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Abstract: Alzheimer’s disease (AD) has become a problem, owing to its high prevalence in an aging
society with no treatment available after onset. However, early diagnosis is essential for preventive
intervention to delay disease onset due to its slow progression. The current AD diagnostic meth-
ods are typically invasive and expensive, limiting their potential for widespread use. Thus, the
development of biomarkers in available biofluids, such as blood, urine, and saliva, which enables
low or non-invasive, reasonable, and objective evaluation of AD status, is an urgent task. Here, we
reviewed studies that examined biomarker candidates for the early detection of AD. Some of the
candidates showed potential biomarkers, but further validation studies are needed. We also reviewed
studies for non-invasive biomarkers of AD. Given the complexity of the AD continuum, multiple
biomarkers with machine-learning-classification methods have been recently used to enhance diag-
nostic accuracy and characterize individual AD phenotypes. Artificial intelligence and new body
fluid-based biomarkers, in combination with other risk factors, will provide a novel solution that may
revolutionize the early diagnosis of AD.

Keywords: Alzheimer’s disease (AD); biomarkers; low or non-invasively; machine-learning
classification

1. Introduction

Dementia is one of the leading health concerns in aging societies [1,2]. The World
Health Organization suggests that approximately 10 million new cases of dementia occur
every year worldwide, and approximately 60–70% of these are patients with Alzheimer’s
disease (AD) [3]. Due to aging trends, especially in industrialized countries, the burden of
AD in the next decade will be very high, impacting hundreds of millions of people, their
families, and the national health care systems [4]. Epidemiological evidence suggests that
in the United States, one in every three individuals aged over 85 years will develop AD [5],
and by 2050, the number of Americans aged over 85 years will triple [6]. AD is among
the five leading causes of death in industrialized countries. Furthermore, it is the only
disease forecasted to grow by a large enough margin to become the primary disease in the
following decades [7]. Therefore, reversing these trends is critical worldwide.

Effective treatment to cure AD is not currently available [8]. Once AD is diagnosed,
the disease shows irreversible progression, although there are differences in progression
among individuals [9]. AD aggravation affects patients and their lifetime [10]. The survival
rate of AD varies from three to nine years, depending on the age at symptom onset, which
puts it in the group of long-term conditions [11]. Although a few patients suffer from
juvenile AD (diagnosed < 40 years old), this review focuses on patients with late-onset
Alzheimer’s disease (LOAD).
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AD in the older population starts developing a decade or more before the actual
diagnosis [12]. Patients with AD first go through the mild cognitive impairment (MCI)
phase, which can continue for several years. MCI is also split into the early and late MCI
stage characteristics. Not all MCI phases progress to AD [13]. Many of the risk factors
for LOAD were already identified (e.g., high cholesterol, type II diabetes, high blood
pressure, obstructive sleep apnea, and classic socioeconomic determinants, such as low
education) [14]. Early AD diagnosis can improve the prognosis [15]; however, the current
gold standard of AD diagnosis is the pathological analysis of brain tissue, an option not
feasible for mass screening owing to its invasiveness [16]. Thus, less invasive methods for
AD diagnosis are necessary.

Brain-imaging tests/devices (i.e., different versions of positron emission tomography
(PET) scans and magnetic resonance imaging (MRI) devices) are alternatives used for AD
diagnostics. In addition, molecular biomarkers, such as amyloid-beta isoform 42 (Ab42)
and phosphorylated tau, have been found in cerebrospinal fluid [17]. These methods,
currently used in clinical settings, help identify patient status, whether they belong in the
normal cognitive (NC) group, the MCI group, or the AD group. However, PET and MRI
tests need expensive infrastructure [18], and CSF biomarker testing remains highly invasive
and places a high physical burden on the examinee, thus limiting its use [19].

