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Abstract: The aim of this study was to illustrate recent developments in neural repair utilizing
hyaluronan as a carrier of olfactory bulb stem cells and in new bioscaffolds to promote neural repair.
Hyaluronan interacts with brain hyalectan proteoglycans in protective structures around neurons
in perineuronal nets, which also have roles in the synaptic plasticity and development of neuronal
cognitive properties. Specialist stem cell niches termed fractones located in the sub-ventricular and
sub-granular regions of the dentate gyrus of the hippocampus migrate to the olfactory bulb, which
acts as a reserve of neuroprogenitor cells in the adult brain. The extracellular matrix associated
with the fractone stem cell niche contains hyaluronan, perlecan and laminin α5, which regulate the
quiescent recycling of stem cells and also provide a means of escaping to undergo the proliferation
and differentiation to a pluripotent migratory progenitor cell type that can participate in repair
processes in neural tissues. Significant improvement in the repair of spinal cord injury and brain
trauma has been reported using this approach. FGF-2 sequestered by perlecan in the neuroprogenitor
niche environment aids in these processes. Therapeutic procedures have been developed using
olfactory ensheathing stem cells and hyaluronan as a carrier to promote neural repair processes. Now
that recombinant perlecan domain I and domain V are available, strategies may also be expected in
the near future using these to further promote neural repair strategies.

Keywords: neural tissue repair; extracellular matrix; neural progenitor stem cells; perlecan; laminin;
hyaluronan; stem cell niche

1. Introduction

Hyaluronan (HA) is a major space-filling component of the CNS/PNS providing
tissue hydration and a matrix for cell attachment and an environment conducive to cellular
survival and cellular migration during CNS/PNS development [1–3]. HA also ensures
specific niche environments, and ionic gradients are maintained in the 3D brain architecture
to ensure optimal conditions for cellular activity. The brain extracellular matrix (ECM) is
unusual in that it is dominated by glycosaminoglycans (GAGs), particularly HA, and it is
one of the softest tissues in the human body. The immobilization of HA in the CNS ECM is
critical to the optimal functional properties of the brain; however, HA is a soluble polymer,
and it relies on interactions with proteoglycans (PGs), HA receptors and HA interactive
glycoproteins for its immobilization in the CNS/PNS ECM [2]. HA is a component of both
diffuse and condensed brain ECM structures known as perineuronal nets (PNNs), which
protect neurons and are essential for the maintenance of optimal neural cellular activity [4].
HA is the only non-sulfated GAG and has a relatively simple repeat N-acetyl-glucosamine-
D-glucuronic acid disaccharide structure. HA is highly interactive with the lectican PGs and
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HA-receptors and also influences cell migration in developing tissues [5]. High molecular
weight HA is anti-inflammatory and mops up free radicals generated by inflammatory
cells; thus, it counters the development of neuro-inflammation. The formation of HA-
lectican aggregates (particularly HA-aggrecan aggregates) is critical to tissue hydration,
brain volume, maintenance of cellular organization and micro-compartmentalization in
the brain ECM. This provides niche and metabolite gradient environments that promote
optimal cellular activities in the brain 3D environment. The importance of HA’s roles in
brain tissues becomes apparent in tissues that display an HA deficiency. For example, brain
tissues that are deficient in HA synthase-3 activity (Has3 KO) display frequent seizures and
an epileptic phenotype [6,7].

