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Abstract: It is a longstanding question whether universality or specificity characterize the molecular
dynamics underlying the glass transition of liquids. In particular, there is an ongoing debate to
what degree the shape of dynamical susceptibilities is common to various molecular glass formers.
Traditionally, results from dielectric spectroscopy and light scattering have dominated the discussion.
Here, we show that nuclear magnetic resonance (NMR), primarily field-cycling relaxometry, has
evolved into a valuable method, which provides access to both translational and rotational motions,
depending on the probe nucleus. A comparison of 1H NMR results indicates that translation is
more retarded with respect to rotation for liquids with fully established hydrogen-bond networks;
however, the effect is not related to the slow Debye process of, for example, monohydroxy alcohols.
As for the reorientation dynamics, the NMR susceptibilities of the structural (α) relaxation usually
resemble those of light scattering, while the dielectric spectra of especially polar liquids have a
different broadening, likely due to contributions from cross correlations between different molecules.
Moreover, NMR relaxometry confirms that the excess wing on the high-frequency flank of the
α-process is a generic relaxation feature of liquids approaching the glass transition. However, the
relevance of this feature generally differs between various methods, possibly because of their different
sensitivities to small-amplitude motions. As a major advantage, NMR is isotope specific; hence,
it enables selective studies on a particular molecular entity or a particular component of a liquid
mixture. Exploiting these possibilities, we show that the characteristic Cole–Davidson shape of the
α-relaxation is retained in various ionic liquids and salt solutions, but the width parameter may
differ for the components. In contrast, the low-frequency flank of the α-relaxation can be notably
broadened for liquids in nanoscopic confinements. This effect also occurs in liquid mixtures with a
prominent dynamical disparity in their components.

Keywords: molecular; ionic and confined liquids; glass transition; nuclear magnetic resonance
relaxometry; dielectric spectroscopy

1. Introduction

In recent decades, the evolution of the dynamic susceptibility of molecular liquids
undergoing the glass transition has been extensively studied using many experimental
techniques, most notably dielectric spectroscopy (DS) [1–4], depolarized light scattering
(DLS) [4–7], the optical Kerr effect (OKE) [8,9], and neutron scattering (NS) [10]. While
NS probes density fluctuations, the former methods monitor reorientational dynamics.
Upon (super-)cooling, a spectral gap opens between the microscopic dynamics in the
sub-picosecond regime and the structural or α-relaxation shifts from the picoseconds time
scale close to the boiling point to some hundreds of seconds around the glass transition
temperature Tg. Starting from the boiling point, with a more or less exponential correlation
function, a stretched exponential long-time α decay emerges, usually already above the
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melting point. The stretching of the α-relaxation virtually does not change upon cooling
when probed by, for example, DLS [4]. A weakly temperature-dependent partial loss
is caused by fast dynamics. Together, two-step correlation functions constitute what is
often called “glassy dynamics” [11–13]. Correspondingly, in the frequency domain, an
asymmetrically broadened α-relaxation peak is observed at low frequencies in addition to
a “microscopic peak”.

The spectral gap between the microscopic dynamics and the α-relaxation is filled
with mostly distinctive relaxation contributions, usually referred to as secondary processes.
These are more difficult to access experimentally compared to the main structural relaxation;
in particular, they are difficult to observe in the time domain. Moreover, these secondary
relaxations cover a broad time/frequency range extending from the microscopic dynamics
in the sub-picosecond range to that of the α-relaxation, and it is often difficult to define a
characteristic time scale. In other words, in contrast to crystals, there is a continuum of
overlapping relaxation features faster than the α-relaxation, which may cover a spectral
range from picoseconds to seconds.

The secondary relaxations may involve an excess wing contribution and/or a β-
relaxation [1,14–17]. The former manifests itself as a further high-frequency flank of the
main relaxation peak, described by a power-law-like “excess wing” [18]; the latter refers to
a mostly resolved second relaxation peak. Usually, both relaxation features emerge only
at temperatures near Tg, and in most cases they are difficult to disentangle from the main
relaxation. As such, they interfere with a straightforward determination of the extent of
the α-relaxation stretching itself. In contrast, below Tg, the structural relaxation no longer
occurs on relevant time scales, and a distinct secondary relaxation peak can be observed,
which is usually referred to as the Johari–Goldstein β-process [14], and/or a mostly isolated
excess wing shows up as a power-law spectrum [16].

The dielectric spectra of liquids displaying no discernible β-relaxation, so-called type A
glass formers [1], were analysed by Nagel and co-workers [19], who suggested a scaling
for the α-relaxation and excess wing; however, this works only approximately [20–22].
Focusing on a series of such systems, Körber et al. recently re-analysed the relaxation
spectra close to Tg by taking the power-law contribution of the excess wing explicitly into
account [23]. In particular, DS results were compared with those obtained by NMR and
DLS. The analysis showed that NMR and PCS yielded a similar relaxation stretching, which
varied only weakly among various liquids and resembled that found in DS, provided that
the liquid was nonpolar. Explicitly, Kohlrausch–Williams–Watts (KWW) stretching parame-
ters close to βK = 0.6 were reported [23]. For polar liquids, the dielectric relaxation spectra
are narrower [24,25], which is reflected in higher DS stretching parameters compared to
those reported from NMR and PCS. Pabst et al. investigated PCS spectra in more detail
and stated that “the light scattering spectra of different systems, e.g., hydrogen bonding
and van der Waals liquids but also ionic systems, almost perfectly superimpose and show
a generic line shape of the structural relaxation, approximately following a high frequency
power law ω−1/2” [26]. If such a generic NMR and DLS stretching of the α-relaxation can
be confirmed, it is important to understand the origin of the DS finding, which is that βK
varies significantly with temperature and among different liquids. Pabst et al. suggested
that cross-correlation effects may be responsible for the particularities observed in dielectric
spectra [27,28]. This has also been suggested by recent molecular dynamics (MD) simula-
tions of polymer-plasticizer systems [29]. Experimentally, significant differences between
NMR and DS results for binary glass formers point in the same direction [30]. However,
the role of cross-correlation effects has not received much attention in experimental studies
thus far [31].

A priori, it is not clear whether or not the rotational degrees of freedom of an
anisotropic, non-rigid molecule all couple to the same extent as the structural relaxation,
the latter being defined by shear relaxation, for example. There exists a vast amount of
literature documenting anisotropic reorientation in low-viscosity liquids, which is more
or less controlled by the corresponding moments of inertia; however, the extent of the
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anisotropy is often small [32–34]. Moreover, given a non-rigid molecule, one would expect
a temperature-dependent distribution of conformers, which could differ with respect to
their dynamical behaviours. Hence, the observed temperature dependence may deviate
from that of the structural (shear) relaxation time τα(T). Different from DS and DLS, NMR
allows one to probe the dynamics of different sites within a molecule—in particular, when
using the isotope selectivity of the method and suitable labelling strategies. Recently, from
surveys of extensive 2H NMR relaxation data sets, stretching parameters in the range of
0.39 < βK < 0.70 were reported well above Tg [35]. This implies a much wider variation of
the α-relaxation shape than suggested by the above-mentioned studies. Yet, indications
were found that these site-specific variations tend to vanish upon further cooling. In other
words, non-rigid molecules may start to reorient more or less isotropically as a rigid en-
tity when the highly viscous regime close to Tg is approached; this feature was recently
confirmed by experiments as well as an MD simulation in the case of glycerol [36]. The
suppression of anisotropic reorientation in the highly viscous state has since been discussed
in [37,38].

Most information collected on the dynamics close to Tg still originates from DS, and
the results are often considered as a de facto standard for discussing the (reorientational)
dynamics of glass formers, in particular, when secondary relaxations are considered. Only
recently, these relaxation features have been accessed by DLS [27,28] and OKE [39], and
only few studies have attempted a direct comparison of the different techniques [4,27,40].
Moreover, field-cycling (FC) NMR has entered use and provided valuable insights [41–43].
Conventional high-field (HF) relaxation studies monitor the spin-lattice relaxation rate R1
at a single or very few (Larmor) frequencies determined by the employed cryo-magnet.
Thus, conventional NMR relaxometry suffers from a notorious lack of sufficient dispersion
data, rendering the analysis model dependent. The situation has improved since com-
mercial [42–45] and home-built FC relaxometers have become available [46–49]. In FC
relaxometry, switchable electromagnets are used to measure the frequency dependence
of R1(ω), typically in the range of typically 10 kHz–30 MHz [42,50]. Using home-built
machines, even a range of 100 Hz–40 MHz can routinely be accessed [46,47]. However,
compared to DS, the frequency range covered is still narrow. As will be demonstrated
below, it is often possible to overcome this limitation. Then, NMR relaxometry may provide
important information not offered by DS or DLS. Most FC studies employ the 1H nucleus;
however, 2H, 7Li, 19F, and 31P NMR studies are becoming feasible, too [48,49,51–53]. To
better understand the α-relaxation stretching and the manifestation of secondary relax-
ation processes in viscous liquids as detected by the different spectroscopic techniques, it
is important to carefully compare the evolution of the respective relaxation spectra and
clarify what specific aspect of the underlying molecular dynamics the various experimental
techniques probe.

