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Abstract: Powdery mildew (PM), caused by the fungus Oidium lini in flax, can cause defoliation and re-

duce seed yield and quality. To date, one major dominant gene (Pm1) and three quantitative trait loci 

(QTL) on chromosomes 1, 7 and 9 have been reported for PM resistance. To fully dissect the genetic ar-

chitecture of PM resistance and identify QTL, a diverse flax core collection of 372 accessions augmented 

with an additional 75 breeding lines were sequenced, and PM resistance was evaluated in the field for 

eight years (2010–2017) in Morden, Manitoba, Canada. Genome-wide association studies (GWAS) were 

performed using two single-locus and seven multi-locus statistical models with 247,160 single nucleotide 

polymorphisms (SNPs) and the phenotypes of the 447 individuals for each year separately as well as the 

means over years. A total of 349 quantitative trait nucleotides (QTNs) were identified, of which 44 large-

effect QTNs (R2 = 10–30%) were highly stable over years. The total number of favourable alleles per ac-

cession was significantly correlated with PM resistance (r = 0.74), and genomic selection (GS) models 

using all identified QTNs generated significantly higher predictive ability (r = 0.93) than those con-

structed using the 247,160 genome-wide random SNP (r = 0.69), validating the overall reliability of the 

QTNs and showing the additivity of PM resistance in flax. The QTNs were clustered on the distal ends 

of all 15 chromosomes, especially on chromosome 5 (0.4–5.6 Mb and 9.4–16.9 Mb) and 13 (4.7–5.2 Mb). 

To identify candidate genes, a dataset of 3,230 SNPs located in resistance gene analogues (RGAs) was 

used as input for GWAS, from which an additional 39 RGA-specific QTNs were identified. Overall, 269 

QTN loci harboured 445 RGAs within the 200 Kb regions spanning the QTNs, including 45 QTNs located 

within the RGAs. These RGAs supported by significant QTN/SNP allele effects were mostly nucleotide 

binding site and leucine-rich repeat receptors (NLRs) belonging to either coiled-coil (CC) NLR (CNL) or 

toll interleukin-1 (TIR) NLR (TNL), receptor-like kinase (RLK), receptor-like protein kinase (RLP), trans-

membrane-coiled-coil (TM-CC), WRKY, and mildew locus O (MLO) genes. These results constitute an 

important genomic tool for resistance breeding and gene cloning for PM in flax. 

Keywords: powdery mildew (PM) resistance; quantitative trait loci (QTL); quantitative trait nucleotides 

(QTNs); genome-wide associate study (GWAS); genomic prediction (GP); core collection; flax;  
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1. Introduction 

Diseases are major constraints to crop production. Powdery mildew (PM) is a com-

mon fungal disease of many crops worldwide. Most PM pathogen species are host-spe-

cific or infect few hosts, implying that their genomes encode distinct “toolboxes” of path-

ogenesis-related genes [1]. Importantly, all PM fungi are obligate biotrophic plant patho-

gens; hence, their growth and reproduction are entirely reliant on the availability of water 

and nutrients from living host cells [2]. PM interferes with plant growth and reduces the 

crop’s quality. For example, PM can reduce grain yields by up to 40% in wheat [3]. PM 

occurs later in the season when temperatures are between 20 and 25 °C, and the extent of 

the damages is only determined after the crop has been harvested [4]. Once the host is 

infected, the infection spreads quickly under favourable conditions, resulting in PM out-

breaks. Furthermore, the evolution of pathogen races with increased virulence may result 

in a “breakdown” of resistance. For instance, Pm17, Pm3a, and Pm4a were defeated in sev-

eral Eastern and mid-Atlantic regions of the United States [5,6], as was Pm8 in China [7]. 

As a result, most resistance genes become ineffective after a period of time [8]. Thus, it is 

necessary to keep looking for new sources of resistance or create new combinations to stay 

abreast of new races. This can be achieved by identifying new genes/alleles that will allow 

us to build molecular tools to quickly and efficiently introduce them into breeding lines 

and to diversify the resistance sources against the rapidly evolving pathogen races. 

Plant disease resistance is usually categorized as either “qualitative,” defined by the 

presence of major resistant (R) genes, or “quantitative” defined by the presence of re-

sistance-related quantitative trait loci (QTL) [9,10]. R genes, for example, have been used 

successfully in wheat where they form the basis of resistance breeding programs that have 

produced many resistant commercial varieties [11]. The majority of the known R proteins 

have nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains and act as in-

tracellular immune receptors that recognize their cognate effectors directly or indirectly 

[12]. Two other genetically specified R proteins are cell surface-localized receptor-like 

transmembrane proteins (RLPs) and receptor-like kinases (RLKs) [13]. Mildew locus O 

(MLO) is a well-studied PM susceptibility gene that was first discovered in barley in 1942 

[14] and later identified in rice and wheat [15,16]. 

Qualitative resistance means “monogenic”, “vertical” or “race-specific”, while quan-

titative resistance refers to adult plant resistance (APR), “slow-mildewing”, or “partial 

resistance” [17]. Qualitative resistance genes are usually short-lived due to the frequent 

changes in the pathogen population [9]. Quantitative genetics approaches, such as esti-

mating genetic elements, heritability, and efficient gene numbers, are typically used to 

investigate quantitative resistance. Several studies have identified more than 100 QTL on 

all chromosomes in wheat [11]. Quantitative resistance is more durable [18,19], and offers 

long-term defence to host plants. However, detecting such resistance is difficult, particu-

larly when R genes are present. Traditionally, genetic studies of quantitative traits use 

segregating biparental populations that have been tested for the traits of interest and gen-

otyped with DNA-based molecular markers. This method necessitates the costly and 

time-consuming creation of specific mapping populations. Additionally, the resolution is 

limited by the number of crossovers and the high linkage disequilibrium (LD), necessitat-

ing additional research to fine-map the QTL that often span several cM [20]. 

Genome-wide association studies (GWAS) are a powerful alternative strategy to the 

traditional linkage-based QTL mapping, focusing on LD obtained from unrelated geno-

types of a collection that reflects historical recombination, thereby resulting in more accu-

rate positioning of QTL and higher mapping resolution. However, GWAS are less effec-

tive at detecting alleles with small effects and rare alleles, and can produce a large number 

of false-positive associations. To improve the statistical mapping power of GWAS, a large 

population size and high marker density are needed. Several GWAS analyses for PM re-

sistance have been performed in plant species such as wheat [11,21,22], barley [23] and oat 

[24]. These studies revealed that resistance to PM was mainly mediated by a few minor 
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QTL with small effects and heavily influenced by the genetic background of the popula-

tions studied, the phenotyping conditions, and the genotype-by-environment interac-

tions. These findings imply the limited efficiency of marker-assisted selection (MAS) to 

improve PM resistance by pyramiding small-effect favourable alleles. Genomic selection 

(GS), also known as genomic prediction (GP), is a promising alternative in crops, particu-

larly for improving complex traits. In GS, genome-wide markers are used to predict the 

genomic-estimated breeding values (GEBVs) of individuals by capturing the benefits of 

both major- and minor-effect QTL [25,26]. As a result, GS captures a more significant pro-

portion of the genetic variance of the selected traits than MAS, which is often restricted to 

a small number of markers linked to major QTL. 

In flax, PM, caused by the obligate biotrophic ascomycete Oidium lini Skoric, is one 

of the most destructive and common flax foliar diseases [27,28]. It was first reported in 

Western Canada in 1997 [29] where it remains a sporadic disease. Infection with PM at an 

early stage of development will result in significant yield and seed quality reductions [30]. 