2. Neuroprogenitor Stem Cell Niches and the Cell Regulatory Environment Provided
by ECM Components

Schofield originally proposed the term stem cell niche in 1978 to define local hemopoi-
etic tissue environments that had specific molecular and cellular activities that maintained
hemapoietic stem cells [8]. Almost two decades earlier, Smart [9] and Altman and Das [10]
had identified similar regions in the brain which they believed also provided an environ-
ment responsible for stem cell self-renewal or development into specific cell lineages that
could migrate to sites of tissue development or areas undergoing ECM remodeling in tissue
repair processes. In the brain, these regions were identified as the subventricular zone of
the lateral ventricle and the sub-granular zone of the dentate gyrus of the hippocampus
(Figure 1a). HA was subsequently identified as a key functional component of these brain
stem cell niches controlling stem cell proliferation and differentiation [11]. Others have
noted the importance of these niches in health and disease [12] and the important roles
they play in tissue homeostasis [13,14] (Figure 1b).
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Figure 1. Schematic depiction of a cross-section through the human brain showing the two main
regions of neuroprogenitor cells in the ventricular (1) and sub-granular regions of the dentate gyrus
of the hippocampus (2) and the olfactory bulb (3), a storage region for neuroprogenitor cells (a).
Segment (b) depicts schematically the multiple intrinsic and extrinsic influences exerted on stem
cells in the niche micro-environment that determine whether stem cells undergo quiescent recycling
(4) or attain a pluripotent migratory stem cell phenotype and escape from the regulatory niche (5) to
participate in tissue development or tissue repair. Segment (a) reproduced from [15] with permission,
© MA Healthcare Ltd 2008. Segment (b) reproduced from [16] with permission. Copyright © 2018
Sari Pennings et al. reproduced under the Creative Commons Attribution License.

Ependymal ciliated neuronal support cells (neuroglia) arising from embryonic neuro-
ectodermal tissue in the epithelial lining of the ventricles of the brain and the central canal
of the spinal cord have roles in the establishment of neural stem cell niches [11]. ECM
and adhesion molecules maintain the ependymal niche architecture and provide interac-
tive properties with stem cells that regulates the balance between stem cells that undergo
quiescent recycling or a proportion of these cells that develop a migratory pluripotent neu-
roprogenitor phenotype [17]. Conservation of the cytoarchitecture of the ependymal niche
is thus crucially important in the maintenance of stem cell viability and their differentiation
into specific migratory cell lineages [18]. ECM molecules (laminins, perlecan) involved in
neural stem cell–ependymal cell adhesion regulate interactions in the niche and actively
participate in the regulation of neural stem cell dormancy/activation and the attainment
of pluripotency [18]. The HS side chains of perlecan bind FGF-2, allowing this proteogly-
can to act as a co-receptor, affecting the distribution of growth factors such as FGF-2 and
chemokines in the niche environment that influence stem cell self-renewal and differenti-
ation [19]. FGF-2 maintains stem cell viability and stimulates stem cell proliferation and
differentiation, leading to the attainment of pluripotency.

In the adult mammalian brain, neural stem cells (NSCs) in the ventricular–sub-
ventricular zone contain a subpopulation of cells with astroglial properties (B1 cells),
which give rise to intermediate transient amplifying progenitors (IPCs, C cells), which
transit to the olfactory bulb as a stem cell reservoir. NSCs and IPCs are the primary and
secondary progenitor cells of the niche. These cells have long processes that reach into
distant regions of the niche, including the adjacent vasculature. NSCs are thus in a unique
cellular compartment, and depending on ECM components, they are exposed and may