NMR spin-lattice relaxation is unique in several respects. 2H and 31P relaxation
studies (the latter at sufficiently high fields, see below) provide access to single-particle
reorientational correlation functions, where the term ‘single particle’ refers to the fact
that the autocorrelation of the molecular orientation at two times is probed. In contrast,
for other nuclei, such as 1H, multi-particle interactions (such as magnetic dipole–dipole
interactions) prevail and collective aspects of the relaxation are probed, a situation also
encountered in DS [31]. Here, collective correlation refers to the orientational correlation
between one molecule and another molecule. Moreover, NMR relaxation does not suffer
from the two major drawbacks of DS approaches. It provides straightforward access not
only to polar systems but also non-polar systems, which allows one to significantly extend
the spectrum of the studied systems, and, importantly, parasitic conductivity contributions
do not interfere.

Other NMR techniques, such as line-shape analysis and stimulated-echo experiments,
have provided important information regarding the mechanism of molecular reorientations
underlying the α- and β-processes [3,54]. For example, it was reported that the α-relaxation
involves a mixture of many small-angle (2◦–3◦) and few large-angle (30◦–50◦) jumps, where
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the latter are more relevant for the overall loss of orientational correlation. Regarding
the Johari–Goldstein β-process in neat glass formers, NMR techniques have disclosed the
highly hindered reorientations of essentially all molecules (T < Tg) [55–58]. No indications
of island of mobility were found in these studies. Rather, wobbling-in- or on-a-cone models
captured the salient features of the experimental observations [57,58]. On the other hand,
FC NMR relaxometry—similar to DS—offers quantitative access to the detailed shape of the
dynamical susceptibilities and spectral densities of glass-forming liquids or other complex
relaxation processes in condensed matter [59,60]. This technique allows one to cover several
decades in amplitude, revealing information concerning not only the α-relaxation but also
the relaxation spectrum of secondary processes, such as the excess wing and β-relaxation.

A main goal of the present contribution is to compare the dynamic susceptibilities of
glass-forming liquids obtained from DS, DLS, and NMR studies. In such an approach, it is
necessary to consider that different ranks (l) of the reorientational correlation function may
be probed. Explicitly, the correlation function of the first-rank (l = 1) Legendre polynomial
can be probed by DS, whereas that of the second-rank (l = 2) can be observed with DLS and
NMR [31,54]. Different motional models yield l-dependent (relative) relaxation strengths
of the α- and β-processes, for instance. Hence, once again, it is of major interest to quan-
titatively compare the susceptibility spectra probed by different spectroscopic methods.
Here, we will present results for (simple) molecular liquids, monohydroxy alcohols, salt
solutions, and ionic liquids. Moreover, the effects of nanoscale confinements on liquid
dynamics will be addressed. In doing so, NMR relaxation data for 1H, 2H, 7Li, and 31P
nuclei will be compiled.

2. Spin-Lattice Relaxation and Dynamic Susceptibility

The spin-lattice relaxation rate R1(ω) is linked to the spectral density J(ω) [≡ Jl=2(ω)]
via a Bloembergen–Purcell–Pound (BPP)-type equation [61]. Referring to, for example, a
homonuclear dipolar (1H) or a quadrupolar (2H) relaxation mechanism, the relaxation rate
can be re-formulated in the susceptibility representation as [62]:

ωR1(ω) = K[ω J(ω) + 4ω J(2ω)] = K[χ′′ (ω) + 2χ′′ (2ω)]≡ χ
′′
NMR(ω)

(dipolar or quadrupolar interaction)
(1)

In words, by virtue of the fluctuation-dissipation theorem, the R1(ω) data are trans-
formed to their susceptibility representation χ

′′
NMR(ω) such that the NMR relaxation results

can directly be compared to those from DS or PCS, for example. The pre-factor K char-
acterizes the strength of the relevant spin interaction, which is usually taken as being
temperature independent. It should be noted that “true” single-frequency susceptibilities
are actually not obtained, because two susceptibility functions appear in Equation (1),
slightly broadening χ

′′
NMR(ω) when compared to other methods, such as DS or DLS, which

has to be considered in the fitting routine. Another result is that the peak frequency satisfies
the condition ωpeakτpeak ≈ 0.62 instead of 1. Therefore, when comparing NMR susceptibili-
ties to DS or DLS on a reduced frequency scale ωτpeak, the factor 0.62 has to be accounted
for. In the case of FC 31P NMR studies of organic liquids, the spin-lattice relaxation is
usually determined by the heteronuclear dipolar interaction between the phosphorus and
proton spins and is described by a relation similar to Equation (1) [33,53]. In contrast, the
31P relaxation at high magnetic fields is dominated by the fluctuation of the chemical shift
anisotropy (CSA), with the particularity that the coupling constant K depends onω2 [33,61],
and only a single susceptibility function appears in the BPP treatment; the susceptibility
representation is given by [53]:

R1(ω)/ω≡ χ
′′
NMR(ω) (CSA interaction) (2)

The 2H (I = 1) quadrupolar relaxation in organic molecules results from the fluctuating
interaction of the deuteron with the electric field gradient (EFG) produced by the chemical
bond at the nuclear site; hence, it probes bond reorientation. Similarly, in the case of the CSA
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interaction, single-particle reorientation is probed. Under such circumstances, the spectral
density reflects the Fourier transform of the corresponding (l = 2) rotational correlation
function. Furthermore, the respective interaction tensor is largely determined by the
chemical bonds of the molecule and, in particular, the coupling constant K is well defined
and temperature independent in the first approximation. In 7Li NMR, the situation is more
complicated [63,64]. Similar to 2H NMR, the spin-lattice relaxation of this quadrupolar
nucleus (I = 3/2) results from the fluctuation of the EFG at the nuclear site. However, the
EFG, unlike in 2H NMR, is not determined by a single covalent bond, but by the charge
distribution around the lithium ion in 7Li NMR, e.g., by the structure of the hydration shell
in the case of LiCl solutions. Hence, 7Li NMR relaxation probes collective dynamics, which
involve rotational and translational motions. Moreover, the parameters of the quadrupolar
interaction tensors, including the coupling constant K, are subject to broad and a priori
unknown distributions.

For homonuclear dipolarly coupled spins (1H and 31P at low fields), there exists an
important particularity. The spin-lattice relaxation involves an intra- and an intermolecular
pathway. The intramolecular part reflects the reorientational dynamics of the molecules,
which are usually considered as rigid, whereas the intermolecular part contains two con-
tributions: translational and reorientational. As a heuristic but tractable approach, we
assume that the spectral shape of Rrot

1,inter(ω) is similar to that of R1,intra(ω) [50]. Hence,
the total relaxation rate can be described by a sum of a rotational and a translational
contribution, specifically:

R1(ω) ∼= R1,intra(ω) + Rrot
1,inter(ω) + Rtrans

1,inter(ω) ∼= Rrot
1 (ω) + Rtrans

1,inter(ω) (3)

Here, Rrot
1 (ω) will be described by spectral densities known from DS or PCS studies,

for example, a Cole–Davidson (CD) function [65], or even two CD functions when the
excess wing needs to be considered in addition to the α-relaxation [23,36]; Rtrans

1,inter(ω) will
be analyzed in the framework of the force-free hard sphere (FFHS) model (see below).

Independent of any microscopic details of the translational motion, the molecules in a
liquid undergo free diffusion at sufficiently long times, implying a mean square displace-
ment that is linear in time,

〈
∆r2〉 = 6D t. In this limit, the translational correlation function

displays a power-law long-time behaviour, explicitly Ctrans(t) ∝ t−3/2, corresponding to a
low-frequency square root R1 dispersion [66].

R1,inter(ω) = R1,inter(0)−
B

D3/2 ·
√

ω + ... (4)

with B =
( µ0

4π}γ2)2
(

1+4
√

2
30

)
πn.

Here, n denotes the spin density and γ represents the gyromagnetic ratio. As the
power-law decay of Ctrans(t) always wins over the (stretched) exponential correlation
function of Crot(t) at sufficiently long times, Equation (4) also provides a universal low-
frequency dispersion law for the total relaxation rate R1(ω) and enables the determination
of the self-diffusion coefficient D in pure liquids [49,52,67,68].

