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Abstract: In nature, many different factors cause plants to develop variegated leaves. To explore
the mechanism of variegated leaf formation in Pteroceltis tatarinowii, a mutant variety (‘Jinyuyuan’),
which was induced by ethylmethylsulfone, was selected, and its morphological structure, physiology,
biochemistry, transcription and metabolism were analysed. According to differences in colour values,
the colours were divided into two regions: a green region and a yellow-green region. The chlorophyll
content of the two regions was significantly different. Moreover, the yellow-green regions of the leaves
were significantly thinner than the green regions. The chloroplast ultrastructure in the yellow-green
region revealed small chloroplasts, large vacuoles, small starch grains, obviously increased numbers
of osmophilic grains, loose lamellae of the inner capsule and thin lamellae. Moreover, the yellow-
green region was accompanied by oxidative stress, and the activity of the oxidative phosphorylation
pathway related to oxidative activity in the transcriptome showed an upward trend. Vitamin B6
and proline contents also increased, indicating that the antioxidant activity of cells in the yellow-
green region increased. Transcriptomic and metabolomic analysis showed that the differentially
expressed genes (DEGs) related to chlorophyll synthesis and metabolism led to a decrease in the
photosynthesis and then a decrease in the assimilation ability and contents of sucrose, starch and
other assimilates. Amino acid synthesis and metabolism, lipid synthesis and the activity of metabolic
pathways were obviously downregulated, and the contents of differentially accumulated metabolites
associated with amino acids and lipids were also reduced. At the same time, 31 out of 32 DEGs
involved in the flavonoid synthesis pathway were downregulated, which affected leaf colour. We
hypothesized that the variegated leaves of P. tatarinowii ‘Jinyuyuan’ are caused by transcriptional
and post-transcriptional regulation. Mutations in pigment and flavonoid synthesis pathway genes
and transcription factor genes directly affect both pigment and flavonoid synthesis and degradation
rate, which in turn affect carbon assimilation, carbon fixation, related protein synthesis and enzyme
activity, lipid synthesis and degradation and the activity of other metabolic pathways, eventually
leading to the formation of different colour regions.

Keywords: Pteroceltis tatarinowii; variegated; transmission electron microscopy; transcriptome;
metabolism; combined analysis
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1. Introduction

Variegated leaf plants are the general term for plants that have more than two colours
on the same leaf, such as white, yellow, red and purple, including multicoloured flecks
or veins. The colour changes in these plants differ from that of plants that change colour
due to seasonal factors, and the spots and stripes of the former remain throughout their
entire life [1]. The mechanism underlying this phenomenon involves differences in pig-
ments in leaf cells. When chloroplasts are absent or abnormal, the chlorophyll production
mechanism is hindered and dysregulated; gene mutations in the cells can occur; and the
contents of anthocyanins, lutein and carotenoids increase. As a result, the leaves present
different colours [2,3]. Studies on the occurrence, the genetic factors and the mechanisms
of leaf colour variation of leaf colour mutants of model plant species such as Arabidopsis
thaliana [4], rice [5], barley [6] and tobacco [7] have been carried out. Previous studies
have shown that the nuclear genes im (immutans), var1 (variegated 1), var2 (variegated 2),
var3 (variegated 3), thf1 (thylakoid formation1) and chm/msh1 (chloroplast mutator/muts ho-
molog 1); double mutations in why 1 (whirly 1), why3 (whirly 3), msl 2 (mechanosention-like
proteins 2) and msl3 (mechanosention-like proteins 3); and mutations in the atd2 (glutamine
5-phosphoribosylpyrophosphate amidotransferase 2-deficient), cue1 (CAB underexpression) and
PAC (pale cress) genes can all cause variegated phenotypes. In addition to nuclear gene
mutations, some chloroplast and mitochondrial gene mutations can lead to leaf spot for-
mation [8]. Based on the var1, var2 and im genes of the model plant species Arabidopsis
thaliana [9], three classic variegated leaf formation hypothesis models have been proposed.
Namely, the FtsH threshold hypothesis, the protein synthesis and degradation hypothe-
sis and the photosynthetic redox imbalance hypothesis have been considered. The FtsH
threshold hypothesis suggests that FtsH deficiency impedes chloroplast development and
ultimately leads to variegated leaf formation [10,11], the hypothesis of which is that there
is a balance between protein synthesis and degradation based on the FtsH threshold model,
which proposes that decreased chloroplast translational activity can inhibit leaf pigment
formation [12,13]. The photosynthetic redox imbalance hypothesis suggests that exces-
sive reduction in plastoquinone (PQ) is the main cause of chlorophyll photooxidation
and the formation of white/yellow leaves [14]. Subsequently, it was proposed that the
MEP pathway regulates isoprene synthesis, which, given that isoprene acts upstream of
chlorophyll and carotenoid synthesis, may also play an important role in regulating leaf
colour formation [15]. However, the molecular mechanism of leaf spot formation is still
unclear [14,16,17], and it is very difficult to elucidate the mechanism of plant variegation.
For example, it is unknown how mutant cells develop into yellow/white regions or green
regions at the early stage of plastid differentiation and how the growth environment and
physiological environment at a specific stage of plant development determine the formation
of mosaic colour patterns in the same genetic background. The mechanism of how leaves
differentiate into green and white or yellow patches and why normal and abnormal mutant
colours are present in the same leaf remain unclear.