A non-invasive and diagnostic solution that can indicate the risk of developing AD
with high accuracy is critically important. Having this objective in mind and taking advan-
tage of the recent technological advances in computational power and lab equipment, many
new ideas/biomarkers have been investigated and put forward by the scientific community
to detect AD early before LOAD [20]. These are based on biomarkers found in the blood,
plasma, serum, urine, and saliva [21,22]. However, considering the heterogeneity among
patients, a single biomarker is not enough to characterize each patient. Nowadays, omics
technologies enable us to profile hundreds of molecules simultaneously. Thus, the integra-
tion of quantified molecular patterns and computational power, e.g., the use of artificial
intelligence (AI) and machine-learning (ML) tools, would solve these issues [23]. AI-based
data analytical methods are already being studied for diagnosing AD, not only based on
the biofluid biomarkers but also on other modalities (e.g., readings of the retina + iris of the
eye) [24], electrical signal measurements of brain waves (electroencephalogram (EEG)) [25],
and AI-based online language skills and memory tests [26]. These are promising develop-
ments that can lead to feasible mass screening of AD, as long as they have high accuracy in
real clinical settings.

The use of ML and AI in numerous areas of healthcare can improve the accuracy of
biomarker-based testing and tackle an even more important issue—the heterogeneity of
each subject. Therefore, ML and AI can open promising avenues for accurate, non-invasive,
and accessible early diagnosis of AD and support subject-specific prognosis and treatment
responses to ground personalized approaches in disease management.

This review paper describes an update on the non-invasive or minimally invasive
techniques for identifying biomarkers. In addition, the topic includes AD diagnostic tests
that enable mass screening to predict the risk of AD in the early and mild phases. This
review also consists of the recent developments in ML employed in AD diagnosis that can
be used along with the biomarkers to improve the accuracy of diagnosis and the subject
differentiation capacity.

2. Clinical-Pathological Factors

Here we have summarized several different hypotheses and theories about the patho-
genesis of AD and its causes in the elderly. AD is a neurodegenerative disease, a subgroup
of a broader disease called dementia that mainly affects people aged 65 and older. Dementia
is a general term for a group of diseases that impair memory, language, cognitive function,
and motor function, resulting in the inability to lead a normal daily life. However, AD
is the largest subgroup, accounting for 60–80% of all dementia patients. Others include
Lewy body dementia, vascular dementia, and frontotemporal dementia, accounting for
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5–10% of the patient population [27]. The progression of AD can be split into three major
phases/groups as follows: the aggregation process of amyloid-beta (Aβ), stimulating the
phosphorylation of a tau protein, and aggregation of phosphorylated tau (p-tau) in neurons.
These molecules are mainly located in the hippocampus, where memory and learning
(recording new knowledge) are controlled [28–30]. The first phase is presymptomatic, also
known as NC, where there is no cognitive impairment. The second phase is MCI, where
the loss of neurons in the hippocampus causes short-term memory problems. MCI may
last between two to seven years. The third phase is when AD is confirmed; in this phase,
both short- and long-term memory is lost, hallucinations and delusions start, and after
some years, it reaches a more aggressive stage. This phase is the most difficult, and it may
last anywhere between three to eight years before death occurs. In the worst phase of AD,
it inflicts a tremendous mental, physical, and financial burden on caregivers (Figure 1).
Therefore, it is crucial to detect AD in the NC stage before developing. In the next section,
we will introduce biomarkers for detecting AD.
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Figure 1. The pathogenesis and temporal changes of Alzheimer’s disease (AD). AD is characterized
by the accumulation of amyloid-beta (Aβ), tau, p-tau, brain atrophy, and cognitive decline. Accumu-
lation of Aβ occurs gradually from the presymptomatic period. In the mild cognitive impairment
stage (MCI), Aβ deposits and tau-mediated neuronal damage, and short-term memory problems
progress gradually. In the dementia stage, Aβ deposit and tau-mediated neuropathy further structural
abnormalities of the brain and memory impairment occurs. The black lines indicate the accumulation
of Aβ in the brain.

3. Conventional Biomarkers

The biomarkers are essential for the early detection of the risk of developing AD
diseases before the dementia stage (Figure 2). Today, these biomarkers are clinically useful
and can serve as reference validation techniques for other alternative biomarkers present
in human body fluids. The recently practiced biomarkers for AD diagnosis are based on
the National Institute on Aging and Alzheimer’s Association’s 2018 published research
framework, which updates earlier protocols for AD diagnostic guidelines to focus on
biomarkers rather than initial symptom measurement [31].