The full relaxation spectrum of the translational motion is usually well captured by
the FFHS model. In this model, a distance of closest approach d (twice the hard sphere’s
radius) is introduced, and the (normalized) spectral density Jtrans (ω) takes the following
form [69–72]:

Jtrans(ω) =
54
π

∞∫
0

u2

81 + 9u2 − 2u4 + u6
u2τtrans

u4 + (ωτtrans)
2 du (5)

The corresponding time constant τtrans is related to the self-diffusion coefficient by:

τtrans =
d2

2D
(6)
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The related coupling constant Ktrans is given by:

Ktrans =
( µ0

4π

)2 8π

15
n
d3 I(I + 1)}2γ4 (7)

Fitting the low-frequency part of χ
′′
NMR(ω) with Equation (1) and employing Equa-

tions (5) and (7) provide the parameter d. It should be noted that the suitability of the FFHS
model was recently confirmed by MD simulations [36,71].

Thus, FC 1H NMR relaxometry allows us to determine both D and τrot. Assuming the
Stokes–Einstein–Debye (SED) relation, their product is a measure of the hydrodynamic
radius RH [73,74].

Dτrot =
2
9

R2
H (8)

It should be noted that Equation (8) assumes rotational diffusion, i.e., small-step
reorientation. In general, estimating the absolute values of RH from Dτrot depends on the
assumed motional model. In the frame of the FFHS model, which does not assume the
validity of the SED relation, τtrans is linked to the distance d Equation (6). When defining
the ratio r = τtrans/τrot as a measure of the separation of translation and rotation in a liquid,
we obtain the following [36,50,74]:

r =
τtrans

τrot
=

d2

2Dτrot
(9)

When we further assume that the SED relation is valid and d = 2RH holds, we arrive
at r = 9 [50,61]. In other words, within the hydrodynamic approach, the spectral separation
of translational and rotational relaxation contributions is independent of the molecular size
and rather small; hence, it is difficult to resolve. However, as will be discussed below, the
ratio r is much larger for some liquids, indicating a failure of the SED relation, which goes
along with unphysically small hydrodynamic radii as R2

H = 9 d2

4r holds [36].
For liquids obeying frequency-temperature superposition (FTS), the dynamic suscepti-

bility can be expressed by χ′′(ωτ), where τ is a characteristic time constant, for instance
τrot [4,11,62,75]. This leads to the possibility of constructing master curves by shifting the
individual χ′′(ω) data collected at different temperatures solely along the ω axis until they
overlap. Assuming that the NMR coupling constant K does not significantly change with
temperature, master curves are obtained for χ′′ NMR = ωR1(ω) [62]. Vice versa, it suffices
to measure χ′′ at a single frequency as a function of τ(T). Here, one has to keep in mind
that the obtained master curve χ′′(ωτ)characterizes the spectral shape of the susceptibility
of a typical glass-forming liquid at the lowest temperature used in the construction of
the master curve. Below, we will show that the application of FTS is an important tool to
effectively extend the still narrow frequency window of FC NMR.

3. Experimental Results
3.1. Simple Liquids

Some intriguing results obtained by FC NMR relaxometry in recent years include the
determination of the shape of the α-relaxation and the identification of an excess wing on
its high-frequency flank as a generally occurring spectral feature observed at temperatures
close to Tg. The latter feature is well known from DS [2], but is still an experimental
challenge when applying DLS, though indications have been reported [4,28,76]. Another
important result concerns the fact that both the translational diffusion coefficient D(T) and
the rotational correlation time τrot(T) can be determined from the 1H NMR susceptibility
χ
′′
NMR(ω); thus, the SED relation can be tested in a single experiment, revealing an SED

breakdown, in particular, in hydrogen-bonded liquids (see below).
In Figure 1a, we present the results of a 1H FC study of glycerol-h5 [35]. The spin-

lattice relaxation rate R1(T) at different frequencies is plotted as a function of reciprocal
temperature, as is typical of conventional high-field (HF) studies. Data in the frequency
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range 20 kHz–30 MHz are included, as available from commercial relaxometers. As
expected from Equation (1), the amplitude and position of the R1 maxima depend on the
frequency. A larger spectral window is available when recourse is taken to a home-built
relaxometer [46,47], as was found in studies of polymer dynamics, for example, in [77]. This
possibility is demonstrated for glycerol-h5 in Figure 1b, where the susceptibility spectra
χ”(ω) = ωR1(ω) at 270–280 K are shown. Applying earth field compensation, frequencies
down to 200 Hz are accessible. In addition, data from conventional HF experiments at
92 MHz and 360 MHz are included. In this way, six decades in frequency are covered,
and, as will be described below, all relevant parameters of the dynamics can be extracted
from a single relaxation spectrum. However, such broad-band FC NMR spectra are not
yet routinely available, and in many cases, one has to make do with the 3–4 decades in
frequency provided by commercial relaxometers. Given such a limited spectral range, a
clear picture of the relaxation spectrum cannot emerge. Here, nature in terms of FTS may
help, as will be demonstrated next.
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Figure 1. (a) 1H relaxation rate R1 of partially deuterated glycerol-h5 at exemplary Larmor frequencies
(ω/2π) as a function of reciprocal temperature [35]; a spectral range typical of commercial FC
relaxometers is covered. The lines are guides to the eye. (b) Susceptibility spectrum χ”(ω) = ωR1(ω)
as obtained from a home-built instrument together with high-field data. The red solid line represents
a fit by a sum of two sub-spectra referring to the translational (dashed line) and rotational (dashed-
dotted line) relaxation contributions at 270 K, yielding the indicated parameters (see text for details).

Figure 2 shows the data from Figure 1a after (i) mapping R1(T) to ωR1(τDLS) using
correlation times τDLS(T) from DLS [28] and (ii) rescaling the τDLS axis by the Larmor
frequency ω. A perfect overlap of all data is obtained without applying any data shifting,
thus demonstrating that FTS is valid and that the time scale of the relaxation process
probed by NMR is at least proportional to that monitored by DLS. In fact, both time
scales are absolutely the same because the relaxation maximum in Figure 2 occurs at
ωτDLS ≈ 1. The master curve covers more than 12 decades in frequency and its shape
characterizes the susceptibility at the lowest temperature included in its construction
(a temperature close to Tg). Clearly, in addition to the α-relaxation peak, a high-frequency
power law contribution with a low apparent exponent—the excess wing—is revealed. On
the low-frequency flank, the spectrum displays a weak shoulder, which results from the
intermolecular dipolar relaxation contributions probing molecular translation [52]. As
discussed in Section 2, intermolecular 1H relaxation caused by translational dynamics
dominates at low frequencies and leads to a separate weak relaxation peak, which shows
up as a low-frequency shoulder in the overall spectrum.
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Figure 2. Susceptibility master curves as a function of ωτDLS(T) (τ DLS data from ref. [28]). The
plot includes 1H FC data for glycerol-h3 (blue closed circles) [36] and glycerol-h5 (multi-coloured
data) [36], and high-field 2H spin-lattice relaxation data for glycerol-d3 (dark green) and glycerol-d5

(grey) recorded at 55 MHz (squares) and 40 MHz (triangles) [78]. The master curves include results at
temperatures from 180 K to 360 K, the dielectric spectrum at 288 K (orange dashed line) [79], and
the PCS spectrum at 220K (magenta dashed line). Black lines represent fits with a model featuring
translational and reorientational contributions (see text) for 2H data with reorientational contribution
only. Red lines show a fit of the maximum region with a single CD function, yielding a stretching
parameter βCD ≈ 0.47± 0.03.

In Figure 2, we added the FC 1H data for glycerol-h3 [36]. Very similar spectral shapes
are present for the compounds with different isotope-labelling schemes. The difference
in amplitudes is explained by the different strength of the dipolar couplings among the
protons in the molecule. Moreover, we included HF 2H R1 data for both partially deuterated
glycerol compounds after rescaling them byω [78]. The 2H data and the 1H data have the
same spectral shape near the peak and at higher frequencies. Importantly, although 2H
R1 is only measured at a single frequency, the validity of FTS allows us to reveal the full
susceptibility, including an excess wing, which resembles that of the 1H FC susceptibility.
Apparently, the rotational parts of all 1H and 2H relaxation spectra are essentially identical.
In particular, there are no differences between glycerol-h3 and glycerol-h5, indicating that
the non-rigid molecule glycerol virtually reorients as a rigid entity and providing no
evidence for anisotropic reorientation [78]. Since 2H relaxation solely probes reorientational
dynamics, these data do not show a translation-caused shoulder at low frequencies. The
translationally caused relaxation is actually best recognized in the time domain when
plotting the NMR correlation function obtained from the susceptibility master curves; more
precisely, the corresponding spectral densities by Fourier transformation, which will be
discussed below.