In recent years, studies on ornamental plants with spotted leaves have been per-
formed; the plants of these studies include Clivia miniata var. variegata [18], Hosta ‘Gold
Standard’ [19], Cymbidium sinense ‘Dharma’ [20], Hydrangea macrophylla ‘Maculata’ [3],
Aucuba japonica ‘Variegata’ [21], Ginkgo biloba variegated leaf mutant [22], Camellia sinensis
variegated leaf mutant [23], Actinidia kolomikta white and pink variegated leaf mutants [24],
Catalpa fargesii ‘Maiyuanjinse’ [25], etc. Leaf spot formation in non-model plant species
have some similarities and characteristics with that of model plant species. In addition,
genes that are similar to those in model plant species have been isolated and identified in
ornamental plant species, and these ornamental species may have genetic backgrounds
significantly different from those of model species. Taken together, these findings improve
the understanding of the mechanism underlying the variegated phenotype formation
in plants.

Pteroceltis tatarinowii Maxim, the lone deciduous tree species of the genus Pteroceltis in
the Ulmaceae family, is listed as a Class III national key protection object in the Red Book of
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Chinese Plants. It is a unique fibrous tree species in China and an important indicator of
calcareous soil. It is not only an economically important tree species but also an important
landscape tree species [26]. In this study, the differences in physiological, microstructural,
transcriptional and metabolic elements in different leaf colour regions of the P. tatarinowii
‘Jinyuyuan’ mutant obtained by ethylmethylsulfone mutagenesis were measured and anal-
ysed to determine the cause of variegated leaf formation. Specifically, we sought to identify
key differentially expressed genes (DEGs) and further improve the understanding of the
mechanism of variegated leaf formation in plants. Our results also provide a theoretical
basis both for analysing leaf colour variation in depth and for elucidating the molecular
mechanism of leaf colour and formation and lay a foundation for the improvement of leaf
colour ornamental traits via genetic engineering in the future.

2. Results
2.1. Morphological Observations

The leaves of ‘Jinyuyuan’ could be divided into two regions according to differences
in leaf colour, the characteristics of which are obviously different from those of the wild-
type leaves (Figure 1a). With the growth of leaves, the green region (GR) tended to
expand, while the area of the yellow-green region (YG) gradually decreased (Figure 1b). By
comparing the leaf regions to the Royal Horticultural Society Colorimetric Card (RHSCC),
we found that the green area was equal to 137B (belonging to the green group in RHSCC),
and the yellow-green area was equal to N144D (belonging to the yellow-green group in
RHSCC). The comparative analysis results of the chroma-meter show that GR and YG have
very significant differences in terms of L, b and h (Table 1), indicating that the two are
obviously different in colour. Compared with GR, YG has a brighter chromaticity and a
more yellow colour.
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Figure 1. Shape of P. tatarinowii ‘Jinyuyuan’ leaves. (a) Comparison of P. tatarinowii ‘Jinyuyuan’ and
wild-type plants; (b) details of the variegated leaves as they became larger.