Int. J. Mol. Sci. 2022, 23, 5148 4 of 15

be stimulated to proliferate and undergo differentiation or they may remain as quiescent
cells which continue to slowly recycle for self-renewal. Cell–cell, cell–ECM and soluble
factor interactions involving HA, perlecan, laminin and FGF-2 thus all have roles in the
regulation of NSC behavior. To better understand the complexity of the niche compartment,
it has been proposed that it should be considered as three functional regions, proximal
(zone I), intermediate (zone II) and distal (basal zone III) [20]. These regions are shown
schematically in Figure 2. NSCs corresponding to type B1 cells are shown in blue, these are
bordered by multiciliated ependymal cells (E) lining the ventricle. The B1 cells give rise to
IPCs or C cells indicated in green. These are the transit-amplifying cells that generate the
neuroblast type A cells indicated in red. The B1 cells have an epithelial morphology and
contain a thin apical process and primary cilium that contacts the lateral ventricle (V), and
a long basal process that extends as a foot-like process that contacts adjacent blood vessels
(BV) labeled purple. A schematic depiction of the SVZ niche organization is depicted in
Figure 2.
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Figure 2. Schematic depiction of the SVZ stem cell niche location in a frontal cross-section of adult
brain (upper figure) and the organization of the fractone niche showing regions where laminin,
perlecan, FGF-2 and HA interact with the niche cell populations. Functional domains of the B1
primary stem cell niche cells are indicated. Domain I (proximal or apical, dark blue) contains the
primary cilium and is in direct contact with the CSF and soluble factors and signaling molecules from
neighboring ependymal cells. Domain II (intermediate, medium blue) is where IPCs, neuroblasts,
neuronal terminals and cell–cell interactions occur between B1 cells and their progeny. In Domain
III (distal, light blue), the B1 cell contains a specialized end-foot process that contacts BVs where
blood-borne and endothelial cell generated factors may stimulate the B1 cells. The different niche
cell populations are labeled as neuroblast type A cells (red), IPCs type C cells (green), B1 cells (light
and dark blue), and ependymal cells (brown). The ventricle (V), ventricular zone (VZ) and sub-
ventricular (SV) regions of the fractone are indicated. Figure reproduced with permission from [20],
© Penning et al 2018.
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The specialized neural stem cell niche has been termed the fractone in honor of the
late mathematician Dr Benoit Mandelbrot due to their fractal-like appearances similar to
Dr Mandelbrot’s early computer graphic generated fractal geometric images [21]. The
identification of fractones in the spinal cord [22] suggested that resident cord stem cells
might be useful in the promotion of recovery from spinal cord injury [23]. Genetic fate
mapping showed that almost all of the spinal cord neural stem cell potential resided within
the ependymal cells that line the central canal of the spinal cord [22]. These cells are
recruited following spinal cord injury to produce not only the scar-forming glial cells, but
also, to a lesser extent, the oligodendrocytes that remyelinate damaged axons [24]. The
possibility therefore exists that ependymal-generated neuroprogenitor cells could also be
harnessed for the endogenous repair of neural tissues in the CNS/PNS guided by key
regulatory functional components of the niche environment [25–27].

Fractone ECM structures in the neural stem cell niche [17] influence neural stem and
progenitor cell formation, proliferation, and/or maintenance [16,28–33] (Figure 1b). In
repair biology in brain tissues, the aim is to mimic this niche environment experimentally
to control neuroprogenitor cell activity in vivo [34,35]. Ependymal cells are the source of
laminin α5-containing fractone bulbs [33,36]. Deletion of laminin α5 from ependymal cells
results in a 60% increase in niche cell proliferation, indicating that laminin α5 modulates
the proliferative status of the neural stem cell niche. The C-terminus of the five laminin α

chains are key to laminin signaling and are crucial for pluripotent stem cell survival and
self-renewal bin vitro [32,37,38] and inhibit stem cell proliferation in vivo [39]. Perlecan
interacts with laminin in the niche environment and with FGF-2 to promote niche cell
proliferation and with BMP-4 and BMP-7 to inhibit niche cell proliferation [32,37,38,40].

A reduction in HS 6-O-sulfation, which is critical for FGF-2 signal transduction,
has been observed in the aged sub-ventricular zone, and this reduces cell proliferation
through a failure of FGF-2-induced phosphorylation of extracellular signal-regulated kinase
(Erk1/2) [41,42]. Increases in HS 6-O-endo-sulfatase has also been observed in the aged
sub-ventricular zone responsible for observed modifications in HS sulfation [41,42]. An
appropriately assembled fractone ECM is important for correct brain function. A loss of
perlecan or laminin from the fractone ECM results in impaired brain functional properties
observed in autism in humans and is also observed in BTBR T+ tf/J mice, which is an
animal model of autism [43,44]. HA and perlecan are components of stem cell niches
in the intervertebral disc [45], human fetal cartilaginous rudiments of the hip and knee
joints [38], and fetal human elbow [46]; thus, it is not surprising that they are also functional
components of fractone stem cell niche structures [47].