To describe the reorientational relaxation peak and the excess wing, we applied a fit in-
volving a weighted sum of two CD functions. Alternatively, a sum of a Kohlrausch and a CD
function is also suitable [23]. The intermolecular 1H low-frequency relaxation contribution
is interpolated by the FFHS model, which describes dipolarly coupled spins undergoing
translational diffusion (see Section 2). The fit yields τrot(T) (see Figure 1b) and τtrans(T),
which are related by a virtually temperature-independent ratio, τtrans/τrot = r ≈ 55. This
value of r is much larger than the ratio r = 9 expected from the SED relation. A similar
fit describes the 1H relaxation data of glycerol-h3 well. To allow for a quantitative com-
parison with analyses that do not consider the excess wing, we also fitted only the peak
regions with a single CD function (red line in Figure 2). For the 1H relaxation data, the
fit yields βCD = 0.45 (βK = 0.60) for glycerol-h3 and βCD = 0.47 (βK = 0.63) for glycerol-h5.
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For glycerol-d3 and glycerol-d5, the 2H relaxation data yield a similar value of βCD = 0.49,
confirming the assumption underlying Equation (3). Finally, we included the DS and
DLS spectra of glycerol in Figure 2. Clearly, the dielectric relaxation peak is narrower; in
particular, the amplitude of the excess wing is smaller. In the case of glycerol, one can
describe the full dielectric spectrum using the stretching parameter consistently found by
NMR and DLS and a weaker excess wing contribution [80]. However, in light of recent
investigations suppressing a possible collective dielectric relaxation by dilution experi-
ments [28], it may also be possible that the dielectric α-peak itself is narrower due to a
significant contribution from collective correlation effects. As mentioned earlier, highly
polar liquids, such as glycerol, generally display higher dielectric stretching parameters
than less polar liquids [24,25].

Given the fit parameters τtrans(T) and the translational coupling constant Ktrans,
one can calculate the diffusion coefficients D(T) using Equations (6) and (7) [67]. The
results agree well with those obtained from static field gradient NMR experiments (see
Figure 3b). Alternatively, D(T) can be directly determined from the low-frequency square
root dispersion law Equation (4). This possibility will be demonstrated below for the case
of mono-alcohols (Section 3.4).
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Figure 3. (a) Master curves of the intramolecular FC susceptibility χ”intra of glycerol-h5 as a function
of the reduced frequency ωτrot [72] (black circles) together with the results from MD simulations
(coloured lines) [36]. Data are scaled by the maximum values χ”max. Inset: simulation results for
the intra- and intermolecular relaxation contributions on a reduced frequency scale. The bimodal
structure, reflecting translational and rotational dynamics, is well recognized in the intermolecular
part. (b) Rotational correlation times τrot of glycerol as obtained from NMR [36] and other techniques
(DS [1] (blue diamonds), DLS [81] (magenta triangles), and MD simulations [36]) together with inverse
self-diffusion coefficients D−1 from static field gradient diffusometry [82] (SFG, purple circles), FC
relaxometry on glycerol-h8 [50], and MD simulations [36].

In another study, glycerol was also investigated by atomistic MD simulations to inves-
tigate the rotational and translational dynamics and their relations to the 1H relaxation [36].
Good agreement between the experiment and simulation was found. For example, the
simulation data reproduced the experimental intramolecular 1H relaxation contribution
(Figure 3a), which was determined in an independent isotope dilution experiment [72].
Such experiments allow one to single out the intra- and intermolecular dipolar relaxation
contributions. The simulation data also confirm the unusually large separation of the time
scales of the rotational and translational motions, which is at variance with the SED relation
(see the inset of Figure 3a). The bimodal (translational and rotational) spectral shape of the
intermolecular relaxation contribution is evident, whereas the intramolecular rotational
contribution displays a “CD-like” spectrum. The time constants from the experiment and
simulation are compared in Figure 3b, revealing high similarity.
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The large separation of rotation and translational dynamics, i.e., the high r value,
goes along with a failure of the SED relation and an unphysically low hydrodynamic
radius RH [74]. In the case of glycerol-h5, a value of RH = 0.09 nm is found based on
Equation (9) [74], which is much smaller than the van der Waals radius of 0.27 nm [83].
Likewise, an unreasonably small hydrodynamic radius was obtained from an SED analysis
in the literature [73]. In order to unravel the origin of this phenomenon, we measured
the FC 1H relaxation of molecules with different numbers nOH of hydroxyl groups. The
van der Waals liquid o-terphenyl (nOH = 0) and ethylene glycol (nOH = 2) had a smaller
number of hydrogen bonds than glycerol (nOH = 3), and this number further increased in
the homologous series from glycerol to sorbitol (nOH = 6). The FC 1H NMR master curves of
some of these liquids are shown in Figure 4a. Independent of the magnitude of the electric
dipole moment of the molecules, the master curves of all liquids show essentially the same
rotational relaxation peak, while the excess wing contribution differs somewhat. However,
the manifestation of the translational spectrum mediated by the dipolar intermolecular
interaction was quite different. The value of r systematically decreases from glycerol
(r ≈ 55), over ethylene glycol (r ≈ 26) [84], to o-terphenyl (r ≈ 10). On the other hand, a
similarly high value of r ≈ 54 was found throughout the homologous series with nOH = 3–6.
This can be seen from the example of sorbitol, which showed a low-frequency shoulder
similar to that of glycerol but a significantly different high-frequency behaviour due to
a strong β-process. These findings imply that the separation of rotation and translation
grows when the hydrogen-bond density increases, until a hydrogen-bond network is fully
established for the case of glycerol [84]. A further rise to nOH = 6 did not further increase the
network connectivity and the time-scale separation. The conjecture that ratios of r > 9 are
related to mostly established hydrogen bond networks is corroborated by the findings
that diluting propylene glycol with a nonpolar solvent, i.e., destroying the hydrogen-bond
network, reduces the r value from about 40 to 10 [74].
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Figure 4. (a) NMR susceptibility master curves of o-terphenyl (OTP), ethylene glycol-h4 (EG-h4) [84],
glycerol-h5 (glyc-h5), and sorbitol scaled to overlap in the peak region [85]; the r value characterizing
the separation of translational and rotational time constants increases from 10 (o-terphenyl) to
26 (ethylene glycol) to 54 (glycerol and sorbitol). In the case of o-terphenyl, the susceptibilities
obtained from 2H relaxation [86] and from DLS [87] are included. (b) FC susceptibility master curves
of the eight liquids studied so far.

In Figure 4a, we added the NMR susceptibility χ
′′
NMR(ω) of o-terphenyl as obtained

from HF (single frequency) 2H spin-lattice relaxation measurements [86]. As described
above, taking the time constants from a DLS study [87], a susceptibility can be constructed
from R1(T) data. The 2H susceptibility agrees with that from FC 1H relaxometry in the
peak region; however, as expected, it does not show a low-frequency shoulder because



Int. J. Mol. Sci. 2022, 23, 5118 11 of 27

the 2H relaxation is governed by the quadrupolar interaction, which is basically free
of intermolecular contributions. Furthermore, the PCS susceptibility of o-terphenyl is
included [87], again displaying almost perfect agreement with the NMR data. Comparing
the results for glycerol, ethylene glycol, and o-terphenyl, some differences are observed
with respect to the manifestation of the excess wing, indicating that the amplitude of this
contribution is system-dependent. This is confirmed in Figure 4b, where we compare the
FC 1H NMR susceptibilities of most of the glass-forming liquids studied so far. Clearly, the
high-frequency flank is not universal. However, some of the differences may result from
a hidden β-relaxation, which continuously separates from the α-relaxation upon cooling.
For hexanetriol and the higher glycerol homologues, the existence of a β-relaxation was
confirmed in the dynamic bulk and shear modulus [88] and dielectric spectra [89].

A main advantage of NMR is its isotope selectivity, which allows us to probe the site-
specific dynamics. Above, this was demonstrated for glycerol compounds with different
isotope labelling, revealing that the non-rigid molecule glycerol behaves essentially as a
rigid entity in the viscous liquid. The question is whether this phenomenon is common to
liquids approaching their glass transition. Rather than monitoring the relaxation of differ-
ently labelled molecules using a single probe nucleus, it is also possible to simultaneously
study the relaxation of different molecular entities of the same molecule by using various
probe nuclei, e.g., 1H and 31P in the case of m-tricresyl phosphate (m-TCP); however, FC
31P data are still difficult to collect routinely, and measurement times are very long [53].