Most Canadian flax varieties are moderately resistant to PM under field conditions with 

natural inoculum [31]. One major dominant gene for resistance to PM, designated Pm1, 

has been identified from the Canadian varieties AC Watson, AC McDuff and AC Emerson 

as well as from the introduced varieties Atalante and Linda. Two additional dominant 

genes have also been postulated in Linda [32]. The use of resistant varieties in combination 

with a systematic disease management program is the most successful way to reduce the 

incidence of PM and save producers money. 

In the present study, both GWAS and GS analyses were performed on 447 flax acces-

sions. Field resistance assessment was performed for five to eight years (2010–2017) in Mor-

den, Manitoba, Canada and genotyping was achieved through short-read sequencing of ge-

nomic DNA. The major objectives of this study were: (1) to discover major and minor QTNs 

associated with PM resistance in flax through GWAS using seven widely used multi-locus 

and two single-locus statistical methods; (2) to identify putative candidate genes for these 

QTNs; and (3) to evaluate the efficiency of the QTNs as markers in GS models. 

2. Results 

2.1. Evaluation of Powdery Mildew Resistance 

 The average PM rating of the 372 accessions of the core collection over five years 

(2012–2016) was 4.84 ± 1.35, while that of the 75 selected breeding lines was 2.24 ± 0.43 

(Figure 1A, Table S1). The overall average was 4.5 ± 1.4 over the five years with large 

phenotypic variation (coefficient of variation (CV): 28.1–53.2%) (Table 1). 

Based on the average PM ratings over five years, 85 genotypes were either highly 

resistant (HR) or resistant (R); this group included 70 of the 75 selected breeding lines and 

15 accessions from the core collection. Of these 85 genotypes, 83 belong to the linseed 

morphotype while F_LTU_B_CN10111 and F_NLD_C_CN18983 are fibre-type flax. A to-

tal of 92 genotypes were moderately resistant (MR), including the five selected breeding 

lines; 114 genotypes were moderately susceptible (MS); 118 genotypes were susceptible 

(S); and 38 genotypes were highly susceptible (HS) (Figure 1B). The PM ratings averaged 

2.2 ± 0.4, 3.4 ± 0.3, 4.4 ± 0.3, 5.8 ± 0.6 and 7.3 ± 0.3 for the R, MR, MS, S and HS groups, 

respectively (Figure 1B). 

Similar performance for PM resistance between years was observed, although the 

yea-to-year PM ratings of the genotypes differed slightly. The PM ratings in 2014 and 2015 

were generally lower than those in other years (Table 1), while the PM ratings of the 75 

breeding lines were lower in 2010 (Table S1). Pearson correlation analysis corroborated 

the significant correlations across years (r = 0.35–0.81, p < 0.01) (Figure 2). 
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Table 1. Powdery mildew (PM) disease ratings for 447 flax genotypes (372 accessions from a core 

collection and 75 selected breeding lines) from 2012 to 2016. 

Year Dataset Code Sample Size � ± s Range CV (%) 

2012 PM-2012 447 4.9 ± 2.0 1.0–9.0 41.1 

2013 PM-2013 253 5.2 ± 2.1 1.0–9.0 40.9 

2014 PM-2014 447 4.1 ± 2.2 1.0–9.0 53.2 

2015 PM-2015 391 3.6 ± 2.0 1.0–9.0 57.3 

2016 PM-2016 447 4.9 ± 1.4 2.0–9.0 28.1 

Mean PM-Mean 447 4.5 ± 1.4 1.6–8.0 31.1 

�: population mean; s: standard deviation; CV: coefficient of variation. Due to missing data, only 

253 and 391 accessions were available in 2013 and 2015, respectively. 

 

Figure 1. Powdery mildew (PM) field evaluation over five years (2012–2016). Box plots of PM ratings 

for the 372 accessions of the core collection and the 75 selected breeding lines (A) and the number 

of accessions and mean PM ratings by resistance groups (B). R: resistant (PM ratings of 1 to <3); MR: 

moderately resistant (3 to <4); MS: moderately susceptible (4 to <5); S: susceptible (5 to <7); HS: 

highly susceptible (7 to 9). 

 

Figure 2. Distribution and correlation matrix of powdery mildew (PM) ratings in five consecutive 

years (2012–2016) and mean PM ratings over years. *** represents statistical significance at 0.001 

probability level. 
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2.2. Genetic Structure of the Population 

Principal component analysis (PCA) was performed for the flax core collection of 372 

accessions and 75 selected breeding lines using all 247,160 SNPs identified from the 447 

genotypes (Figure S1). The first three principal components (PCs) accounted for 11.8%, 

8.1% and 6.1% of the total variation, respectively. These three PCs grouped all genotypes 

into either linseed or fibre morphotypes (Figure S1). Most of the 75 selected breeding lines 

were highly resistant to PM (Figure 1A), creating a spatial cluster that differed from the 

core collection (Figure S1). To capture more of the structural contributions of the PCs, the 

first ten PCs (38% of the total variation) were selected as a genetic structure matrix for the 

downstream GWAS analyses. 

2.3. Identification of QTL 

Two single-locus methods (GLM and MLM) and seven multi-locus methods 

(pLARmEB, pKWmEB, FASTmrMLM, ISIS EM-BLASSO, mrMLM, FASTmrEMMA, and 

FarmCPU) were used to identify PM resistance QTNs from all 247,160 SNPs and all 447 

accessions. A total of 349 unique QTNs were identified for the six PM datasets (PM-2012, 

PM-2013, PM-2014, PM-2015, PM-2016, PM-Mean) based on the 47,564 haplotype blocks 

identified from the 247,160 SNPs using Plink (Table S2). QTNs located in the same haplotype 

blocks were treated as QTL, and the QTNs with the largest effect (R2) were chosen as the tag 

to represent these QTL. Singleton QTNs were considered independent QTL. Hereafter, we 

use the tag QTNs or singleton QTNs to represent the QTL. The 349 tag QTNs and their 

related information are listed in Table S3 and depicted on chromosomes in Figure 3. 

 The 349 unique QTNs were identified using a number of GWAS statistical models 

(Table S4). The single-locus model GLM detected only nine QTNs, but these had relatively 

large effects, ranging from 0.65 to 27.62% and averaging 11.34% of R2 (Table S4). No QTNs 

were detected with the single-locus model MLM. The multi-locus FarmCPU method de-

tected 15 QTNs with relatively large effects (9.07% of R2). The remaining six mrMLM-

based multi-locus models identified most of the QTNs, including some with large and 

minor effects accounting for 3.19–5.79% of R2. The QTN numbers varied from 68 with 

FASTmrEMMA to 108 with pLARmEB (Table S4). Only 2–4 QTNs were common between 

GLM and the seven multi-locus models; in contrast, 13–39 QTNs were shared by two of 

seven multi-locus models (Table S5). 
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Figure 3. Circos map of powdery mildew (PM) resistance quantitative trait nucleotides (QTNs) and 

their co-located candidate genes. Track A: 15 chromosomes of the flax genome, B: 1444 resistance 

gene analogues (RGAs), C: 445 RGA candidates with significant SNP allele effects for PM resistance, 

D: 45 RGA candidates containing PM resistance QTNs, E: 9 QTNs identified by GLM, F: 15 QTNs 

identified by FarmCPU, G: 349 unique QTNs identified by the six multi-locus models of the mrMLM 

package and another multi-locus model FarmCPU, H: 68 QTNs identified by FASTmrEMMA, I: 105 

QTNs identified by FASTmrMLM, J: 83 QTNs identified by ISIS_EM_BLASSO, K: 72 QTNs identi-

fied by mrMLM, L: 90 QTNs identified by pKWmEB, M: 108 QTNs identified by 

mrMLM_pLARmEB. The central region links the duplicated RGA candidates for the 349 QTNs iden-

tified. Allele effects of QTNs (R2) are represented by different colours as indicated in the figure leg-

end. QTN clusters are shaded in yellow across the tracks. 

