGC survival increased [64]. Therefore, the mechanism of inflamma-
tion induction by TRPV4 has received attention. We used MIO-M1 cells with GSK101 as a
TRPV4 channel agonist: the expression of each intermediate filament, vimentin, nestin, and
GFAP, increased in MIO-M1 cells treated with 25 nM GSK101 and decreased by treatment
with 10 nM statins (Figure 1). That is, we found that TRPV4 and statins induce and reduce
the Müller gliosis of MIO-M1 cells caused by any mechanism, respectively.

We hypothesized that TNF-α production in Müller glia is involved in this mechanism
because TRPV4 activation increases the secretion of proinflammatory cytokines, including
TNF-α, from glia in other cells [65]. Although some studies have shown that increased
IOP activates TRPV4 [66,67], it is not well-established that TRPV4 activation in Müller
cells is linked with TNF-α production and glaucoma pathology. We found that TNF-α was
induced by GSK101 in MIO-M1 cells (Figure 2). Therefore, this study provides evidence
that TRPV4 is closely related to glaucoma pathophysiology through Müller gliosis and
TNF-α production.

TNF-α is a well-known proinflammatory cytokine with multiple functions in the im-
mune response, and its expression is induced by transcription factors in the NF-κB pathway
(p50–p65 complex) [68–70]. It is mainly synthesized and released by activated glial cells
and is involved in glaucomatous neurodegeneration; thus, it is considered a therapeutic
target for improving neuroprotection [2,6,8–11,71–73]. In animal models, increased IOP,
increased TNF-α in Müller glia [74,75], and Müller gliosis resulted in increased TNF-α
expression [76]. TNF-α was also increased in the retinas of glaucoma patients [77–79].
Lebrun-Julien et al. [75,80] have reported that the intravitreal injection of TNF-α reduces
the RGC numbers and causes optic nerve degeneration. Furthermore, TNF-α inhibitors pre-
vent Müller gliosis and retinal ganglion cell loss [81,82]. We found that TNF-α production
was increased by TRPV4 activation in MIO-M1 cells and decreased by statins, implying
that statins could be therapeutic agents with neuroprotective effects for glaucoma patients,
if proven by animal models, which will be our next research project.

We also confirmed that TNF-α induction by GSK101 in MIO-M1 cells is mediated by
the NF-κB pathway, which statins inhibit by attenuating IκBα phosphorylation. These
findings agree with previous studies [73,83,84]. Shi et al. [73] demonstrated that excitotoxic
damage leads to selective NF-κB activation, which induces TNF-α production in Müller
glial cells. Ahn et al. [83] showed that statins have a role in overcoming chemoresistance
through the modulation of NF-κB in human myeloid leukemia KBM-5 cells. In addition,
Tu et al. [84] demonstrated that simvastatins inhibit the NF-κB pathway by suppressing
IκBα phosphorylation and degrading the nuclei of pulposus cells. However, this is the
first study to reveal the activation of TNF-α through activated TRPV4 in Müller glia, its
inhibition by statins, and the effects statins exert on the NF-κB pathway.

This study has some limitations. First, we used a Müller cell line, MIO-M1, rather
than primary Müller cells. Therefore, in our next study, we will check whether the same
action occurs in primary Müller cells through primary Müller cell culture or in vivo and,
furthermore, in animal experiments. Numerous studies in the field of neuroinflammation
have shown the potential of statins [85,86], but there are also some reports concluded
that statins are ineffective [87,88]. Second, although TNF-α induces RGC apoptosis as a
proinflammatory cytokine, the present study did not show that RGC apoptosis occurs when
TRPV4 is activated. In future experiments, we will need to examine RGC apoptosis in vivo
or in a Müller–RGC co-culture model. Third, we only examined Müller gliosis caused by
TRPV4 activation, but TRPV4 is also expressed in RGCs and bipolar cells and can change
with increased IOP [58]. Therefore, the effect of statins on TRPV4 activation in RGCs and
bipolar cells should be investigated. Finally, NF-κB pathway activation is one way that
TRPV4 signaling occurs. TRPV4 signaling increases intracellular Ca2+ concentration, which
increases calpain [89]. There is a report that statins inhibit calpain activation [89]; therefore,
the effects of TRPV4 activation on Muller or RGCs cannot be limited to the NF-κB pathway.
It will be interesting to examine calpain activity on statins.
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In conclusion, TRPV4 activation reiterates glaucomatous stimulation by GSK101 in
human MIO-M1 cells, increasing TNF-α expression, and statins inhibit this expression by in-
terfering with IκBα phosphorylation. Numerous studies have shown that TNF-α signaling
is involved in glaucomatous neurodegeneration and is thus a possible treatment target to
improve neuroprotection [2,71–73]. This understanding of the TNF-α expression pathway
caused by glaucoma stimulation in Müller cells, and the reduction in TNF-α expression by
statins, suggest statins as potential therapeutic agents for glaucoma treatment. This study
has revealed an important aspect of statins’ protective effects in reactive Müller gliosis.