Table 1. Results of leaf colour determination.

GR YG

L* 47.70 ± 0.70 B 56.70 ± 1.17 A

a* −7.68 ± 1.33 −7.14 ± 0.73
b* −5.46 ± 0.86 B 4.80 ± 1.11 A

c* 9.50 ± 0.76 8.65 ± 0.82
h 35.78 ± 8.45 A −33.72 ± 6.72 B

RHSCC 137B N144D
Note: L* stands for the brightness, and a* and b* stand for two chroma components in different colour areas of
the leaves under natural light; the c* (chroma) and h (phase angle) were then calculated as c* = (a*2 + b*2) 1/2;
h = arctan (a*/b*). GR indicates the green region of the leaf, and YG indicates the yellow-green region of the leaf.
RHSCC is the Royal Horticultural Society Colorimetric Card. The 137B and N144D are colour groups, and the
uppercase letters indicate very significant differences.
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2.2. Microstructure and Ultramicrostructure Observations

Analysis of the paraffin section measurements showed that the thicknesses of the
upper epidermis, lower epidermis, spongy tissue, palisade tissue and total area of the
GR were greater than those of the YG (Figure 2). Among them, the total leaf thickness
of GR was significantly greater than that of YG (Figure 2b–d), and there was a very
significant difference between the two regions (Table 2). In addition, there were significant
differences in spongy tissues, while there were no significant differences in the other
indexes. According to Figure 2c,d, at the same magnification, the cells of the upper and
lower epidermis, palisade tissue and spongy tissue in the green area were significantly
larger than those in the yellow-green area, and the cells in the green area were closely
arranged, while those in the yellow-green area were loose.
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Figure 2. Microscopy observations of paraffin sections of P. tatarinowii ‘Jinyuyuan’ leaves. (a) P. tatari-
nowii ‘Jinyuyuan’ leaf. The red line indicates the cross-section position of the paraffin section. The
green and yellow-green regions are separated along the main vein. (b) Microscopy observations of
paraffin sections of P. tatarinowii ‘Jinyuyuan’ leaves. The red box is enlarged and displayed in (c,d).
(c) Paraffin sections of the green region (GR). (d) Paraffin sections of the yellow-green region (YG).
UE: upper epidermis, LE: lower epidermis, PC: palisade cells, SMC: spongy mesophyll cells, IA:
intercellular air space.

Table 2. Anatomic characteristics of different parts of leaves of P. tatarinowii ‘Jinyuyuan’.

Type Upper Epidermis
Thickness (µm)

Lower
Epidermis

Thickness (µm)

Leaf Thickness
(µm)

Palisade Cells
Thickness (µm)

Spongy Cells
Thickness (µm)

Palisade
Cells/Spongy

Cells

GR 8.580 ± 2.614 7.029 ± 1.668 105.585 ± 6.924 A 44.626 ± 8.310 48.660 ± 7.197 a 0.953 ± 0.316
YG 8.487 ± 1.569 6.218 ± 1.509 84.288 ± 7.815 B 37.644 ± 6.918 35.967 ± 7.809 b 1.073 ± 0.219

Note: The uppercase letters indicate very significant differences; the lowercase letters indicate significant differ-
ences. GR indicates for the green region of the leaf, and YG indicates the yellow-green region of the leaf.