Figure 5a displays the FC susceptibility master curves of m-TCP obtained by FC 1H
and FC 31P NMR relaxometry [53]. Additionally, HF 31P relaxation data are included [90,91],
which extend the susceptibility spectrum to higher frequencies. In the HF study, 31P R1(T)
was measured at three Larmor frequencies ω, and the susceptibility master curve resulted
from transforming ωR1(T) to ωR1(τDLS), taking τDLS(T) from DLS [92], and rescaling
the τDLS axis by ω. Thus, a master curve was again not enforced by shifting spectra
measured at different temperatures for best overlap, but just results as a consequence of
the applicability of FTS and the consistency of the NMR and DLS correlation times. The 1H
and 31P NMR susceptibility master curves have very similar shapes, including the excess
wing contribution. A fit of the relaxation peak yields βCD = 0.41 for both nuclei, similar
to the stretching found for glycerol, ethylene glycol, and o-terphenyl. We also added the
DS [93,94] and DLS spectra [4] of m-TCP measured close to Tg. Similar to glycerol, the
NMR and DLS susceptibilities agree around the α-peak, whereas the dielectric spectrum is
significantly narrower, as may be expected due to m-TCP being a polar liquid.

The NMR, DLS [92], and DS [53] rotational correlation times of m-TCP are displayed
in Figure 5b. Three τrot(T) traces are observed at high temperatures, which merge at
low temperatures close to Tg. The time constants from HF and FC 31P NMR agree with
those from DLS. Presumably, they characterize the overall reorientation of the molecule,
i.e., of its PO4 core. The FC 1H NMR correlation times are somewhat shorter, which can
be rationalized by additional the internal motions of the phenyl rings and their attached
methyl groups carrying the interacting protons. Surprisingly, the dielectric spectra show a
bimodal structure at high temperatures, while they exhibit a single peak close to Tg (see
inset of Figure 5b). The time constants of the fast DS process are similar to those of 1H NMR,
whereas the slow dielectric process has no NMR or DLS counterpart and its origin is still
elusive. Possibly, it reflects the collective dynamics probed by dielectric cross correlations,
as discussed for monohydroxy alcohols or glycerol (see Section 3.4).
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Figure 5. (a) NMR susceptibility master curves of m-tricresyl phosphate (m-TCP) determined from FC
1H relaxometry (black circles; constructed from data in the range 220 K–383 K), 31P NMR relaxometry
(blue squares; data in the range 240 K–290 K), and high-field 31P NMR (green open squares) [90]. The
latter are dominated by the CSA interaction and rescaled in amplitude (right ordinate). Added are the
PCS (red line) [4]) and DS (magenta line) [93,94] susceptibilities close to Tg. (b) Rotational correlation
times of m-TCP as obtained from different techniques: DS—open green triangles [53]; high-field 31P
NMR relaxation—blue squares [90]; FC 31P NMR—red circles [53]; FC 1H NMR—black squares [53];
and DLS—violet circles [92]. Reciprocal diffusion coefficient D−1(T) measured by FC relaxometry
(open orange stars) [53] and by static field gradient (SFG) diffusometry (solid brown stars) [53]—right
ordinate. Inset: dielectric spectra of m-TCP at high temperatures revealing a bimodal spectral shape;
included is a FC 1H NMR spectrum at the corresponding temperature.

The merging of the various rotational correlation times upon approaching Tg suggests
that the distinct internal dynamics become slaved by the glassy dynamics, possibly because
of the cooperativity of the α-relaxation in the highly viscous liquid. Phenomenologically, a
similar behaviour was recently proposed for the non-rigid sorbitol molecule undergoing
the glass transition [35]. There, site-specific NMR relaxation revealed different relaxation
stretching at high temperatures, while displaying a similar trend at low temperatures.
A recent study on sizable molecules to which a polar side group is attached showed a
similar phenomenon [95].

In addition, we can see in Figure 5b that the self-diffusion coefficients D(T) obtained
from FC 1H NMR relaxometry based on the low-frequency square root dispersion law (see
Equation (5)) agree with those from static field gradient NMR [53].

3.2. Ionic Liquids

Thus far, we have focused on neat molecular glass formers. Ionic liquids, and especially
room temperature ionic liquids (RTILs), are another class of liquids that are currently
receiving a great deal of attention in view of their interesting properties and versatile
applications [96–101]. Similar to conventional salts, such as NaCl, they consist only of
anions and cations. However, a suitable choice of the ionic species allows one to lower
the melting point or even fully suppress crystallization and convey good glass-forming
ability [97,98,101,102]. The dynamics of RTILs resemble those of neat molecular glass
formers in many respects [97,102–104]; however, the disparity and complexity of the ions
also results in new features. In particular, many RTILs tend to decompose into nanoscopic
polar and nonpolar domains, which may affect the dynamics [99,101,105–107].

In Figure 6, we present the NMR susceptibility master curve of an exemplary RTIL, as
obtained from FC and HF 2H spin-lattice relaxation data. Moreover, the chemical structures
of the used cations and anions are depicted. Using an appropriately deuterated cation [100],
2H NMR allows us to selectively probe the single-particle reorientational dynamics of the
imidazolium ring. However, FC 2H NMR studies are still challenging and rarely found in
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the literature [49,51,108–110]. The low gyromagnetic ratio leads to long experimental times
and the strong quadrupolar coupling results in fast 2H spin-lattice relaxation, such that
the susceptibility peak may be inaccessible by FC because of finite field-switching times.
The latter drawback can be overcome when adding HF 2H relaxation data to extend the
spectrum to higher frequencies, as is demonstrated in Figure 6a using results at a Larmor
frequency of 46 MHz. The combination of FC and HF data clearly demonstrates the power
of 2H relaxometry yielding a single-particle susceptibility, which probes the reorientation of
specifically labelled molecular sites. The 2H NMR master curve agrees with PCS data [111]
close to Tg when plotted over the reduced frequency axis ωτpeak. Both susceptibilities show
the α-relaxation peak and indications of a crossover to an excess wing at high frequencies.
A CD fit limited to the relaxation peak reveals a width parameter of βCD = 0.32, which is
lower than the value of βCD ~ 0.5 observed for many molecular liquids. Thus, a proposed
generic shape of the α-relaxation of pure molecular liquids, if existent, cannot be extended
to ionic liquids.
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Figure 6. Reorientation dynamics of an ionic liquid comprised of 1-propyl-3-methyl-imidazolium
cations (C3) and bis(trifluoromethylsulfonyl)imide (TFSI) anions: (a) 2H NMR susceptibility master
curve for the selectively deuterated cation, constructed from FC and HF data at the indicated
temperatures (colored symbols), together with the PCS susceptibility (black symbols) [111]. The red
line is a CD fit of the NMR data. (b) Correlation times of cation reorientation from FC 1H and 2H
relaxometry and from 2H stimulated-echo experiments (STE) [100], and of anion reorientation from
FC 19F relaxometry together with data from DLS [111] and DS [112] studies, the latter for a slightly
different ionic liquid consisting of 1-butyl-3-methyl-imidazolium cations (C4) and TFSI anions.

While FC 1H and 2H NMR inform us about the cation dynamics of the studied RTIL,
FC 19F NMR enables selective studies of anion dynamics [99]. The correlation times
obtained from the different NMR techniques are displayed in Figure 6b. Cation and
anion dynamics occur essentially on the same time scale and show the non-Arrhenius
temperature dependence typical of molecular glass formers. Moreover, all NMR data,
including results from 2H stimulated-echo experiments at temperatures near Tg, agree
with the DS [112] and DLS correlation times [111]. Altogether, the dynamics of the studied
ionic liquid exhibit only a moderate heterogeneity with a broadened, but still “CD-like”,
susceptibility. However, the situation changes when cations with long alkyl chains are
used. Then, structural inhomogeneities [107] give rise to more pronounced dynamical
heterogeneities and a decoupling of cation and anion dynamics [99,101].