3. Development of HA Hydrogel Cell Delivery and Therapeutic Biomatrices for
Tissue Repair

HA is the most abundant GAG of neural tissues and, as already discussed in the
introduction, has important space filling and hydrating properties and is a cell-friendly
ECM component that promotes cell viability and proliferative processes important in tissue
development and repair processes. HA is thus a logical candidate to investigate for potential
application in neural repair biology. In its native form, HA is a weak scaffolding material,
and for it to remain in tissues, it must interact with HA receptors and HA interactive PGs
and glycoproteins; the large size of these aggregates physically entraps these HA complexes
within collagenous networks in tissues. However, neural tissues lack these collagenous
networks, and the immobilization of HA in neural tissues relies on interaction with lectican
PGs and neural HA receptors. This is essential to provide HA’s longevity in tissues, since
it is rapidly degraded in vivo by hyaluronidase and is highly soluble, with the generated
HA oligosaccharides rapidly undergoing dispersal from tissues. For tissue engineering
applications HA must therefore be chemically modified and crosslinked or attached to
another polymer to form stable, functional composite scaffolds that support cell adhesion
and proliferation [48–50]. HA is a versatile scaffolding material amenable to crosslinking
using a number of chemical methods under basic, acidic, and neutral pH conditions or to the
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production of composites with other natural and synthetic polymers to confer strength [51].
This facilitates the use of HA in diverse applications [35,52–55] to improve the healing of
wounds, burns, and traumatized tissues that require a space-filling scaffold that preserves
tissue hydration providing a matrix conducive to the attraction of cell populations into
defect sites to affect tissue repair processes [45,50,56]. HA’s interactions with neural CS
lectican PGs form dense ECM surrounding neurons termed perineuronal nets (PNNs)
(Figure 3a). These have neuroprotective properties, convey neural and synaptic plasticity
and have roles in memory and cognitive learning. Monoclonal antibody 1-B-6 identifies
reducing terminal stub epitopes in the lectican PGs following chondroitinase ABC digestion
and can be used to immunolocalize PNN structures in brain tissues (Figure 3b).
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Figure 3. Schematic of aperineuronal net structure showing the interaction of hyaluronan (HA) with
members of the lectican proteoglycan family, aggrecan (Acan), versican (Vcan), Brevican (Bcan) and
neurocan (Ncan) showing the dense matrix around neurons termed perineural nets (PNNs) (a). The
1-B-6 (+) proteoglycan immunolocalizations shown in (b) depicting perineuronal nets are modified
with permission from [47,56], © Caterson and Hayes 2002.

A diverse range of HA bioscaffold applications have been developed for tissue repair
(Table 1). HA is a useful multifunctional biomaterial that has been employed in repair
strategies on infarcted myocardial tissues [57],stem cell delivery for corneal repair [58],
vocal cord [59], endometrial [60] endodontic tissue repair [61]. HA has been used as a stem
cell delivery vehicle for neural crest cells [62] and improves tissue regeneration. Biomimetic
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HA hydrogels have also found application as wound healing agents [63]. A diverse
range of HA-based strategies have also been developed for the repair of neural tissues.
Biocompatible injectable methacrylated gellan gum HA biocomposites functionalized with
manganese have been developed that can be used to administer human-derived adipose
stem cells using a T1-weighted MRI image-guidance system for stem cell delivery to specific
brain regions for the treatment of amyotrophic lateral sclerosis. This HA hydrogel ensured
that the viability of the injected stem cells was maintained at the injection site for at least
14 days [64].

HA can be modified using a number of crosslinking chemistries to alter its viscoelastic
properties to prepare scaffolds that mimic the material properties of native brain tissue,
which is one of the softest tissues in the human body [65]. Divinyl sulfone crosslinked HA
has been used to prepare scaffolds with varying pore sizes that support cell migration and
neurite extension HA–biocomposites have also been prepared that are suitable for brain
repair applications [66]. HA hydrogels suitable for gene delivery have been used in brain
repair strategies; these hydrogels provide a macroporous structure to the injection site to
promote cell migration and proliferation and repair processes [67]. An HA film sheath
has been used for VEGF gene therapy to treat peripheral nerve damage [68]. Peptides
such as laminin IKVAV and RGD have also been attached to HA to provide hydrogels and
biocomposites with improved cell attachment and tissue repair properties [69–71]. Laminin-
IKVAV peptide improves neural cell attachment, proliferation and neurite extension [69–71].
IKVAV-HA implants inserted into brain defects were invaded by blood vessels, glial cells
and axons to promote new tissue formation by 6 weeks of implantation. Integrin binding
RGD peptide attached to hydroxyphenyl-modified HA has also improved cell-binding
properties and has been applied in spinal cord repair [72].