Int. J. Mol. Sci. 2022, 23, 4962 4 of 10Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 10 
 

 

  
Figure 2. Biomarker-screening modalities for AD. Conventionally used biomarkers for Alzheimer’s 
disease (AD) include positron emission tomography (PET) and single-photon emission computed 
tomography (SPECT) to examine brain function and nuclear magnetic resonance to analyze struc-
tural changes in the brain. AD biomarkers include amyloid β 42 (Aβ42), phosphorylated tau (p-tau), 
and total tau (t-tau) levels in cerebrospinal fluid. New biomarkers such as optical coherence tomog-
raphy (OCT) and optical coherence tomography angiography (OCTA) for measuring eye vascular 
abnormalities, electroencephalograms (EEG) for measuring brain waves, and AD marker genes 
have been found. Biomarkers in urine, blood, and saliva have also been identified. 

The Braak-staging classification of AD has been a widely accepted diagnostic tool for 
assessing the different stages of AD in other regions of the brain since the early 1990s. A 
recent study conducted in 2021 used the Braak stages and compared tau-based PET scan 
biomarkers versus Aβ-based PET scan biomarkers. It showed that the combination of a 
tau-PET scan and Braak staging is promising for predicting patient-specific risks of clinical 
AD progression compared to just using an Aβ PET scan [32,33]. 

3.1. Brain Imaging 
Single-photon emission computed tomography (SPECT) is mainly used to measure 

blood flow and concentration degree between arterial blood and brain tissue, and it uses 
the application of kinetic analysis models to calculate the regional cerebral blood flow 
(rCBF). In addition to rCBF measurement by SPECT, dopamine transporter radiotracers 
are also used with SPECT and can have clinical utility in distinguishing the different forms 
of dementia [34]. 

The functional imaging (MRI, PET, and SPECT scans) tests are in particular clinically 
important. They can identify the subjects with a high risk of developing AD while at the 
MCI stage with meaningful accuracy. A meta-analysis by Yuan et al., which included 24 
studies with a total of 1112 patients, found sensitivity and specificity values of 89% and 
85% for PET, 84% and 70% for SPECT, and 73% and 81% for MRI, respectively, for predic-
tion of conversion from MCI to AD [35]. These imaging tests have been successful in dif-
ferentiating AD from MCI. On the other hand, PET scans show higher positivity for amy-
loid (A+) with increasing age, but this does not necessarily correspond to memory impair-
ment or other cognitive conditions. Thus, visual interpretation of structural images cannot 
reliably identify patients with presymptomatic conditions before MCI. [36]. 

3.2. High Invasive Biomarkers 
The following β amyloid deposition, pathologic tau, and neurodegeneration (ATN) 

guidelines for AD diagnosis that combine both CSF and imaging biomarkers have been 

Figure 2. Biomarker-screening modalities for AD. Conventionally used biomarkers for Alzheimer’s
disease (AD) include positron emission tomography (PET) and single-photon emission computed
tomography (SPECT) to examine brain function and nuclear magnetic resonance to analyze structural
changes in the brain. AD biomarkers include amyloid β 42 (Aβ42), phosphorylated tau (p-tau), and
total tau (t-tau) levels in cerebrospinal fluid. New biomarkers such as optical coherence tomography
(OCT) and optical coherence tomography angiography (OCTA) for measuring eye vascular abnor-
malities, electroencephalograms (EEG) for measuring brain waves, and AD marker genes have been
found. Biomarkers in urine, blood, and saliva have also been identified.

The Braak-staging classification of AD has been a widely accepted diagnostic tool for
assessing the different stages of AD in other regions of the brain since the early 1990s. A
recent study conducted in 2021 used the Braak stages and compared tau-based PET scan
biomarkers versus Aβ-based PET scan biomarkers. It showed that the combination of a
tau-PET scan and Braak staging is promising for predicting patient-specific risks of clinical
AD progression compared to just using an Aβ PET scan [32,33].