The identified QTNs also differed across individual PM phenotypic datasets (Table 

S6). A total of 45–84 QTNs were identified from the six PM datasets, of which few were 

shared by more than one PM dataset (Table S7). However, when assessing the effects of 

the QTN alleles across PM datasets, most QTNs were found to be stable over years. Of the 

349 unique QTNs, 265 had significant allele effects in at least three of the PM datasets 

(Table S3). A total of 122, 56, 54, 33, 32 and 52 QTNs had significant allele effects in six, 

five, four, three, two and one PM datasets, respectively. QTN effect R2 estimates were 

positively correlated with the number of PM datasets with significant allele effects and 

negatively correlated to the coefficients of variation (CVs) of the QTN effects, indicative 

of the stability of the QTNs (Figure 4). Large-effect QTNs were stable across years, while 

the small-effect QTNs only significant in one PM dataset were least stable (Figure 4, Table 

S3). Of the 122 QTNs stable across all six PM datasets, 44 were of large QTN effects ≥ 10% 

of R2, of which the following 11 had R2 values ≥ 20%: Lu2-1672205 (30.2%), Lu3-581507 

(29.71%), Lu5-11130392 (27.8%), Lu5-12090990 (27.6%), Lu5-15697144 (26.9%), Lu5-

16602027 (25.2%), Lu5-16840013 (22.6%), Lu7-17007593 (21.3%), Lu9-3920670 (20.9%), Lu9-

20701159 (20.9%), Lu11-17188390 (20.7%). 
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Figure 4. Relationship between R2, the coefficients of variation (CV, %) of quantitative trait nucleotide 

(QTN) effects and the number of powdery mildew (PM) datasets that showed significant QTN effects. 

Most large-effect QTNs were clustered on the distal ends of chromosomes, especially 

on chromosome 5 (0.4–5.6 Mb and 9.4–16.9 Mb) and 13 (2.6–4.9 Mb) (Figure 3, Table S3). 

Of the 44 large-effect QTNs with R2 ≥ 10%, 15 were located on chromosome 5 and 5 on 

chromosome 13. 

2.4. Favourable Alleles 

According to the effect direction (positive or negative) of two alleles for a QTN, the 

favourable allele (FA) composition of all identified QTNs existing within each genotype was 

determined. For all 349 unique QTNs, the total number of favourable alleles (NFAs) within 

a genotype ranged from 141 to 305. The NFAs were significantly negatively correlated with 

the PM ratings of the accessions (Figure 5A) (R2 = 0.62). The 75 selected breeding lines that 

were resistant (R) or moderately resistant (MR) were clearly distinguished through NFAs of 

accessions. The NFAs for five groups of genotypes were 262 ± 35, 204 ± 22, 193 ± 15, 180 ± 13 

and 169 ± 12 for R, MR, MS, S and HS, respectively (Figure 5B), confirming the same linear 

correlation between NFAs and PM ratings displayed in Figure 5A. 

Based on the number of favourable alleles in the genotypes of the population, three 

types of QTNs were observed (Figure 6, Table S3): type 1 QTNs with low favourable allele 

frequencies (FAFs) (Figure 6A), type 2 QTNs with high FAFs (Figure 6B), and type 3 QTNs 

with FAFs close to 0.5 (Figure 6C). Of the 447 genotypes in this study, 177 or 37% were R 

or MR; thus, the FAFs of good QTNs were expected to be approximately 0.37. We found 

that the 33 QTNs with R2 > 20% had an average FAF of 0.27 (0.15–0.33), and the 33 QTNs 

with R2 between 10% and 20% had an average FAF of 0.48 (0.19–0.86), compared to the 

remaining QTNs with R2 ≤ 10% that had an average FAF of 0.60 (0.06–0.94). The FAFs of 

most large-effect QTNs (>10%) ranged from 0.1 to 0.6 in all genotypes and 0.5 to 0.9 in 

resistant genotypes (Figure 7). 
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Figure 5. Relationships between the number of favourable alleles and powdery mildew (PM) ratings 

(A) and the PM resistance groups (B). The average number of favourable alleles (�) per resistance 

group is indicated above the graph. A quadratic polynomial regression line is fitted in (A) with a 

confidence interval in grey colour. 

 

Figure 6. Quantitative trait nucleotide (QTN) effects of some large-effect and stable QTNs (R2 > 10%) 

showing QTNs with favourable allele frequencies (FAF) < 0.45 (A), QTNs with FAF > 0.55 (B) and 
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QTNs with FAF ranging from 0.45 to 0.55 (C). The blue triangles indicate the favourable alleles. The 

QTN effects (R2) were calculated based on the PM-Mean dataset and are indicated above each box 

plot along with the actual FAF of the QTNs. 

 

Figure 7. Relationship between the favourable allele frequency (FAF) in all accessions and that in 

the 85 resistant accession subset (R, powdery mildew ratings < 3) based on their QTN effects (R2) as 

colour-coded in the legend. 

2.5. Relationship between PM Resistance and Flax Morphotypes 

Of the 447 accessions used in this study, 367 and 80 belonged to the linseed and fibre 

morphotypes, respectively. Linseed and fibre genotypes had average PM ratings of 4.2 ± 

1.5 and 5.3 ± 1.5, and average NFAs of 208.8 ± 38.1 and 175.7 ± 12.2, respectively (Figure 

8). Significant differences in PM ratings and NFAs between linseed and fibre genotypes 

were observed (Wilcox test, p = 2.487×10-8 for PM rating and p < 2.2×10-16 for NFAs). The 

10% most resistant accessions were all linseed types, while the 10% most susceptible in-

cluded 18 fibre accessions (~38%) even though fibre accessions made up only 17.9% of the 

overall collection. Overall, a higher proportion of fibre accessions than expected based on 

their representation in the collection were susceptible, and this was congruent with the 

proportionally lower NFAs. 

 

Figure 8. Relationships between flax morphotypes and powdery mildew (PM) ratings (A), and be-

tween flax morphotypes and the number of favourable alleles (B). 
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2.6. Candidate Genes 

Of the 349 unique QTNs, 93 were located within genes (Table S3), of which 6 were 

RGAs: Lus10002249 on Lu8, Lus10015649 on Lu14, Lus10003971 on Lu7, Lus10006772 

(RLK) on Lu12, and Lus10030587 and Lus10033608 (RLK) on Lu12. Lus10002249 and 

Lus10015649 are Toll/interleukin-1 receptor (TIR)-nucleotide-binding site (NBS)-leucine-

rich repeats (LRR) (TNL) genes, and Lus10003971 is a transmembrane (TM) coiled-coil 

(CC) (TM-CC) gene, while the remaining three encode receptor-like protein kinase (RLK). 

To further identify candidate genes for PM resistance, a subset of 3,230 SNPs located on 

838 flax RGAs were extracted from the overall SNP dataset and GWAS analysis was per-

formed with the same models as mentioned above. Significant QTNs were identified from 42 

RGAs, including Lus10030587, Lus10003971, and Lus10002249 that had already been detected 

with the 247,160 genome-wide SNP dataset. Combining the results from both datasets, a total 

of 388 QTNs were obtained, including 132 QTNs identified on 45 RGAs (Table 2) and 87 non-

RGA genes (Table S8). 