Biomimetic composites of HA with collagen, laminin and CS-PG mimic the native
brain structure to promote cell survival and neural differentiation and neural outgrowth in
brain repair strategies [63,73]. HA–laminin hydrogels implanted into brain defects inhib-
ited glial scar formation at the defect site and promoted neural proliferation and neurite
extension in the repair site [74]. A 3D gelatin–HA scaffold has been applied to the repair of
spinal cord defects. This scaffold undergoes in situ gelation to fit the cord defect perfectly
through visible light induced crosslinking [75]. The HA component of this scaffold reduces
inflammation, inhibits glial scar formation, promotes endogenous NSC migration and
neurogenesis, neuron maturation and axonal regeneration in the defect site. Complete
spinal cord repair has been reported using this bioscaffold. Biocomposite scaffolds of recom-
binant spider silk protein (spidroin) and HA have also been prepared and applied to spinal
cord repair [76]. Biocomposites made from electrospun fibers of HA–polycaprolactone
provide high-porosity nanofibrous scaffolds suitable for the growth of SH-SY5Y human
neuroblastoma cells. HA–collagen 3D composites containing electrospun polycaprolactone
fibers have also yielded promising results in the regeneration of peripheral nerves [77].
HA-poly-D-lysine copolymer hydrogel has an open porous structure and viscoelastic prop-
erties similar to those of native brain tissue [78]. This hydrogel has also been proposed
to be a suitable scaffolding material for peripheral nerve regeneration. Biocomposites of
HA containing PLGA microspheres loaded with VEGF and BDNF promote neural growth,
and the extended release of these factors promotes neural repair over an extended time
frame [79]. A neurotrophin NGF–HA hydrogel filler has also been applied to the repair of
a 10 mm sciatic nerve defect [80].
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Table 1. The Versatility of HA in the Development of Hydrogels and Bioscaffolds for Tissue Repair.

HA Hydrogel/Scaffold and Its Properties in Tissue Repair Processes Ref

Injectable HA hydrogel MSC repair of infarcted myocardium. [57]

Tissue adhesive HA hydrogel Sutureless stem cell delivery and regeneration of corneal epithelium
and stroma. [58]

HA hydrogel MSC delivery to damaged vocal cord. [81]

HA hydrogel Treatment of Endometrial Injury in a Rat Model of
Asherman’s Syndrome. [60]

Injectable HA hydrogel Tunable HA hydrogels releasing chemotactic and angiogenic growth
factors for endodontic regeneration. [61]

HA scaffold Scaffolds that improve stem cell functions for tissue repair
and regeneration. [82]

Interpenetrating collagen, HA, polymer
networks Scaffolds for brain tissue engineering. [53]

Injectable HA Scaffolds with
Macroporous Architecture Scaffold designed for gene delivery for tissue repair. [67]

Combination of hyaluronic acid hydrogel
scaffold and PLGA microspheres

Extended delivery of VEGF and BDNF from PGLA microspheres
promotes neural growth. [79]

Divynyl sulfone crosslinked HA Scaffolds with a range of pore sizes supporting cell migration and
neurite extension. [83]

Neurotrophin NGF-HA hydrogel filler
cell delivery system

Scaffold filler hydrogel used in combination with olfactory
ensheathing cells to repair of a 10 mm gap model of sciatic nerve

injury in Sprague–Dawley rats
[80]

Biomimetic collagen, laminin, HA, and
CS–proteoglycan

biocomposites

Biomimetic hydrogels of collagen, laminin, HA, and CS-PGs
developed to reproduce native ECM structure for the promotion of

cell survival, neural differentiation, and neurite outgrowth.
[73]

Electrospun HA–polycaprolactone
nanofiber bioscaffolds

Electrospun high-porosity nanofibrous scaffolds suitable for the
growth of SH-SY5Y human neuroblastoma cells. [84]

HA-poly-D-lysine hydrogel
Copolymer hydrogel with an open porous structure and viscoelastic

properties similar to those of native brain tissue. Proposed as a
promising scaffold for the repair of brain defects.