3.1. Brain Imaging

Single-photon emission computed tomography (SPECT) is mainly used to measure
blood flow and concentration degree between arterial blood and brain tissue, and it uses
the application of kinetic analysis models to calculate the regional cerebral blood flow
(rCBF). In addition to rCBF measurement by SPECT, dopamine transporter radiotracers are
also used with SPECT and can have clinical utility in distinguishing the different forms of
dementia [34].

The functional imaging (MRI, PET, and SPECT scans) tests are in particular clinically
important. They can identify the subjects with a high risk of developing AD while at the
MCI stage with meaningful accuracy. A meta-analysis by Yuan et al., which included
24 studies with a total of 1112 patients, found sensitivity and specificity values of 89%
and 85% for PET, 84% and 70% for SPECT, and 73% and 81% for MRI, respectively, for
prediction of conversion from MCI to AD [35]. These imaging tests have been successful
in differentiating AD from MCI. On the other hand, PET scans show higher positivity for
amyloid (A+) with increasing age, but this does not necessarily correspond to memory
impairment or other cognitive conditions. Thus, visual interpretation of structural images
cannot reliably identify patients with presymptomatic conditions before MCI [36].

3.2. High Invasive Biomarkers

The following β amyloid deposition, pathologic tau, and neurodegeneration (ATN)
guidelines for AD diagnosis that combine both CSF and imaging biomarkers have been
proposed by the National Institute on Aging-Alzheimer’s Association [37]. The combination
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of imaging and CSF biomarkers improves the accuracy of complicated AD diagnostics and
prognoses. The biomarker related to Aβ in CSF is called (Aβ42) because it is the 42 long
amino acid (peptide) form of Aβ in the brain tissue and is the dominant biomarker that is
associated with AD disease. Its level in CSF is negatively corralled with the Aβ plaques in
the brain tissue, indicating that the lower the amounts of Aβ42 in the CSF, the higher the
number of Aβ plaques, as seen by PET scans. The ratio of Aβ42/Aβ40 is associated with
risk progression from presymptomatic to MCI or from MCI to AD.

Tau is a protein found in the axons of the neurons in the brain. High levels of total
tau and p-tau in CSF are associated with AD. An increased amount of total tau and p-tau
in the CSF indicates that these are secreted from the brain tissue neurons, which can be
a response to elevated Aβ plaques. P-tau stands for hyper-phosphorylated tau proteins.
There are several forms of p-tau biomarkers, namely P-tau181, P-tau217, and P-tau231. The
utility of each performs better in different situations, whether in the classification of AD
from non-AD tau pathology or indications of progression through different AD stages.
The amount of total tau in the CSF is a biomarker for the severity of neurodegeneration.
Tau aggregation forms neurofibrillary tangles that damage normal neuronal plasticity and
synaptic transmission processes.

Morinaga et al. conducted a study of 207 patients with AD to examine the performance
of biomarkers using MRI and PET. The study showed that AD findings were observed in
77.4% of all AD patients using MRI, 81.6% using SPECT, 93.1% using fluorodeoxyglucose
(FDG) PET, and 94.0% using CSF biomarkers. At the stage of clinical dementia rating
(CDR) 0.5 (questionable), sensitivity was 90.0% for CSF biomarkers, 80.8% for SPECT,
71.4% for FDG PET, and 65.5% for MRI. At CDR 1 (mild), FDG PET (96.7%) and CSF
biomarkers (95.5%) were the most sensitive. All biomarkers showed high sensitivity at
CDR 2 (moderate) [38]. In addition, there have been some case studies where the association
between AD and these biomarkers is not confirmed [39].

These conventional currently available AD biomarker tests are either highly invasive
(lumbar puncture) or expensive and labor-intensive (imaging), making them unsuitable for
use in the primary care, clinical office-based setting. Therefore, the search for inexpensive
biomarkers by metabolites and factors that can be collected minimally invasively from
blood or urine, which solve these problems, has been underway. The next section introduces
minimally invasive and non-invasive biomarkers.

4. Novel Non-Invasive and Minimally Invasive Biomarkers

This AD developing processes complexity needs the identification of biomarkers
that enable the detection and progression of this disease. However, diagnoses using
CSF biomarkers and brain imaging are invasive. Therefore, a non-invasive and accurate
biomarker for the classification of AD spectrum and stages of AD is needed.