Of these 388 QTNs, 269 harboured 445 RGAs within 200 Kb regions of the QTNs (Table 

S8, Figure S2), encompassing 13 gene families: dirigent protein (DIR), disease resistance-zinc 

finger-chromosome condensation (DZC), extreme-drug-resistant (EDR), mildew resistance lo-

cus o (MLO), RLK, receptor-like protein (RLP), resistance to powdery mildew 8 (RPW8), TM-

CC, TIR, nucleotide-binding site–leucine-rich repeats (NL), coiled-coil–nucleotide-binding 

site–leucine-rich repeats (CNL), TNL and WRKY (Table S8). Of these 445 candidate RGAs, 45 

had QTNs identified within them, and 270 RGAs were supported by at least one SNP on each 

gene, which had significant SNP allele effects (Table S8, Figure S3). Candidate genes for large-

effect QTNs were mostly TNL, CNL, WRKY, RLP and RLK genes (Table 3). For the 269 QTN 

regions harbouring RGAs, the average minimum distance between a QTN and a predicted 

candidate RGA was 32,346 bp with a range of 0–99,046 bp. 

A total of 16 candidate RGA clusters that contained at least 3 candidate genes were 

observed on 11 of the 15 flax chromosomes (2, 3, 5, 7–10, 12–15) (Figure S2). The largest 

candidate gene cluster was associated with QTN Lu8-18351964 (R2 = 11.49%) located on 

Chr 8. It contained 15 tandemly duplicated TNL genes within a 126.5 Kb region 

(18,254,394–18,380,935 bp). The QTN Lu8-18351964 was identified within gene 

Lus10007812, while the remaining 14 genes had at least one SNP per gene with a signifi-

cant allele effect on PM resistance. Another important gene cluster was associated with 

QTNs Lu5-1534998 (R2 = 27.83%) and Lu5-1535619 (R2 = 32.06%) and spanned a genomic 

region of 123.5 Kb (1,449,598–1,573,096 bp) containing four TNL genes: Lus10004726, 

Lus10004727, Lus10004719 and Lus10004747. The QTN Lu5-1535619 was identified within 

the coding region of Lus10004726, but the other three genes also had SNPs with significant 

allele effects on PM resistance (Table S8). 

Table 2. Quantitative trait nucleotides (QTNs) identified on 45 resistance gene analogues (RGAs) 

for flax powdery mildew (PM) resistance. 

Gene Chr Gene Start 

Position 

Gene End 

Position 

Gene Family Tag QTN-Position SNP FA FAF CV of QTN 

Effects 

Effect R2 

Lus10006056 1 28681727 28684082 RLK Lu1-28683876 A/G A 0.39 27.12 −0.41 4.44 

Lus10030587 2 23955411 23958647 RLK Lu2-23956609 A/C A 0.22 38.27 −0.35 5.68 

Lus10040576 3 5746000 5750240 TNL Lu3-5748445 G/A A 0.78 208.73 0.18 1.19 

Lus10036891 4 12429035 12433792 WRKY Lu4-12432479 G/T G 0.37 28.39 −0.70 11.51 

Lus10041860 4 16212942 16215322 RLK Lu4-16213043 A/G A 0.18 27.34 −0.62 3.4 

Lus10004727 5 1534218 1535440 TNL Lu5-1534998 A/G A 0.28 31.31 −1.33 27.83 

Lus10004726 5 1535502 1538672 TNL Lu5-1535619 C/T C 0.26 27.43 −1.54 32.6 

Lus10004719 5 1568734 1573096 TNL Lu5-1569098 G/T G 0.31 33.14 −1.06 27.63 

Lus10032303 5 3005188 3006765 WRKY Lu5-3006723 T/C T 0.45 22.08 −0.68 24.08 

Lus10032310 5 3052566 3053123 DIR Lu5-3052714 T/G G 0.84 72.85 0.64 3.12 

Lus10032351 5 3223137 3225286 RLK Lu5-3224350 A/G A 0.39 39.99 −0.64 10.62 

Lus10034795 5 4643996 4646254 RLK Lu5-4646212 C/T C 0.49 51.12 −0.49 9.31 
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Lus10029860 5 13270430 13273781 TNL Lu5-13271207 A/G A 0.22 28.62 −1.76 34.99 

Lus10017649 6 1878670 1885283 RLK Lu6-1883039 A/G A 0.05 36.53 −0.55 11.79 

Lus10021001 6 15376945 15378903 RLP Lu6-15378264 G/A A 0.78 104.21 0.23 0.8 

Lus10025216 6 16664523 16666663 WRKY Lu6-16666521 C/T T 0.58 52.26 0.12 1.13 

Lus10023199 7 17357355 17360952 TM-CC Lu7-17359522 G/A G 0.44 61.38 −0.15 0.73 

Lus10003971 7 17657006 17660870 TM-CC Lu7-17659649 A/G G 0.91 26.37 1.12 4.85 

Lus10021849 8 7386368 7423024 RLK Lu8-7394085 A/G G 0.78 39.93 0.38 3.65 

Lus10022265 8 15999079 16001545 RLK Lu8-15999956 A/G G 0.87 27.70 0.47 1.36 

Lus10007812 8 18350700 18354799 TNL Lu8-18351964 C/T T 0.65 44.47 0.73 11.49 

Lus10002249 8 19037487 19042009 TNL Lu8-19040276 G/A G 0.19 28.07 −1.3 15.67 

Lus10010221 9 911825 917007 TNL Lu9-916748 T/G G 0.96 62.09 0.98 1.71 

Lus10031043 9 6265980 6269593 RLK Lu9-6266682 T/C C 0.74 131.11 0.23 1.47 

Lus10006772 12 719787 720446 RLK Lu12-720013 A/G G 0.80 61.75 0.5 2.61 

Lus10006732 12 890823 894178 TNL Lu12-892762 C/G C 0.11 48.07 −0.47 1.46 

Lus10023323 12 1893862 1897997 RLK Lu12-1896717 A/T A 0.15 25.63 −0.48 1.66 

Lus10018289 12 5110353 5112941 TM-CC Lu12-5111993 G/C G 0.44 33.29 −0.25 2.03 

Lus10027903 12 16614431 16619009 RLP Lu12-16614785 A/G G 0.53 53.26 0.27 20.28 

Lus10033608 12 19122119 19129113 RLK Lu12-19127670 G/A A 0.77 93.09 0.34 2.78 

Lus10001336 13 1747160 1750173 MLO Lu13-1749576 G/A G 0.14 41.08 −0.44 1.23 

Lus10019708 13 4520377 4539065 TNL Lu13-4531367 T/C T 0.39 29.66 −0.73 14.08 

Lus10009364 13 5141681 5142476 RLK Lu13-5142458 C/T C 0.18 61.62 −0.62 8.14 

Lus10030845 13 18211794 18215062 RLK Lu13-18212664 T/G G 0.92 52.02 0.88 4.89 

Lus10028639 14 1171345 1174215 CNL Lu14-1171479 C/T C 0.53 36.69 −0.49 10.89 

Lus10020534 14 3457175 3462957 TNL Lu14-3458382 C/G C 0.54 23.50 −0.40 7.47 

Lus10021448 14 4018836 4024903 TM-CC Lu14-4021471 A/T T 0.94 78.62 0.75 3.75 

Lus10014150 14 5375403 5382647 RLK Lu14-5382091 A/G G 0.92 91.22 0.58 8.75 

Lus10015648 14 5955689 5959658 TNL Lu14-5959395 G/C C 0.88 58.54 0.81 6.82 

Lus10015649 14 5960004 5963280 TNL Lu14-5960489 G/A A 0.74 56.87 0.47 5.75 

Lus10008320 14 10547787 10552007 TNL Lu14-10551333 T/C C 0.80 45.78 0.75 5.78 

Lus10035674 14 15357234 15366290 TNL Lu14-15360622 T/C C 0.53 38.40 0.25 3.03 

Lus10039211 14 17203248 17203932 TNL Lu14-17203266 G/A G 0.24 42.02 −1.05 14.04 

Lus10007610 15 47907 50779 RLK Lu15-50397 G/A G 0.45 35.62 −0.52 15.63 

Lus10012678 15 3990588 4001681 WRKY Lu15-3991048 T/G G 0.87 63.36 0.75 18.51 

Chr: chromosome; FA: favourable allele; FAF: favourable allele frequency; CV: coefficient of varia-