[78]

HA–laminin hydrogels HA–laminin hydrogels implanted into brain defects promoted
neurite extension and inhibited glial scar formation. [74]

Application of HA as a Delivery Vehicle for Olfactory Ensheathing Cells ± Mesenchymal Stem
Cells from a Number of Tissues for Neural Repair

Olfactory ensheathing cells (OECs) support axonal regeneration and remyelination
with the appropriate formation of axonal nodes of Ranvier and improvement of nerve
conduction velocity. OECs derived from nasal mucosa are of clinical interest, since these
cells are amenable for harvest for such autotransplantation procedures [85]. Research
conducted over the last decade has shown that neuroprogenitor stem cells harvested from
the olfactory bulb have considerable potential in the promotion of neurogenesis and neural
repair processes [86–89]. Adult OECs display considerable potential in the regeneration of
traumatically injured neural tissues [90] and in the repair of spinal cord injuries [86,91,92].
The tissue reparative potential of bone marrow-derived mesenchymal stem cells and OECs
have been compared in the repair of the injured rat spinal cord [93]. NSCs and OECs
display synergistic effects in the repair of adult spinal cord injuries [94] and traumatic brain
injuries in rats [95], including transient focal cerebral ischemia [96]. Olfactory ensheathing
neuroprogenitor stem cells and human umbilical cord mesenchymal stem cell-derived
exosomes have also been shown to promote sciatic nerve regeneration [97]. Adipose-
derived stem cells and olfactory ensheathing neuroprogenitor stem cells have also been
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used in combination therapy to treat spinal cord injured rats [98]. OECs have been used in
multi-layered conductive nanofibrous conduit scaffolds in the repair of peripheral nerve
damage in rats [99]. The development of electroconductive bioscaffold delivery systems
for neural stem cells and spinal cord repair is an exciting development given that neural
cells are one of the most sensitive cells to electrostimulation in the human body [100].

4. Application of HS Containing Biomatrices for Neural Repair

Perlecan is also a major functional component of the stem cell niche and has many
attributes with regard to tissue development and repair processes [101–104]. Perlecan is
expressed in the basal neuroepithelium during neural development and is a crucial compo-
nent of the neural niche [39,105]. Perlecan has multifunctional instructive properties [106]
in developmental brain tissues [103,107] and promotes the proliferation and differentiation
of neuroprogenitor stem cells in the sub-ventricular fractones through the sequestration
of FGF-2 in the neural niche activating the Akt and Erk 1/2 cell signaling pathways [37].
The Wnt and ShH pathways also regulate stem cell proliferation, neurogenesis and neural
network formation [108,109]. However, Wnt and Hedgehog proteins are relatively poorly
soluble in aqueous media. Wnt and ShH bind to perlecan domain II, and this acts as a
transport PG, aiding in the establishment of Wnt and ShH morphogen gradients in tissues
that are important for tissue development [101]. The availability of recombinant perlecan
domain I and domain V will allow investigations to be undertaken in the stimulation of
neural repair processes in tissues [110–113] and in repair of the blood–brain barrier follow-
ing ischemic stroke [114–116]. Further studies with perlecan in neural repair processes are
expected in the future, and these offer exciting possibilities.