According to the chloroplast transmission electron microscopy (TEM) images (Figure 3),
the chloroplast structure in both regions was complete. The chloroplasts of the GR were
long, oval or fusiform; present in large numbers; and had a large volume, occupying almost
the whole cell. The vacuoles were small in volume. The starch grains were large in volume
but were low in abundance (2–4), and osmium granules were rare (5–7) (Figure 3a). The
YG chloroplasts were mostly ovoid, with a low abundance and small volume, accounting
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for a relatively small proportion of the cells. However, the vacuoles were large in volume.
The total number of starch grains was large, although they were small, with more than
8–10 osmophilic granules (Figure 3b). Enlargement of the thylakoid structure showed that
the thylakoid lamellae of the GR are neatly arranged and thick (Figure 3c), and YG lamellae
are loosely arranged and thin (Figure 3d).
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Figure 3. TEM images of P. tatarinowii ‘Jinyuyuan’. (a) TEM observation of cells in the green cells of
leaves (GR). (b) TEM observation of yellow-green cells of leaves (YG). (c) Structure of the thylakoid
lamellae in the green region of the leaf (GR). (d) Structure of the thylakoid lamellae in the yellow-
green region of the leaf (YG). Ch: chloroplast, SG: starch granule, V: vacuole, OG: osmium granule,
TL: thylakoid lamella.

2.3. Determination of Pigment Contents

The content of chlorophyll in ‘Jinyuyuan’ leaves was significantly higher than that of
carotenoids, which play a major role in leaf colour change, and the content of chlorophyll a
was approximately twice that of chlorophyll b. All six pigment indexes were greater for GR
than for YG, with significant or extremely significant differences (Table 3). These results
indicated that there was a low chlorophyll content in YG.

2.4. Assays of Protective Enzyme Activities and MDA Contents

Cellular oxidative damage is aggravated by excess reactive oxygen species (ROS).
Activities of protective enzymes and malondialdehyde (MDA) contents were measured in
the green and yellow-green zones of leaves to determine oxidative stress levels. According
to Figure 4, the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate
peroxidase (APX) were significantly enhanced in the yellow-green zone of leaves, which
indicates higher activities of scavenging ROS. Moreover, the soluble protein content was
significantly increased, which improves the water retention ability of cells and plays a
protective role in cell biological substances and membranes. On the other hand, the MDA



Int. J. Mol. Sci. 2022, 23, 4950 6 of 25

content was much higher in the yellow-green zones of leaves, which indicated more severe
membrane-lipid peroxidation.

Table 3. Pigment contents in different parts of leaves of P. tatarinowii ‘Jinyuyuan’.

GR YG

Chl a (mg g−1 FW) 0.40 ± 0.0021 A 0.31 ± 0.0003 B

Chl b (mg g−1 FW) 0.19 ± 0.0026 A 0.15 ± 0.0024 B

Chl a + b (mg g−1 FW) 0.59 ± 0.0032 A 0.47 ± 0.0028 B

Chl a/b 2.14 ± 0.0320 a 2.06 ± 0.0307 b

Car (ug g−1 FW) 118.12 ± 0.0307 A 110.50 ± 0.0178 B

Chl a + b /Car 4.97 ± 0.0269 A 4.22 ± 0.0244 B

Note: Different capital letters indicate significant differences at 0.01 level, and different lowercase letters indicate
significant differences at 0.05 level. GR indicates for the green region of the leaf, and YG indicates the yellow-green
region of the leaf.
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Figure 4. Activities of protective enzymes and MDA contents in green and yellow-green region of
leaves of P. tatarinowii ‘Jinyuyuan’. (a) soluble protein content. (b) SOD activity. (c) CAT activity.
(d) POD activity. (e) MDA activity. (f) APX activity. ** Indicates significance at the 0.01 level. GR
indicates for the green region of the leaf, and YG indicates the yellow-green region of the leaf. A
unit (U) is defined as giving 50% inhibition. APX activity unit definition: one enzyme activity unit
oxidized 1 nmol AsA per g of tissue per minute.

2.5. RNA-Seq and Assembly Analyses
2.5.1. Quality Determination and Analysis of RNA Samples from
Transcriptome Sequencing

A total of 39.5 Gb of clean data were obtained in this study, and more than 6.06 Gb of
clean data of each sample were obtained. The Q20 base percentage was more than 98.14%,
and the Q30 base percentage was more than 94.26%. The GC content ranged from 44.70%
to 45.52% (Table S1).