tion; RLK: receptor-like protein kinase; RLP: receptor-like protein; TM-CC: transmembrane coiled-

coil protein; NBS: nucleotide-binding site domain; LRR: leucine-rich repeat; TIR: Toll/interleukin-1 

receptor-like domain; CNL: CC–NBS–LRR; TNL: TIR-NBS-LRRs; TN: TIR–NBS; TX: TIR–unknown; 

MLO: mildew resistance locus o. 

Table 3. Counts of candidate resistance-related genes based on gene families and R2 of QTNs. Only 

candidate genes with SNPs of significant allele effects on powdery mildew (PM) ratings are included. 

Candidate Gene 

Family 

R2 of QTNs (%) Total 

<1 1–5 5–10 10–20 >20  

DIR 1 4 (1)  1  6 (1) 

DZC   1   1 

EDR  1    1 

MLO  5 (1) 1   6 (1) 

RLK 26 65 (9) 32 (4) 13 (3) 2 138 (16) 

RLP 4 8 (1) 6 2 2 (1) 22 (2) 

TM-CC 4 18 (4) 3 2  27 (4) 

WRKY 2 8 (1) 4 3 (2) 1 (1) 18 (4) 

CNL 2 3  4 (1) 1 10 (1) 

TNL 10 (1) 25 (5) 15 (2) 7 (4) 7 (4) 64 (16) 

TIR  1    1 

Total 49 138 (21) 62 (7) 32 (10) 13 (6) 294 (45) 

The numbers in parentheses are the number of candidate genes within which QTNs were identified. 

RLK: receptor-like protein kinase; RLP: receptor-like protein; TM-CC: transmembrane coiled-coil 
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protein; NBS: nucleotide-binding site domain; LRR: leucine-rich repeat; TIR: Toll/interleukin-1 re-

ceptor-like domain; CNL: CC–NBS–LRR; TNL: TIR-NBS-LRR; TN: TIR–NBS; TX: TIR–unknown; 

MLO: mildew resistance locus o; EDR: extreme-drug-resistant; DZC: disease resistance, zinc finger, 

chromosome condensation; DIR: dirigent protein. 

With the exception of Lus10040576, Lus10021001, and Lus10031043, the remaining 

42/45 candidate RGA genes that co-located with QTNs were considered highly stable over 

years with CV < 100% (Table 2). These 45 RGAs belonged to the following gene families: 

TNL (16), RLK (16), WRKY (4), TM-CC (4), RLP (2), CNL (1), DIR (1), and MLO (1). Among 

those with the highest R2 (>20%) (Figure S2), Lus10004727, Lus10004726 and Lus10004719 

represent tandemly duplicated TNL genes (R2 = 24–28%); Lus10029860 is another TNL 

gene (R2 = 35%); and Lus10032303 encodes a WRKY gene (R2 = 24%). All five genes were 

located on chromosome 5 (1.5–13.3 Mb). The large-effect candidate RGA Lus10027903 on 

chromosome 12 encodes an RLP gene (R2 = 20%). 

A notable exception is the 108.6 Kb genomic region of chromosome 13 (Figure 9), 

which harboured three tandem duplicate RPW8 orthologous genes (Lus10000835, 

Lus10000836 and Lus10009328). Indeed, we identified four major QTNs at this locus, Lu13-

4791823 (R2 = 13.79%), Lu13-4830850 (R2 = 7.17%), Lu13-4866704 (R2 = 12.24%), and Lu13-

4900476 (R2 = 10.9%), but no SNPs were found within the three RPW8 orthologous genes, 

probably due to genome sequencing resulting in the low read coverage in the region. An 

alternative reason could be that the reads did not precisely map to the three orthologues 

and that the SNPs were not called because they did not pass the filtering criteria. 

 

Figure 9. RPW8 genes are potential candidates for four quantitative trait nucleotides (QTNs): Lu13-

4791823 (R2 = 13.79%), Lu13-4830850 (R2 = 7.17%), Lu13-4866704 (R2 = 12.24%), and Lu13-4900476 (R2 

= 10.9%) on chromosome 13. 

From the candidate RGA genes, 77 gene pairs were duplicated between or within chro-

mosomes due to whole-genome duplication (Table S9). Duplicated genes involved 131 

QTNs on all 15 chromosomes (Figure 3, Table S9). Out of 44 large-effect QTNs (R2 > 10%), 

10 (Lu3-1644588, Lu4-11526385, Lu5-1552921, Lu5-1763832, Lu5-15697144, Lu7-17007593, 

Lu9-4948236, Lu10-11682031, Lu10-11695343, Lu15-46304) involved 13 pairs of duplicated 

genes, including 1 pair each of TNL genes, CNL genes, MLO genes, TM-CC genes and 

WRKY genes as well as 8 pairs of RLK genes (Figure 3, Table S9). Some QTNs harboured 

two or more candidate genes, and thus involved more than one pair of duplicated genes. 

2.7. Genomic Prediction for PM Resistance 

To evaluate the overall reliability of the identified QTNs, ten GS models were com-

pared using the 349 unique QTNs and a five-fold cross-validation scheme was used to 

identify the best models for genomic prediction of PM resistance. All models performed 

similarly, except for RKHS and RFR (Figure S4). GBLUP, BRR and SVR generated the 

highest predictive ability of 0.93. Thus, GBLUP was used for the remaining comparisons. 

 Five marker sets were used to construct the GBLUP GS models: (1) 349 QTNs iden-

tified from the genome-wide dataset of 247,160 SNPs, (2) 388 QTNs obtained using the 

genome-wide and the RGA-derived SNP datasets, (3) 132 QTNs located within genes, in-

cluding 45 RGAs and 87 non-RGA genes, (4) 294 QTNs or SNPs located on 294 candidate 
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RGAs with significant allele effects, and (5) the genome-wide dataset of 247,160 SNPs. The 

349 QTN and the 388 QTN datasets explained the highest genetic variation for PM re-

sistance (h2 = 0.69–0.70) and generated the highest predictive ability (r = 0.925–0.926) (Table 

4). The predictive ability obtained from the other datasets was significantly lower and the 

lowest was obtained from the genome-wide dataset of 247,160 SNPs (r = 0.690). 

Table 4. Genomic heritability (h2) and genomic predictive ability (r) of five datasets for powdery 

mildew (PM) resistance. Predictive ability was estimated based on the PM-Mean dataset and the 

GBLUP model. 