3.3. Salt Solutions

Likewise, aqueous salt solutions show a rich dynamical behaviour; in particular, the
couplings of the ions with their hydration shells have received considerable scientific
attention. A prominent example of such three-component systems is LiCl-7H2O solution,
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which can readily be supercooled [113–115]. Field-cycling NMR relaxation studies can
employ the 1H (or 2H) and the 7Li (or 6Li) nucleus to monitor the dynamics of the water
molecules and the dissolved lithium ions, respectively. Hence, the isotope selectivity of
NMR again allows us to separately study the dynamics of the components, in contrast to,
for example, DS. Figure 7 displays the FC 1H and 7Li NMR susceptibility master curves on a
reduced frequency scale defined by the corresponding peak correlation times τpeak at 180 K.
When comparing these results, we need to consider the fact that the dominant interaction is
different for 1H and 7Li. The 1H NMR results are dominated by the intramolecular magnetic
dipole–dipole interaction between both the protons of the water molecule and, hence,
report on water reorientation, whereas 7Li NMR probes the EFG at the lithium site, which
fluctuates both when the lithium ion moves to a new environment and when the water
molecules in its hydration shell rearrange. Therefore, the 7Li NMR susceptibility reflects
a multi-particle correlation function, which involves local translational and rotational
motions. The 1H NMR susceptibility shows the above discussed spectral shape with an α
peak and an excess wing, indicating that the reorientation of the water molecules in the salt
solution resembles that in neat molecular liquids. For 7Li, the accessible frequency range is
more limited, but indications for an excess wing can still be observed.
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Figure 7. 1H (black circles) and 7Li (blue triangles) FC master curves of LiCl-7H2O on a reduced
frequency axis, which is defined by the respective peak correlation times τpeak form KWW fits to
the peak regions (red lines). The inset compares the FC peak correlation times with data from shear
relaxation [119], DS [117], DLS [117], viscosity measurements [116], and conventional HF NMR [118]
for the indicated aqueous salt solutions.

A closer comparison shows that the peak of the 1H susceptibility is narrower than
that of the 7Li susceptibility. Explicitly, KWW fits perform slightly better than CD fits
in these cases and yield stretching parameters of βK = 0.68 for 1H and βK = 0.50 for 7Li.
The inset shows the peak time constants derived from these fits and from the shift factors
of the master curves. Despite their different microscopic interpretation, the 1H and 7Li
NMR correlation times are very similar and agree with those obtained from the viscosity of
LiCl-5.8H2O [116]. Moreover, they are in harmony with DS results [117] for LiCl-7.3H2O
and HF 2H and 7Li NMR data [118] for LiCl-7D2O. Depolarized light scattering [117] probes
slightly faster dynamics than the other methods. Altogether, the comparison reveals that
the fluctuations of the 1H, 2H, and 7Li NMR interactions report on the structural relaxation
of LiCl solution.

The data collection in Figure 7 also reveals that the solutions with salt concentra-
tions from LiCl-4.8H2O to LiCl-7.3H2O show similar dynamics, justifying a more detailed
comparison of our data with results for samples of slightly different compositions. In
Figure 8a, we see that the shape of the 7Li FC susceptibility is similar to that from shear
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relaxation and DS [119], whereas the 1H FC susceptibility peak is significantly narrower. As
mentioned earlier, 7Li NMR probes the fluctuations of the local lithium ionic environments,
thus reflecting both solvent and solute dynamics. Likewise, shear rheology and DS probe
multi-particle dynamics associated with the local friction and the fluctuating electric dipoles
of the charged and polar constituents, respectively. This common multi-particle origin may
provide a rationale for the similar spectral signature of these susceptibilities. On the other
hand, 1H FC relaxometry mainly probes the reorientation of individual water molecules,
which may be a less diverse dynamical process, leading to a narrower susceptibility.
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Figure 8. (a) Field-cycling 1H and 7Li susceptibilities compared to DS and shear relaxation suscep-
tibilities at 150 K and 140 K, respectively, plotted over a reduced frequency scale ωτpeak. The data
are scaled by their maximum values. (b) ωR1(T) 1H and 7Li FC data, rescaled horizontally by the
respective τDS(T) from DS data [117]. Most FC data collapse onto a master curve. Deviations occur
at low temperatures, where a secondary water process separates from the α-process [120].

To further scrutinize whether FTS holds even in such complex three-component
systems, we re-analysed the FC data by scaling the frequency axis with the DS correlation
times τDS [117] (see Figure 8b). The 1H and 7Li data collapse onto a master curve for
all temperatures above 160 K, indicating that NMR and BDS yield the same temperature
dependence of the α-process and that FTS is valid. Furthermore, this scaling reproduces
the different broadening of the 1H and 7Li susceptibilities found in Figure 7. In contrast, the
construction of a 1H master curve fails below 160 K, implying that the water reorientation
decouples from the α-relaxation near Tg. Further analyses are required to decide whether
or not this effect is related to the water-dominated secondary-ν relaxation appearing in
various types of aqueous systems at sufficiently low temperatures [118,120].

3.4. Monohydroxy Alcohols

Monohydroxy alcohols show complex dielectric spectra exhibiting an additional
relaxation—the so-called Debye relaxation—which is slower and usually stronger than
the α-relaxation. There is widespread agreement that the Debye process is linked to the
formation of hydrogen-bonded supramolecular structures [121]. For a long time, the Debye
process was considered merely as a dielectric feature. However, recent rheology stud-
ies [121,122] have demonstrated that monohydroxy alcohols show slower-than-structural-
relaxation dynamics, which are commonly considered specific to polymers.

In order to investigate a possible link between the slower-than-structural-relaxation
dielectric and rheological processes and the separation of translational and rotational
dynamics (in terms of the r value discussed in Section 3.1), we applied FC 1H NMR to a
series of octanol isomers, namely 3-, 4-, 5-, and 6-methyl-3-heptanol, which were considered
in the above mentioned rheological study [123]. The goal was to determine whether or not
the position of the methyl group controlled the formation of the supra-molecular structures
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responsible for the Debye process. A comparison of the rheological and dielectric relaxation
spectra suggested that the size of the supramolecular structures was unchanged, while the
dielectric strength varied by a factor of 100 among this series of octanol isomers [123].

Figure 9 presents the dielectric spectra of two of these isomers. Clearly, the relative
strength of the Debye relaxation, as well as the overall relaxation strength, drastically
changed between 4- and 5-methyl-3-heptanol, while the rheological measurements sug-
gested that the size of the supramolecular structures was hardly altered [122]. In Figure 10a,
we display the FC 1H NMR susceptibility master curves for the four octanol isomers
together with those of o-terphenyl and glycerol. A low-frequency shoulder is clearly recog-
nized for the monohydroxy alcohols. It is weaker than for glycerol, but certainly stronger
than for o-terphenyl. Specifically, r values of 22–34 were extracted. The difference between
the isomers was too small to suggest a trend for the influence of the methyl group position
on the r value, while the dielectric strength of the Debye process strongly varied across this
series [123]. Hence, there is no clear-cut relation between the r value and the manifestation
of the Debye relaxation. Fits of the master curves yield τrot(T) (see Section 2). In Figure 10b,
we can see that the FC NMR results extend the DS data to higher temperatures and show
that the position of the methyl group also does not significantly change the rotational
correlation times of the octanol isomers.
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Figure 10. (a) The low-frequency part of the FC 1H NMR susceptibility master curves of the four
octanol isomers. For comparison, the susceptibilities of glycerol-h3 and o-terphenyl and a CD
susceptibility are included. (b) Rotational time constants obtained from DS (open symbols) and FC
1H relaxometry (solid symbols). Inset: diffusion coefficients determined by FC 1H relaxometry and
from the literature [124,125]. The solid lines are guides for the eye.
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As discussed in Section 2, the analysis of the low-frequency FC 1H NMR data pro-
vides straightforward access to the self-diffusion coefficient D(T) using the universal low-
frequency square root dispersion law Equation (4). The results for glycerol and m-TCP
were already presented in Figures 3b and 5b. The approach is illustrated in Figure 11a.
Plotting R1(ω) as a function of ω1/2 and analysing the linear regime directly yields D. The
diffusion coefficients resulting from this analysis for the octanol isomers are shown in the
inset of Figure 10b. They agree with the data in the literature [123,124] and virtually do not
depend on the position of the methyl group, as do the reorientational correlation times. Fi-
nally, the correlation functions obtained from the FC 1H NMR susceptibility master curves
of the octanol isomers—more precisely, from the corresponding spectral densities—by
Fourier transformation are displayed on a double logarithmic scale in Figure 11b. In this
representation of the data, we clearly recognize the different separations of rotational and
translational motions, which are reflected by the different r values. For all studied liquids,
a decay due to rotational motion, which is described by the CD function, was followed by a
decay due to translational motion, which exhibits the characteristic long-time t−3/2 power
law of dipolarly coupled spins. For glycerol-h3 with a large r value of ~60, a bimodal decay
was most pronounced.
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Figure 11. (a) 1H spin-lattice relaxation rate R1 as a function of the square root of the frequency,
ω1/2. The self-diffusion coefficient D is determined from the linear part of R1(ω) via Equation (4), as
indicated by the straight lines. Inset: magnification of the high-temperature data. (b) Normalized
NMR time correlation functions derived from the susceptibility master curves of the octanol isomers
(see Figure 9a), glycerol-h3, and o-terphenyl (OTP) in a double logarithmic representation. The
dashed line is a CD function representing the rotational dynamics and the dotted line indicates a
long-time t−3/2 power law reflecting the translational dynamics.