4. Materials and Methods
4.1. Cell Culture

MIO-M1, a human Müller glial cell line, was grown in GlutaMAXTM DMEM medium
supplemented with 50 U/mL penicillin, 50 g/mL streptomycin (Invitrogen-Gibco-Life
Science Technology, Karlsruhe, Germany) and 10% fetal bovine serum (FBS; Invitrogen-
Gibco-Life Science Technology) [90]. MIO-M1 cells were maintained at 37 ◦C, 5% CO2 in a
humidified incubator until the cells reached 80% confluency. The cells were detached by
treatment with TrypLE (Invitrogen-Gibco-Life Science Technology, Waltham, MA, USA),
and the resulting cell suspension was protected with a neutral trypsin solution (Invitrogen-
Gibco-Life Science Technology) [91].

4.2. Reagents

For investigation of the NF-κB pathway, IκBα, p65, and phospho-p65 antibodies
were obtained from Cell Signaling Technology (Danvers, MA, USA). Vimentin, nestin,
and GAPDH antibodies were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA, USA). The Human Quantikine TNF-α ELISA kit was obtained from R&D Systems
(Minneapolis, MN, USA). The GFAP antibody and RIPA Cell Lysis buffer were purchased
from ThermoFisher Scientific (Fair Lawn, NJ, USA). GSK1016790A (GSK101) was purchased
from Sigma-Aldrich (St. Louis, MO, USA).

4.3. Immunofluorescent Staining of Human Müller Glial (MIO-M1) Cells

MIO-M1 cells were seeded on 12 mm glass coverslips placed in 24-well culture plates
in growth medium. The cells were fixed with 4% paraformaldehyde and permeabilized
with 0.1% Triton X-100. After three washes with phosphate-buffered saline (PBS), the cells
were incubated for 1 h at 37 ◦C with primary antibodies (1:50) in PBS with 1% bovine serum
albumin (BSA). After washing three times in PBS for 5 min each, the cells were incubated
for 1 h at room temperature with a secondary antibody (Cy-3, Alexa594) (1:100) in PBS. The
gliosis of MIO-M1 cells was confirmed through positive staining for vimentin, nestin, and
GFAP. Cells were incubated with 1 µg/mL 4′,6-diamidino-2-phenylindole dihydrochloride
(DAPI; Invitrogen-Gibco-Life Science Technology) to stain the nuclei. The coverslips were
mounted with FluorSave (Calbiochem, San Diego, CA, USA), and fluorescent images were
captured using an inverted microscope (Carl Zeiss Microscopy GmbH, Jena, Germany) and
analyzed with Zeiss ZEN imaging software (Carl Zeiss Microscopy GmbH).

4.4. Separation of Nuclei and Cytosol

MIO-M1 cells were seeded in 6-well culture plates. Cells were pretreated with statins
followed by 25 nM of GSK101, a TRPV4 agonist. Nuclei and cytosols were separated
using the PierceTM NE-PER Nuclear and Cytoplasmic Extraction Reagents (ThermoFisher
Scientific) according to the manufacturer’s instructions. Briefly, cell lysis was demonstrated
using the CER-I and CER-II lysis buffers of the NE-PER kit. The tube containing CER-I
was centrifuged for 5 min at ~16,000× g in a microcentrifuge and the supernatant (cytosol)
was transferred to a new Eppendorf tube. After suspending the insoluble fraction, ice-cold
NER was added, and the cells were incubated for 40 min. After adding CER-II lysis buffer,
centrifugation took place for 10 min at 16,000× g, the supernatant (nuclei) was transferred
to a new Eppendorf tube, and each sample was analyzed by Western blotting.
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4.5. Western Blot Analysis

Each cytosolic and nuclear sample was separated by SDS-polyacrylamide gel elec-
trophoresis (PAGE) and transferred to nitrocellulose membranes (Cytiva, Marlborough,
MA, USA), which were blocked in BSA for 1 h. The blots were incubated with antibodies
against phospho-IκBα (p-IκBα), GFAP, and GAPDH (Santa Cruz Biotechnology, Inc.); p65
(Cell Signaling Technology); and phospho-p65 (p-p65; Invitrogen) in blocking solution
overnight at 4 ◦C. The membranes were washed with PBST and then incubated with
HRP-conjugated secondary antibodies for 2 h at room temperature. The membranes were
developed using the Enhanced Chemiluminescence (ECL) detection system (Santa Cruz
Biotechnology, Inc.). Band densities were quantified using FUJIFILM Science Lab Image
Gauge Ver. 4.0 (Fuji Photo Film Co., Ltd., Tokyo, Japan).

4.6. Quantification of TNF-α

MIO-M1 cells were cultured in 6-well plates and then treated with GSK101 for 24 h or
statins for 1 h followed by GSK101. The MIO-M1 cell culture medium was analyzed for
TNF-α using an ELISA kit (R&D Systems, Minneapolis, MN, USA) according to the manu-
facturer’s instructions [92]. The absorbance at 450 nm was determined by an automated
microplate reader (Vmax; Molecular Devices, Palo Alto, CA, USA), and the results were
analyzed using Prism 6.05 (GraphPad Software, Inc., San Diego, CA, USA).

4.7. Statistical Analysis

All values are expressed as means ± standard deviations (SD). The results represent
three separate experiments conducted under the same conditions. Unpaired t-tests and one-
way ANOVAs were used for statistical comparison. All statistical analyses were performed
using an ANOVA test with Prism 6.05 (GraphPad Software, Inc.). * p < 0.05 and ** p < 0.001
were considered significant.
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