Marker Set h2 r 

349 QTNs (identified from 247,160 SNPs) 0.691 ± 0.040 0.925 ± 0.014 a 

388 QTNs (identified from both 247,160 SNPs and 3230 

RGA-derived SNPs) 
0.698 ± 0.041 0.926 ± 0.013 a 

132 QTNs located within genes (RGAs and non-RGAs) 0.481 ± 0.048 0.850 ± 0.024 b 

279 QTNs/SNPs located within candidate RGAs 0.587 ± 0.050 0.822 ± 0.031 c 

247,160 SNPs 0.600 ± 0.070 0.690 ± 0.049 d 

Letters on the right of the predictive ability (r) represent statistical significance at a 5% probability 

level using the Tukey HSD test. 

The prediction model constructed using all 447 accessions as a training population, 

the PM ratings over five years, and all 349 QTNs with GBLUP explained 96% of PM vari-

ation (R2 = 0.96), showing high predictive ability and the potential of this model in applied 

genomic prediction (Figure S5). 

3. Discussion 

Genetic studies of PM resistance in flax are few in number, limiting our understand-

ing of the genetic architecture of this trait to a few major genes. Indeed, using traditional 

genetic analyses, the single dominant gene Pm1 that confers resistance to PM was identi-

fied in several Canadian (‘AC Watson’, ‘AC McDuff’, and ‘AC Emerson’) and introduced 

(‘Atalante’ and ‘Linda’) cultivars, and two putative dominant genes were additionally 

postulated in ‘Linda’ [32]. In agreement with the latter, a QTL mapping study using bipa-

rental F3 and F4 populations derived from a cross between the susceptible cultivar Nor-

Man and the resistant cultivar Linda identified three PM resistance QTL [27]. Here, we 

exploited a large genetic panel that included 372 accessions from the diverse flax core 

collection [33,34] from which we defined a high density genome-wide dataset of 247,160 

SNPs and an RGA-specific subset of 3,230 SNPs, with the view of gaining greater insights 

into the genetic architecture of PM resistance in flax in order to design breeding methods 

for its improvement. Because the core collection contained few highly resistant lines, we 

augmented the germplasm with 75 selected breeding lines previously phenotyped and 

deemed highly resistant to PM. This significantly enhanced the detection power and the 

reliability of the identified QTNs through an increase in population size and the genetic 

variation of the PM ratings. We also used two single- and seven multi-locus statistical 

models to identify both large- and small-effect QTNs, resulting in a total of 349 unique 

QTNs from the genome-wide SNP dataset (Table S3). This has proven to be a good strat-

egy to take advantage of the strength of each model as well as to palliate their shortcom-

ings [35,36]. Post-identification QTN analysis (Figure S4) also contributed to the reliability 

of the QTNs by removing potentially redundant and false-positive QTNs. Overall, the 

methodology used herein constitutes a powerful strategy, combining different tools and 

methods to identify the most reliable QTN–trait association. 

Three PM-resistant QTL located on LG1 (QPM-crc-LG1), 7 (QPM-crc-LG7), and 9 

(QPM-crc-LG9) were identified using biparental F3 and F4 families derived from a cross 

between NorMan (PM-susceptible) and Linda (PM-resistant) [27]. The SSR markers defin-

ing these three QTL correspond to three genomic regions of 16,920,407–18,739,647 bp on 
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Chr 1, 3,817,603–3,817,863 bp on Chr 7, and 357,191–357,510 bp on Chr 9 [37]. The genomic 

region of QPM-crc-LG1 spanned two QTNs identified in this study, Lu1-18139539 and Lu1-

18452203, of which Lu1-18139539 was detected within a gene Lus10009706 (coordinated 

from 18,138,555 to 18,140,489 bp on Chr 1), encoding a tetratricopeptide repeat (TPR)-like 

superfamily protein. However, no QTNs identified here overlapped with QPM-crc-LG7 

and QPM-crc-LG9. Because the Pm1 gene [32] was identified using phenotypic data only, 

we were not able to map this gene to a chromosome. 

Current GWAS methods are limited to predicting genes or genetic features control-

ling traits. This may mostly depend on the density of genome-wide markers, the size of a 

genetic panel, the association of QTN with the trait or the extent of the QTN effect, and so 

on. To date, the main method for predicting candidate genes from QTNs identified by 

GWAS remains to scan the annotated genes in their vicinity. An optimal window size may 

be determined based on linkage disequilibrium decay [38,39]. In this study, we adopted a 

window of 200 Kb flanking a QTN [35,40]. To provide further support to the candidate 

RGAs as it relates to their function in disease resistance, we first narrowed the candidate 

genes to the flax RGAs identified from its annotated reference genome sequence 

[37,41,42]. Second, we reduced the set to the candidate RGAs located within the specified 

window size of 200 Kb and that had at least one SNP with significant allele effects on PM 

ratings within the RGAs. That is, even though no QTN was identified from a candidate 

gene, the SNP(s) on a candidate gene must have been significantly related to PM rating to 

be considered. Third, we performed GWAS using the 3,230 SNPs exclusively located 

within flax RGAs in order to identify QTNs associated with PM resistance that were spe-

cifically located within RGAs. In this way, we identified 45 RGAs that possessed intra-

genic QTNs and an additional 270 RGAs supported by SNPs within these genes, all with 

significant allele effects. 

QTL mapping provides a useful statistical genetics tool to identify QTNs and candi-

date genes associated with PM resistance. Molecular markers can be designed from some 

large-effect QTNs for MAS. Alternatively, or in addition to, all QTN markers can be used 

to establish GP models for predicting GEBVs of germplasm or breeding lines. In this 

study, we counted favourable alleles of all QTNs (ignoring QTN effects) in each accession 

of the genetic panel and we observed a significant correlation between the number of fa-

vourable alleles and PM ratings (R2 = 0.62, Figure 5A). PM-resistant accessions had signif-

icantly more favourable alleles than PM-susceptible accessions (Figure 5B), clearly indi-

cating the significant additive feature of the identified QTNs. Consequently, the pyramid-

ing of favourable alleles through cross prediction [43], hybridization and recombination, 

as well as GS is expected to translate into cultivars with improved resistance to PM. The 

75 selected breeding lines with high PM resistance and a high number of favourable alleles 

demonstrate the potential of this approach. Genomic cross prediction is an advanced ge-

nomic tool that integrates computer simulation and GS to predict the genetic performance 

of different types of crosses by evaluating the expected breeding values and genetic vari-

ances of their segregating populations for the purpose of selecting superior crosses and 

consequently enhancing the potential for success [43]. GS has been evaluated via a cross-

validation approach for agronomic, abiotic and biotic stress-related traits, including 

pasmo resistance in flax [36,44,45]. For example, the predictive ability of pasmo resistance 

in flax was 0.92 when 500 QTL were used for prediction [44], similar to our results of 0.925 

obtained using 349 QTNs for PM resistance. Therefore, these QTNs offer the potential for 

PM resistance breeding using genomics-assisted breeding methods. 

The potential candidate genes can be further validated using functional approaches. 

Once functionally validated, they can be genetically edited to improve cultivar PM re-

sistance. For example, MLO is a resistance gene that confers PM resistance in many crops, 

such as grapevine [46], wheat [47], and barley [48]. Several technologies such as genome 

editing and targeting induced lesions in genomes (TILLING) have been used to create 

MLO mutants with enhanced PM resistance in bread wheat [47,49]. Nekrasov et al. (2017) 
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[50] reported a non-transgenic tomato variety resistant to PM (Oidium neolycopersici) pro-

duced through editing the MLO gene (SlMlo1) using the CRISPR/Cas9 technology, which 

is based on the Cas9 DNA nuclease guided to a specific DNA target by a single guide-

RNA (sgRNA). PMR4 encodes a callose synthase, and its loss-of-function mutants are re-

sistant to PM in Arabidopsis and tomato. The CRISPR/Cas9-mediated knockout mutants of 

the PMR4 ortholog (SlPMR4) in tomato showed partial resistance against the PM patho-

gen O. neolycopersici [51]. RNA silencing of SlPMR4 also enhanced the resistance to PM in 

tomatoes [52]. In this study, we detected six MLO gene orthologues (Lus10036120, 

Lus10036121, Lus10023506, Lus10015461, Lus10012698, and Lus10001336) that had signifi-

cant SNP effects with R2 of 1–10%. QTN Lu13-1749576 (R2 = 1.23%) was identified from the 

gene region of the MLO ortholog Lus10001336. These MLO and other identified candidate 

genes could be candidates for genome editing to improve PM resistance. 