4.1. Harnessing Cell Instructive Properties of Perlecan’s HS Side Chains in Repair Biology

The fine structure (sulfation position and density) of the HS side chains of perlecan
is an important regulatory determinant in the differentiation of pluripotent stem cells
in the niche environment in neural tissues [117]. Interaction of HS with growth factors
(FGF-2) and morphogens (Wnt, SHh) is also essential for the long-term viability of recycling
stem cells and the proliferation and differentiation of stem cells that have escaped from
quiescent recycling and along with interactions with niche ECM components regulates
the development of stem cell lineages that attain migratory properties facilitating their
participation in neural repair processes [40,104,114]. The expressions of HS biosynthetic
enzymes in the niche and tissue environments also have important roles in determining
the fine structure of HS and how it exerts these effects spatially and temporally in tissue
development and neural repair processes and also has roles in the determination of synaptic
specificity, axonal guidance, synapse development and synapse function [118]. Perlecan
is an important regulatory cell instructive PG in the neural stem cell fractone [119]. The
availability of recombinant perlecan domain I and domain V now makes it possible to
incorporate these components into new generation bioscaffolds in neural repair strategies
attempting to mimic the niche environment of native neural tissues. Such approaches
used in combination with HA and neural progenitor stem cell preparations have a high
probability of further improving on existing neural repair applications.

Collagen–HS porous scaffolds containing NSCs have been used to treat a rat model of
traumatic brain injury, established using a controlled cortical impact [120]. Brain edema
and cell apoptosis were significantly reduced, and motor and cognitive functions markedly
improved using this procedure suggesting that porous collagen–HS scaffolds loaded with
NSCs can improve neurological deficits in a rat model of traumatic brain injury [120].
Three-dimensional (3D) bioprinter-assembled collagen–HS scaffolds have also been used
to treat controlled spinal cord injuries in rats [121]. The HS component of this scaffolding
material crosslinks the collagen fibers, increasing its compression modulus and mechanical
stability. This scaffold displays good biocompatibility with neurons co-administered within
the scaffold. The HS component of this scaffold significantly improves the immobilization
of bioavailable FGF-2, which promotes progenitor cell proliferation. A significant recovery
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in locomotor function and increased numbers of neurofilament positive cells were evident
using this approach, suggesting that this matrix actively stimulates axonal guidance and
neural repair processes. Porous bioscaffolds of chitosan–gelatin containing HA and/or HS
have also been used in neural tissue engineering [122]. Such scaffolds contained highly
interconnected pores ranging in size from 90 to 140 µm, and the scaffold had a porosity
index of over 96%. Neural progenitor stem cells seeded into this matrix displayed adhesion,
proliferation and multi-lineage differentiation in the 3D scaffold environment, indicating
that this matrix may be useful in neural repair biology applications [122].

4.2. Development of Artificial Neural Stem Cell Niches

Significant improvements in bioscaffold microfabrication methodology has permitted
the miniaturization of these platforms. Lithography and direct laser printing have been
applied to prepare 2D patterns and 3D scaffolds to shape hydrogels and synthetic polymers
to create niche-like structures for single neural cell culture [123]. Artificial laminin 3D
neural stem cell niche-like structures have been developed to recapitulate the dynamic
nature and some of the biological complexity of the neural stem cell niche and maintain
laminin in a native conformation and orientation as found in the niche. These scaffolds
support enhanced human NSC proliferation and neurite extension [124,125]. Stem cell
niches are intricate spaces that provide specific chemical and biological environments that
control stem cell fate [126]. Microdevices have been developed that have proved useful for
the culture of NG108-15 neuroblastoma and human NPCs and represent a system amenable
to modifications that promote these cellular activities for applications in neural repair
biology [121,122,124].

5. Conclusions

With a greater understanding of the roles of key functional components in the stem cell
niche environment that promote neurogenesis, repair and regeneration following trauma, it
is logical that these components should be developed for use in neural repair strategies. The
use of neural stem cells from the olfactory bulb and HA either as a stem cell delivery vehicle
or as a component of composite new generation bioscaffolds is a powerful synergistic
combination that is enabling the more effective repair of neural tissues. By understanding
the roles of HA in the fractone stem cell niches of the sub-ventricular zone and sub-granular
region of the dentate gyrus of the hippocampus, it has been possible to formulate tissue
repair procedures using HA either as a delivery vehicle or as a component of composite
bioscaffolds to improve neural repair. Further components of the niche environment such
as perlecan and laminin also regulate stem cell proliferation and differentiation, and these
are promising agents that may also find application in novel neural repair strategies in
the future. Perlecan has already shown promise in the repair of the blood–brain barrier
following ischemic stroke.
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