3.5. Confined Liquids

Next, we move from bulk to confined liquids. It is well established that nanoscale
geometrical restrictions have substantial effects on the thermodynamics, structures, and
dynamics of liquids, which have important implications for biological, geological, and
technological processes [126–130]. However, the influence of nanoscopic confinements on
the shape of dynamical susceptibilities is still elusive. In large part, this lack of knowledge
can be attributed to serious drawbacks of DLS and DS approaches to confined liquids.
Specifically, many of the common host materials, e.g., mesoporous silica, are nontransparent
powders, such that the enclosed liquids are inaccessible to optical experiments. Moreover,
the structural heterogeneity of confinement samples causes internal polarization effects
in dielectric studies, which often mask contributions from slow dynamical processes. On
the other hand, NMR methods have proven to be very useful to ascertain not only the
phase behaviors and structural properties of pure and mixed confined liquids, but also
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their translational and rotational motions [129–132]. Here, we show that FC 1H and 2H
NMR provide valuable information about the dynamic susceptibilities of confined liquids.

In FC NMR approaches to confined liquids, it is a priori unclear whether FTS applies.
In particular, MD simulation studies have reported that the magnitude and range of wall
effects on the α-relaxation of confined molecular liquids increase upon cooling [133–135].
Here, we confined ethylene glycol to silica pores, which have a well-defined cylindrical
shape and a pore diameter of 3.0 nm [136–138], allowing us to fully suppress crystalliza-
tion [138]. Figure 12 shows the NMR susceptibility master curve constructed by shifting
the FC 1H relaxometry data of ethylene glycol at temperatures in the range of 210–300 K
along the frequency axis. Despite minor deviations in the low-frequency flank, which may
result from the aforementioned temperature-dependent wall effects, the data collapse was
satisfactory, indicating that possible FTS deviations were weak, at least for the studied
system and temperatures. This was confirmed by the observation that the correlation times
obtained from the shift factors together with the peak position at 235 K agreed with those
from other NMR and DS studies on confined and bulk ethylene glycol [138,139] (see the
inset of Figure 12).

The NMR susceptibility of confined ethylene glycol differs in an important aspect
from that of the above bulk liquids—it does not exhibit a CD shape, but the slope of its low-
frequency flank is notably smaller than +1. Explicitly, the master curve is well described
by the Havriliak–Negami function, yielding ω0.8 for the low-frequency flank. This low-
frequency broadening is not caused by the above-mentioned contributions of translational
motion to the 1H spin-lattice relaxation. In particular, for the FC 2H susceptibilities—which
are not governed by dipolar but rather by quadrupolar interactions and, hence, are free
of these contributions—we also observe a ω0.8 behavior. Moreover, the 2H data confirm
that the reduced low-frequency slope is not an artifact resulting from the construction of a
master curve. On the other hand, for 2H, FC relaxometry alone does not provide access
to the susceptibility maximum because the finite field-switching times of the setup do not
allow for measurements of the short spin-lattice relaxation times in this region.

Altogether, we conjecture that the ethylene glycol dynamics in the pore center are
bulk-like and dominate the peak region of the susceptibility, providing a rationale for the
similar peak positions of the bulk and confined liquids (see the inset of Figure 12), whereas
the dynamics near the pore wall are slowed, leading to a broader low-frequency flank for
confined liquids than that for bulk. Thus, the NMR susceptibility indicates that liquids
exhibit stronger dynamical heterogeneities in confinements than in bulk. However, for
confined liquids, one may not expect a generic shape of the dynamical susceptibilities.
Rather, the shape depends on the magnitude of the wall effect, which is established by the
specific guest–host interactions and has a range relative to the confinement and molecule
sizes, which determine the relevance of bulk-like dynamics in the pore center. Finally,
it should be noted that such confinement effects are not restricted to liquids in porous
materials; they may also occur in dynamically asymmetric mixtures, such as polymer and
protein solutions, where the less mobile larger molecules at sufficiently high concentrations
form confinements for the more mobile smaller molecules, which are soft or solid at
temperatures above and below the glassy transition [30,140,141].
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Figure 12. FC 1H and 2H NMR susceptibilities of ethylene glycol in cylindrical silica pores with a
diameter of 3.0 nm. For 1H, the susceptibility master curve constructed by horizontally shifting the
data sets at the indicated temperatures is shown together with a HN fit (red line), yielding the shape
parameters α = 0.81 and β = 0.45. For 2H, the susceptibilities at 300 K and 320 K are interpolated
with power laws ω0.8 and shifted horizontally for better visibility. The inset compares the correlation
times obtained from the position of the 1H susceptibility peak at 235 K and the shift factors used for
the construction of the master curve with correlation times from HF 2H relaxation and DS studies on
ethylene glycol in various silica pores and in the bulk [137,138,142]. DS studies find two dynamic
processes, P1 and P2, from which P1 corresponds to the main NMR (α) relaxation process.

3.6. Field-Cycling NMR Experiments Addressing the β-Relaxation of Pure Molecular Liquids

The nature of the β-process is still incompletely understood. As revealed by solid-
state NMR [55–58], the restricted reorientations of essentially all molecules are involved.
Dielectric spectra characteristic of the situation above Tg are shown for the case of tri-butyl
phosphate (TBP; Tg= 140 K) in Figure 13a [143]. The β-relaxation is weaker than the α-
relaxation but shows an increasing trend with temperature, a well-known feature of the
β-relaxation above Tg [1]. Thus far, a direct comparison of DS and NMR susceptibilities
covering both the α- and β-relaxation is not available. FC 31P NMR relaxometry appears
promising to probe the α- and β-relaxations because the accessible frequency range is
broader than in FC 1H relaxometry, which is a result of the fact that the heteronuclear
31P-1H dipolar couplings dominating the former nucleus are weaker than the homonuclear
1H-1H couplings of the latter [53].

Figure 13b shows the NMR susceptibility master curve constructed from the FC 31P
relaxation data of TBP at 190–240 K [53]. It is dominated by the α-relaxation. Compared to
the dielectric spectrum at a somewhat lower temperature of 170 K, the 31P NMR relaxation
peak is much broader—in particular, on its high-frequency flank. The latter effect results
most likely from the coalescence of the α-relaxation with the β-relaxation at the higher
temperatures of the NMR measurements. The FC correlation times obtained from the peak
position at 190 K and the shift factors from the master curve construction agree with the
extrapolation of the DS [143] and DLS [27] data (see inset of Figure 13b). Thus, FC 31P NMR
considerably expands the dynamic window of the former methods to faster molecular
reorientation at higher temperatures. The DS time constants of the β-relaxation show a
trend to merge with those of the α-relaxation at 180 K–190 K, corroborating the conjecture
that the maxima of the NMR susceptibilities at these temperatures are broadened because
the β-relaxation has not yet fully merged with the α-relaxation.



Int. J. Mol. Sci. 2022, 23, 5118 20 of 27

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 20 of 27 
 

 

the construction of the master curve with correlation times from HF 2H relaxation and DS studies 

on ethylene glycol in various silica pores and in the bulk [137,138,142]. DS studies find two dynamic 

processes, P1 and P2, from which P1 corresponds to the main NMR (α) relaxation process. 

3.6. Field-Cycling NMR Experiments Addressing the β-Relaxation of Pure Molecular Liquids 

The nature of the β-process is still incompletely understood. As revealed by solid-

state NMR [55–58], the restricted reorientations of essentially all molecules are involved. 

Dielectric spectra characteristic of the situation above Tg are shown for the case of tri-butyl 

phosphate (TBP; Tg= 140 K) in Figure 13a [143]. The β-relaxation is weaker than the α-

relaxation but shows an increasing trend with temperature, a well-known feature of the 

β-relaxation above Tg [1]. Thus far, a direct comparison of DS and NMR susceptibilities 

covering both the α- and β-relaxation is not available. FC 31P NMR relaxometry appears 

promising to probe the α- and β-relaxations because the accessible frequency range is 

broader than in FC 1H relaxometry, which is a result of the fact that the heteronuclear 31P-
1H dipolar couplings dominating the former nucleus are weaker than the homonuclear 
1H-1H couplings of the latter [53]. 