4.1. Non-Invasive Biomarkers

Neurons communicate and perform all functions using electrical impulses, and
EEG [40] captures this electrical activity through small electrodes placed on the scalp,
displaying electrical impulses as waves. Individuals with AD typically experience a general
slowing of EEG, including a reduction in higher frequency waves, such as gamma. The
power spectrum, complexity, and synchronization characteristics of EEG waveforms in
AD patients have a distinct deviation from normal elderly individuals, indicating these
EEG features can be promising candidate biomarkers of AD [41,42]. Another promising
biomarker is the study of microvascular changes in the eye retina by OCT and OCTA
techniques. It is based on the fact that the eyes are directly connected to the brain. A recent
study of damage to the microvascular network and neural microstructure of the retina has
been reported in AD, MCI, and even preclinical AD [43]. Studies of human and animal
models of AD have also revealed biochemical pathways that are altered in the retina during
diseases, such as Aβ and tau deposition [44].
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Thus, since it is a non-invasive technique and different from most other biomarkers
used by other clinical-stage biotech companies, EEG techniques with bodily fluid biomark-
ers may offer a more accurate prediction of AD status [45].

4.2. Minimally Invasive Biomarkers

Furthermore, several biomarkers are being found to predict Alzheimer’s disease from
blood, saliva, and urine in addition to the CSF. For instance, thousands of proteins in blood
plasma were analyzed to predict AD, and 19 hub proteins showed a predictive ability of
clinical AD classification [46]. Similarly, the researchers investigated hundreds of different
metabolites found in saliva to discover which ones may predict AD status. This study
showed that salivary metabolite markers could discriminate between AD, presymptomatic
(PP), and MCI patients; AD and PP patients were identified by the metabolite markers
glucosylgalactosyl, hydroxylysine—H2O, and Glutamine-carnitine (discovery phase (DP)
and validation phase (VP): area under the curve [AUC] = 1.000, AUC = 1.000 with 100%
sensitivity and 100% specificity). The MCI and AD groups were best discriminated with
metabolite markers of alanyl-phenylalanine and phenylalanyl-proline (DP: AUC = 0.779;
VP: AUC = 0.889). In addition, using positively confirmed metabolites, we distinguished
AD from PP and MCI with good diagnostic performance (AUC > 0.8) [47].

Furthermore, changes in gene expression specific to AD have also been noted—the
AD mark Early Onset Alzheimer’s Panel. Three genes (Apo E genotype, PSEN1, and
PSEN2) can detect 45–90% of early AD patients [48]. Currently, none of these tests have
been approved by the U.S. Food and Drug Administration. The test is based on the precise
and robust quantification of the Aβ42/40 ratio (Aβ 42/40) and ApoE genotype in blood
samples. In another study, lactoferrin LF, a major antimicrobial peptide in saliva, was found
in senile plaques and neurofibrillary changes in the brain. Therefore, LF expects to be a
highly sensitive and specific biomarker for AD diagnosis [49]. Other enzymes, hormones,
or brain-secreted exosomal contents, such as proteins, lipids, and various RNA species
found in blood or saliva, can have predictive powers for detecting and classifying the AD
continuum. Furthermore, it has also been reported that measurement errors can occur
among institutions, even for biomarkers obtained from the same sample from the same
population [50].

However, there is no standard clinical solution for non-invasive or minimally invasive
early AD detection. Therefore, the scientific community is investigating analytical methods
to integrate this information. The following sections introduce artificial intelligence (AI)
and machine learning (ML) for the integrative data analysis.

5. Case for Inclusion of the ML Applications for Non-Invasive AD Diagnostics Solution

Artificial intelligence (AI) and machine learning (ML) are widely used in various
fields. Deep learning is a subtype of artificial neural networks (ANN). The structure of
ANN comprises input and output layers with several hidden layers. Each layer has several
nodes (similar to a neuron in the brain) connecting to another node in the next layer with
numerical weights. ANN-based sub-architectures have begun to be used in computer
vision, such as image processing, and perceptual computing, such as signal processing.
Recently, research has advanced in the field of medicine [51]. The main topics in healthcare
include the following: (1) diagnosis to differentiate a specific disease from the others and
(2) predicting to monitor the results of interventions.