The RPW8 domain was found in several broad-spectrum powdery mildew resistance 

proteins from Arabidopsis thaliana and other dicots [53,54]. The A. thaliana locus RPW8 con-

tains two naturally polymorphic, dominant R genes, RPW8.1 and RPW8.2, which individ-

ually control resistance to a broad range of powdery mildew pathogens [53]. Therefore, 

the three RPW8 genes identified on chromosome 13 are potentially important candidate 

genes. An additional PM resistance study based on a fibre flax recombinant inbred line 

(RIL) population derived from the Aurore/Adelie cross also showed that several RPW8 

genes may explain the PM resistance difference between the two parents [55]. 

It is worth noting that some paired candidate duplicate genes co-located with some 

paired QTNs (Table S9). For instance, in Figure 9, three RPW8 genes (Lus10000835, 

Lus10000836 and Lus10009328) are paired duplicate genes with sequence similarity of 0.67–

0.69 (Table S9). Correspondingly, four QTNs Lu13-4791823, Lu13-4830850, Lu13-4866704, 

and Lu13-4900476 are paired QTNs. This finding is worthy of further investigations to test 

whether these duplicated genes and QTNs contribute additively to PM resistance in flax. 

We observed that in the combined population of 372 accessions from the core collec-

tion and 75 breeding lines, linseed accessions tended to be more resistant to PM than fibre 

accessions. The same result was also observed in the flax core collection alone [56]. This 

result is somewhat surprising because fibre flax is grown in coastal, humid environments 

that are conducive to the development of the disease and resistance to PM has long been 

a major objective of fibre flax breeding programs considering that PM has the potential to 

considerably reduce fibre quality. Therefore, crosses with resistant linseed varieties can 

be used to introduce new allelic diversity for PM resistance in fibre flax breeding pro-

grams and genomic selection can be used to assist in selecting the most resistant lines 

while preserving the fibre morphotype. 

4. Materials and Methods 

4.1. Genetic Population 

A diverse genetic panel of 372 accessions from the previously described flax core col-

lection [33,34] was used. The core collection was assembled from the world collection of 

3,378 flax accessions, collected from 39 countries and corresponding to 11 regions of the 

world: North America, South America, Eastern Asia, Western Asia, Southern Asia, Cen-

tral and Eastern Europe, Western Europe, Southern Europe, Northern Europe, Oceania, 

and Africa. This panel contained 17 landraces, 84 breeding lines, 234 cultivars, and 37 ac-

cessions of unknown improvement status that were grouped into two morphotypes: 80 

fibre and 292 linseed accessions [56]. 

The core collection [56] contained few highly resistant accessions. To empower the 

GWAS and GP analyses, an additional 75 resistant breeding lines were added to the core 

collection. 

  



Int. J. Mol. Sci. 2022, 23, 4960 16 of 22 
 

 

4.2. Phenotyping of Powdery Mildew Resistance and Statistical Analysis 

The 372 accessions were evaluated for reaction to PM at Agriculture and Agri-Food 

Canada, Morden Research and Development Centre’s farm, Morden, Manitoba, Canada 

from 2012 to 2016. The experimental design was a randomized, complete block design 

with two replications. Each entry was seeded in 3 m rows spaced 30 cm apart during the 

2nd or 3rd week of May every year. Inoculated susceptible plants were transplanted from 

the growth room into the field at the early flowering stage to serve as inoculum and ensure 

early disease infection and development in the field. One pot containing ten heavily in-

fected plants was transplanted every ten rows. Disease ratings (PM severity) on leaves 

and stems were evaluated as the percentage of the leaf and stem areas covered by myce-

lium using the following 0 to 9 scale: 0 (HR) = no sign of PM—most vigorous plants, 1 

(HR) = <10%, 2 (R) = 11–20%, 3 (MR) = 21–30%, 4 (MS) = 31–40%, 5 (S) = 41–50%, 6 (S) = 51–

60%, 7 (S) = 61–70%, 8 (HS) = 71–80%, and 9 (HS) ≥ 80% [32]. This rating was converted 

into five resistance groups: (1) resistant (including highly resistant HR and resistant R, 

rating 1–2.9); (2) moderately resistant (MR, rating 3.0–3.9); (3) moderately susceptible (MS, 

rating 4.0–4.9); (4) susceptible (S, rating 5.0–6.9); and (5) highly susceptible (HS, rating 7.0–

9.0). Field assessments were conducted at the early (PM1, 26 July) and late flowering 

stages (PM2, 7–10 days after PM1, around August 2), the green boll stage (PM3, 7–10 days 

after PM2, around 10 August), and the early brown boll stage (PM4, 7–10 days after PM3, 

around 20 August). In 2012 and 2013, the observations from all four stages (PM1–PM4) 

were collected. Due to weather and other factors, only the data from PM1 and PM2 were 

available in subsequent years. 

The 75 selected breeding lines were field-evaluated using the same procedure as the flax 

core collection, but this was accomplished during eight consecutive years (2010–2017). As both 

populations were assessed in the same PM nursery using the same procedure, the two datasets 

of the five common years (2012–2016) were combined for downstream analyses. 

4.3. Genotyping and SNP Identification 

Whole-genome resequencing methodology was employed to genotype all individu-

als of the core collection. The lines were grown in growth chambers with 20 h light at 22° 

and 4 h dark at 18° until they were approximately 7–8 cm tall. The compact tip of the 

plants (75–100 mg) was collected, flash-frozen in liquid nitrogen, and immediately lyoph-

ilized. Genomic DNA was extracted using the DNeasy 96 Plant kit (Qiagen, Mississauga, 

ON, Canada) and quantified using the Quant-iT PicoGreen dsDNA assay kit (Thermo 

Fisher Scientific, Waltham, MA, USA), both according to the manufacturer’s instructions. 

The Illumina HiSeq 2000 platform (Illumina Inc., San Diego, CA, USA) was used to gen-

erate 100 bp paired-end reads with ~15.5X genome coverage equivalents of the reference 

genome. All reads from each individual of the population were aligned to the scaffold 

sequences of the flax reference genome [57] using BWA v0.6.1 [58] with base-quality Q 

score in Phred scale >20 and other default parameters. The alignment file for each individ-

ual was used as input for SNP discovery using the software package SAMtools v1.12 [59]. 

All variants were further filtered to obtain a set of high-quality SNPs as previously de-

scribed [60]. The SNP coordinates were then converted to the chromosome scale of the 

flax pseudomolecules v2.0 upon its release [42]. All procedures were implemented in the 

AGSNP pipeline [61,62] and its updated GBS version [60]. The detected SNPs were further 

filtered with minor allele frequency (MAF) > 0.05 and SNP call rate ≥ 60%. To minimize 

the contribution from regions of extensive strong linkage disequilibrium (LD), a single 

SNP was retained per 200 Kb window when pairwise correlation coefficients (r2) among 

neighbouring SNPs were greater than 0.8 [63,64], resulting in a total of 258,873 SNPs. Miss-

ing SNPs (on average, 14.13% of a missing data rate) were imputed using Beagle v.4.2 

with default parameters [65]. 
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A similar approach was used for the genotyping of the 75 selected breeding lines. 