Figure 13b shows the NMR susceptibility master curve constructed from the FC 31P 

relaxation data of TBP at 190–240 K [53]. It is dominated by the α-relaxation. Compared 

to the dielectric spectrum at a somewhat lower temperature of 170 K, the 31P NMR relax-

ation peak is much broader—in particular, on its high-frequency flank. The latter effect 

results most likely from the coalescence of the α-relaxation with the β-relaxation at the 

higher temperatures of the NMR measurements. The FC correlation times obtained from 

the peak position at 190 K and the shift factors from the master curve construction agree 

with the extrapolation of the DS [143] and DLS [27] data (see inset of Figure 13b). Thus, 

FC 31P NMR considerably expands the dynamic window of the former methods to faster 

molecular reorientation at higher temperatures. The DS time constants of the β-relaxation 

show a trend to merge with those of the α-relaxation at 180 K-190 K, corroborating the 

conjecture that the maxima of the NMR susceptibilities at these temperatures are broad-

ened because the β-relaxation has not yet fully merged with the α-relaxation. 

  

Figure 13. (a) Dielectric spectra (DS, solid lines) [143,144] corrected for the Curie factor and scaled 

in amplitude by a global factor to match the FC 31P NMR susceptibility (open symbols) of tributyl 

phosphate (TBP) at the indicated temperatures [53]. The blue dashed line is the interpolated NMR 

data from panel (b) re-scaled with 𝜏𝛼(T = 170 K). (b) Susceptibility master curve of TBP constructed 

from FC 31P relaxation data at temperatures from 190 K to 240 K on a reduced frequency scale ωτpeak. 

A DS spectrum at 170 K [144] and a DLS spectrum at 147 K are included [27], both shifted to the 

NMR peak. Inset: correlation times of the α- and β-processes from FC 31P NMR relaxometry, DS 

[143], and DLS [27]. The black line is a guide for the eye. 

In Figure 13a the dielectric spectra were scaled to overlap with the FC data at high 

frequencies, i.e., in the region of the β-relaxation. The maximum value of the NMR sus-

ceptibility associated with the α-relaxation outside the accessible frequency range is 

Figure 13. (a) Dielectric spectra (DS, solid lines) [143,144] corrected for the Curie factor and scaled
in amplitude by a global factor to match the FC 31P NMR susceptibility (open symbols) of tributyl
phosphate (TBP) at the indicated temperatures [53]. The blue dashed line is the interpolated NMR
data from panel (b) re-scaled with τα(T = 170 K). (b) Susceptibility master curve of TBP constructed
from FC 31P relaxation data at temperatures from 190 K to 240 K on a reduced frequency scale ωτpeak.
A DS spectrum at 170 K [144] and a DLS spectrum at 147 K are included [27], both shifted to the NMR
peak. Inset: correlation times of the α- and β-processes from FC 31P NMR relaxometry, DS [143], and
DLS [27]. The black line is a guide for the eye.

In Figure 13a the dielectric spectra were scaled to overlap with the FC data at high
frequencies, i.e., in the region of the β-relaxation. The maximum value of the NMR suscepti-
bility associated with the α-relaxation outside the accessible frequency range is determined
by the NMR coupling constant. In Figure 13b, this expected height of the α- peak is
indicated by the dashed horizontal line. We observe that the relaxation strength of the
β-processes relative to this value of the α-process is much larger than that seen in the
dielectric spectra. Thus, the results for TBP suggest that the relative relaxation strength of
the β-relaxation is higher in FC than in DS. Similar results were reported for the plastic
crystalline phase of cyanocyclohexane [145]. This is demonstrated in Figure 14, where the
rescaled FC 1H NMR susceptibilities show a stronger β-relaxation than the corresponding
dielectric spectra. Solid-state 2H NMR echo experiments on cyanocyclohexane have doc-
umented a very similar manifestation of the β-process to that in structural glasses, again
suggesting highly restricted molecular wobbling motion [55,57]. Given that such hindered
reorientation causes the β-process, one indeed expects that the susceptibility contribution of
the β-relaxation is by a factor of three larger in NMR probing an l = 2 rotational correlation
function than in DS observing an l = 1correlation function, provided collective effects can
be ignored [146,147]. Based on these arguments, the relative amplitude of the β-relaxation
in PCS, which also probes l = 2 data, should be comparable to that in NMR. However,
inconsistent with this expectation, the PCS susceptibility of TBP [27] shows a comparably
weak β-process. In any case, detailed comparisons of NMR, DLS, and DS susceptibilities
should help to further improve our understanding of the molecular nature of the α- and
β-processes in glass-forming liquids in future work.
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Figure 14. Susceptibility master curve of cyanocyclohexane from FC 1H NMR relaxometry together
with dielectric spectra (black symbols) at the indicated temperatures in K [145]. The data are scaled
for the best overlap of the α-relaxation peak. The FC and DS data show a secondary (β-) relaxation at
high frequencies. However, the amplitude of the β-relaxation with respect to that of the α-relaxation
is significantly higher in FC than in DS.

4. Conclusions

NMR relaxometry—most notably, the FC technique—is a versatile tool to determine
the dynamical susceptibilities of glass-forming liquids over broad frequency ranges. Based
on the isotope selectivity of this method, the experimental approach can be designed to
deliver a specific aspect of the system under study. In particular, NMR relaxometry allows
one to selectively address the components of liquid mixtures. Furthermore, depending
on the probe nucleus, it is possible to investigate translational and rotational motions
and to assess single-particle or multi-particle correlation functions. For example, FC
relaxation dispersions provide straightforward access to both translational self-diffusion
coefficients and rotational correlation times, enabling stringent tests of the SED relation in a
single measurement.

For pure molecular liquids, the NMR susceptibilities revealed the structural (α) relax-
ation and secondary (β) relaxations, complementing the results from other experimental
methods. The Cole–Davidson-like shape of the α-relaxation is usually similar in NMR and
DLS approaches, while the width parameter βCD is different in the dielectric spectra of
especially polar liquids, likely due to often neglected contributions from dielectric cross
correlations between different molecules. Moreover, FC NMR relaxometry studies con-
firmed that the excess wing is a generic relaxation feature of liquids near Tg. However,
the amplitude of the excess wing generally differs between various experimental methods,
likely because of their different sensitivities to small-amplitude motions [55]. This also
holds for the relaxation strength of the β-relaxation. By using 1H as the probe nucleus
and analysing the inter- and intramolecular contributions to the relaxation of the dipolarly
coupled spin systems, it became clear that the time-scale separation between translational
and rotational motions differs for various types of liquids. Specifically, translation is more
retarded with respect to rotation for liquids with fully established hydrogen-bond networks
than for van-der-Waals liquids, which virtually obey the SED prediction. On the other
hand, the NMR susceptibilities of hydrogen-bonded liquids did not provide evidence that
the extent of the translation-rotation separation is correlated with the magnitude of the
Debye process, which is a slow relaxation that is commonly attributed to a reorganization
of hydrogen-bonded supramolecular aggregates.
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Concerning liquid mixtures, FC NMR approaches may use various probe nuclei to, for
example, selectively assess the dynamics of specific anion and cation entities in ionic liquids
or investigate the dynamical couplings between ions and their hydration shells in aqueous
salt solutions. These possibilities reveal that the characteristic Cole–Davidson-like shape
of the α-relaxation is retained in liquid mixtures, provided that structural or dynamical
heterogeneities are moderate. Nevertheless, the width parameter βCD may differ for the
various components of an ionic liquid or a salt solution. Thus, there is no generic shape
of the α-relaxation in liquid mixtures. In contrast to the findings for liquids in the bulk,
for an exemplary liquid in nanoscopic confinement, we observed that the low-frequency
flank of the α-relaxation had a slope smaller than unity, i.e., it was notably broadened,
most likely due to a slowing of liquid dynamics near the pore wall. One may expect that a
similar broadening occurs in dynamically asymmetric liquid mixtures, where the slower
component forms an intrinsic confinement for the faster one.

Although the use of 1H FC NMR relaxometry was reported in pioneering works
several decades ago, the capabilities of the method have been largely overlooked for
years and have only recently begun to be fully explored. In particular, FC studies using
other nuclei, such as 2H, 7Li, or 31P, are still rare; however, they have the potential to
provide detailed insights into the dynamics of glass-forming pure and mixed liquids.
Moreover, it appears to be a fruitful strategy to apply FC NMR relaxometry to other types
of condensed matter systems in future work. For instance, a promising route may be
the application to dynamical couplings in biological and other soft matter. Furthermore,
first examples [59,60,148] demonstrate the suitability of FC NMR relaxometry for the
characterization of ion dynamics in materials for energy storage and conversion, including
solids for future battery technologies.
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