AI and ML already have roles in the health care system, and their application and
importance are heavily recognized. They have contributed positively to many areas of the
delivery of health care services, including operational efficiency, personalized cancer treat-
ment diagnostics of certain diseases and infections, and drug discovery, among many other
applications. Naturally, many AI-related studies are being conducted for AD detection
and prognosis. However, a large-scale database is needed to improve the accuracy of AI or
ML. Many ML studies are based on several big initiatives, such as the AD Neuroimaging
Initiative (ADNI) database [52]. An ML competition is also called the Alzheimer’s Disease
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Prediction of Longitudinal Evolution (TADPOLE) [53]. In addition to ADNI and TADPOLE
initiatives, several more initiatives aim to take advantage of the latest cutting-edge applica-
tion of AI-ML tools to improve AD diagnosis. One more example is the Open Access Series
of Imaging Studies (OASIS) database, which consists of brain imaging data (MRI and PET
scans) that have been collected at MIT from almost 1100 participants [54]. Many academic
studies on AI–ML applications also use OASIS databases [55].

Medical studies tried to predict AD using the BioFinder database that collects longitu-
dinal data, including images, CSF and plasma biomarkers, and neuropsychological tests in
1600 individuals belonging to NC, MCI, and AD groups [56]. These data are being used
to develop accurate and early diagnostic methods, identify novel therapeutic targets, and
elucidate the relationship between different pathologies and clinical systems [57]. Recently,
a data platform called Alzheimer’s Disease Data Initiative has been collecting data from
global collaborators related to AD and related dementias. Its cloud-based platform allows
scientists and researchers to share and discover data to accelerate discoveries and innova-
tions in AD and related disorders [58]. In the early stages, it classifies the subgroups that
are in MCI, which may progress to AD, and those that regress to NC. More information
on different AI and ML applications used in AD classification solutions [59,60]. It is more
reliable to develop AI–ML models and algorithms with relevant big data to train these
programs. Furthermore, it is vital to improving machine-learning models by feeding back
diagnostic data to develop accurate early diagnosis techniques and new biomarkers [61]
(Figure 3). However, there are many challenges in developing the diagnosis of AD biomark-
ers and diagnostic devices. It is essential to promote mutual understanding with clinicians
and data analysts.
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Figure 3. Extensive data search by machine learning. The first step is to collect big data from
dementia patients. Then, they are labeled as presymptomatic (Pres.), mild cognitive impairment
(MCI), and Alzheimer’s disease (AD) patients. Next, input to machine learning from a large amount
of labeled data. The results of this machine learning are evaluated to calculate a model that can make
accurate predictions. The next stage is the implementation phase. New unlabeled invasive data,
PET (positron emission tomography), and MRI (magnetic resonance imaging) data are used to train
machine learning models and make predictions. The output is the result of predicting whether the
patient is Pres., MCI, or AD. These results can be used for the early diagnosis of AD. Furthermore, to
develop accurate early diagnosis techniques, it is crucial to improve machine-learning models with
feedback from diagnostic data.

6. Conclusions

The literature review on AD diagnosis found that both academia and biotech compa-
nies have tried to diagnose the early stage of AD, i.e., MCI. Currently, only expensive and
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invasive biomarkers (e.g., brain imaging, CSF Aβ 42, p-tau, and t-tau levels) are available.
Considering the high heterogeneities of AD diseases, multiple biomarkers (e.g., Apo E
genotype, saliva TF marker) would show a higher potential to differentiate AD patients.
The current framework for diagnosing AD, which uses beta-amyloid deposition, patho-
logical tau, and neurodegeneration (ATN) as indicators, is not fully functional. Although
the currently available applications are still limited, AI–ML tools may establish a reliable
solution. No standard solution is available to diagnose the complex AD continuum, espe-
cially before the MCI stage. Further research is needed to discover new minimally invasive
and cost-effective biomarkers. The integrated analyses of both clinical data and multiple
biomarkers would be effective methodologies for the early detection of AD patients.
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