Shotgun PCR-free library preparation (Lucigen, Middleton, WI, USA), library quality con-

trol (Illumina, San Diego, CA, USA) and sequencing were performed by the Centre d’ex-

pertise et de services Génome Québec (Montréal, QC, Canada). Twenty-one samples were 

indexed per lane, and sequencing on the HiSeqX platform (Illumina) generated 150 bp 

paired-end reads to an estimated average of 15X genome coverage per genotype. The 

same procedure was used to identify SNPs from the 75 selected breeding lines. The iden-

tified SNPs were combined with the SNP set from the core collection, resulting in a com-

mon set of 247,160 SNPs that was used in all downstream analyses. 

4.4. Genome-Wide Association Studies (GWAS) 

GWAS analyses were conducted separately for the five individual year datasets and 

the 5-year average dataset with the single-locus models GLM [66] and MLM [67] and the 

following seven multi-locus models: FarmCPU [68], pLARmEB [69], pKWmEB [70], 

FASTmrMLM [71], FASTmrEMMA [72], ISIS EM-BLASSO [73] and mrMLM [71]. The R 

package rMVP v1.0.4 [68] was used to run the GLM, MLM and FarmCPU models, while 

the R package mrMLM v5.0.1 [74] was used to run the remaining six multi-locus models. 

The kinship matrix used for each model was calculated using the module implemented in 

the corresponding software. The population structure of the 447 accessions was estimated 

using principal component analysis (PCA) and the first ten principal components (PCs) 

as cofactors in the models. 

The threshold of significant associations for GLM, MLM and FarmCPU was deter-

mined by a critical p value (α = 0.05) subjected to Bonferroni correction, i.e., the corrected 

p-value = 2.02 × 10−7 (0.05/247,160 SNPs). A log of odds (LOD) score of 3.0 was used to 

detect significant associations for the six models implemented in the mrMLM package. 

The putative QTNs identified were first analysed by testing the statistical significance 

of QTN alleles for PM resistance. Statistically significant differences between alleles pro-

vided validity to the QTNs. Wilcox non-parametric tests were performed using the R func-

tion wilcox.test to remove the non-significant QTNs at a 5% probability level. The direction 

(positive or negative) of QTN effects was subsequently determined. Only QTNs with con-

sistent effect directions in all datasets were considered valid and were retained. Such 

QTNs were grouped into QTL by calculating haplotype blocks using plink v1.9 [75]. QTNs 

located in the same haplotype block were grouped into QTL. For each such defined QTL, 

the QTN with the largest average R2 over all datasets was chosen as the tag QTN repre-

sentative of the QTL. R2 values were calculated based on simple regressions of QTNs on 

PM ratings, representing the proportion of the total variation for PM resistance explained 

by the QTNs/QTL. 

To analyse the stability of the QTNs, we used the coefficient of variation (CV) of the 

allele effect values across the six PM datasets (five individual years and mean over years) 

for each QTN. Favourable alleles were determined based on the difference in PM rating 

of individuals with either of the two alleles at a given QTN. Stable QTNs have the same 

favourable allele in all PM datasets. QTNs with inconsistent effect values were considered 

unreliable and were removed. QTNs were declared highly stable if the effect differences 

across datasets were significant. Thus, for a significant QTN, its effect difference must be 

significant in at least one PM dataset. CV for effect values over datasets can be used to 

measure the stability of QTNs. The second criterion was R2 (%), i.e., the variance propor-

tion of the phenotypic variation explained by the QTN. Thus, for each QTN, CV and R2 

were used to describe its stability and the extent of its effect. A stable QTN is defined here 

as having R2 > 10% and CV < 100%. 

To test QTN effect additivity, the number of QTNs with negative effect or favourable 

alleles (NFA) in all accessions was tallied. A simple regression of NFA on PM in the pop-

ulation was calculated. Correlations between the NFA and PM rating in the six datasets 

were calculated using the R function “cor”. A complete description of the post-identifica-

tion QTN analysis pipeline is depicted in Figure S6. 
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4.5. Candidate Gene Prediction 

A total of 1327 RGAs were identified using the RGAugury pipeline in the flax pseu-

domolecule [41,42]. An additional 117 disease-resistance-related genes were detected in 

the flax genome based on a homology search against the annotated Arabidopsis genes. 

Thus, a total of 1444 RGAs of known annotated functions to disease resistance were used 

for candidate gene prediction. To predict candidate resistance genes co-localized with 

QTNs, the RGAs located within 200 Kb of a QTN, i.e., 100 Kb on either side of the QTN, 

were investigated. In addition, GWAS were also performed using the models previously 

mentioned and the 3230 SNP subset present within 838 of the 1444 RGAs and that segre-

gated in the germplasm under study. 

4.6. Genomic Prediction (GP) 

To gain an understanding of the best method for GP for PM resistance in flax, we 

evaluated the predictive ability of several marker sets: (1) all 247,160 SNPs, (2) QTNs iden-

tified by GWAS using all 247,160 SNPs, (3) QTNs within RGAs, (4) QTNs identified by 

GWAS using the 3,230 SNPs located within RGAs, and (5) QTNs identified from all 

247,160 SNPs and the 3,230 SNPs located within RGAs. The following ten GP models were 

compared to find the optimal prediction models for PM resistance prediction: rrBLUP 

[76], GBLUP [77], RFR, BRR, BL, SVR [78], RKHS [76], BayesA, BayesB, and BayesC [25]. 

Five-fold cross-validation with 50 iterations was used to estimate the predictive abil-

ity of the models for the 372 accessions in the core collection and 75 selected breeding 

lines. The predictive ability (r) was calculated as the Pearson’s correlation coefficient be-

tween the mean genomic estimated breeding values (GEBVs) and the observed pheno-

types. A custom genomic selection pipeline (GSPipeline v1.0) integrating the ten genomic 

prediction models implemented in the R packages rrBLUP v4.6.1 [76], BGLR v1.0.9 [79], 

BLR v1.6 [80], randomForest v4.7-1 [81] and sommer v4.1.6 [82] was used for GP model 

construction and cross-validation. Tukey’s multiple pairwise comparisons (HSD.test 

function) were performed to test the statistical significance of the predictive ability. 

5. Conclusions 

This study reaffirmed the quantitative nature of PM resistance in flax. The flax core 

collection is a valuable genetic panel that contains a broad range of genetic variation from 

diverse geographical origins and different improvement status, and has demonstrated, 

herein, that it also possesses considerable genetic variation for PM resistance. However, few 

accessions were highly resistant and its complementation with 75 highly resistant breeding 

lines was beneficial to our study. This large genetic panel with its high-density genome-

wide SNPs combined with multiple single- and multi-locus GWAS models proved power-

ful to identify large- and minor-effect QTL, resulting in the identification of 349 QTNs and 

445 candidate RGAs associated with PM resistance in flax. GWAS using the small RGA-

derived SNP set further refined the candidate gene set down to 45 RGAs, which harboured 

QTNs within their coding sequences. Other candidate RGAs near QTNs were also sup-

ported by at least one significant SNP within their coding sequence. Significant additive 

features of the identified QTNs facilitate the application of these QTNs in marker-assisted 

and genomic selection, and a high predictive ability is expected for PM resistance. This 

large-scale QTL identification study provides great potential to use the identified QTNs and 

their potential candidate genes for PM resistance breeding and gene cloning. 
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