A total of 41,833 unigenes and 80,323 transcripts were assembled, and the average
N50 lengths were 2154 bp and 2161 bp, respectively. The average lengths of unigenes
and transcripts were 1146.01 bp and 1424.1, respectively (Table S2). The length of most
transcripts was 200–1000 bp, accounting for 62%, among which 200–500 bp fragments were
the most abundant (18,557), accounting for 44% of the total number of unigenes (Figure 5a).
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These data indicated that the quality of the transcriptome sequencing data assembly was
high, which was in line with the subsequent analysis results.
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The assembled transcriptome sequences were compared against the contents of six
databases (GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; COG:
Cluster of Orthologous Groups of proteins; NR: NCBI non-redundant protein sequences;
Swiss-Prot: a manually annotated and reviewed protein sequence database; Pfam: Protein
families databases), and a total of 22,926 genes were annotated, accounting for 54.80% of
the total unigenes (Table S3). Among them, the unigenes had the most annotations in the
NR database (22,701), accounting for 54.27% of the total number. This was followed by the
GO database (19,002, 45.42%) and COG (18,257, 43.64%) database.

2.5.2. Differentially Expressed Gene (DEG) Analysis

DEGseq2 software was used for filtering and analysing the DEGs, and filter conditions
of |log2

Fold Change| ≥ 1 and FDR < 0.05 were used. A total of 1169 genes were differentially
expressed between GR and YG: 992 genes were downregulated, and 177 genes were
upregulated. There were significantly more downregulated genes than upregulated genes
(Figure 5b).

2.5.3. GO Classification and Enrichment Analysis of DEGs

To analyse the specific functions of the selected DEGs and identify the key genes
related to the leaf colour differences, we first carried out GO secondary classification and
enrichment analysis on the 1169 DEGs identified in the previous step (Figure 6a,b). The
results of secondary classification showed that the DEGs were extremely significantly
enriched in 20 GO terms, namely 8 secondary terms in the biological process (BP) category,
7 secondary terms in the cellular component (CC) category and 5 secondary terms in the
molecular function (MF) category. Among them, protein binding and catalytic activity
terms in the MF category, membrane part and cell part in the CC category, and cellular
process and metabolic process in the BP category were associated with the most DEGs.
The downregulated genes were mainly enriched in the defence response, the response
to stimuli, the response to external stimuli, the response to hormones, response to auxin,
ADP binding and haem binding (Figure 6c), indicating that the expression of YG’s DEGs
in response to external stimuli, defence response and plant hormones decreased. There
were significantly fewer upregulated gene GO enrichment pathways and DEGs than down-
regulated ones. The genes were mainly enriched in enzyme regulator activity, peptidase
regulator activity, enzyme inhibitor activity, peptidase inhibitor activity, endopeptidase
inhibitor activity, serine-type endopeptidase inhibitor activity and other enzyme-related
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pathways (Figure 6d). Taken together, these results showed that the expression of YG
responsive enzyme-related genes increased.
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(b) GO enrichment of DEGs. (c) GO enrichment of downregulated DEGs. (d) GO enrichment of
upregulated DEGs. GR indicates the green region of the leaf, and YG indicates the yellow-green
region of the leaf.

2.5.4. KEGG Classification and Enrichment Analysis of DEGs

KEGG pathway classification and enrichment analysis (Figure 7) showed that the
annotated DEGs were distributed in 91 metabolic pathways, which belong to 6 categories.
The metabolism category contained the largest number of genes and the most secondary
pathways. The secondary pathways of the metabolism categories were further analysed.
This category included pathways related to the biosynthesis of other secondary metabo-
lites, amino acid metabolism, metabolism of terpenoids and polyketides, carbohydrate
metabolism, glycan biosynthesis and metabolism, lipid metabolism, signal transduction,
and energy metabolism, as well as 71 other secondary pathways. Flavonoids belong to a
branch of secondary metabolism. Through further analysis of tertiary pathways within
the biosynthesis of other secondary metabolite pathways, it was found that the DEGs
were annotated to 11 tertiary pathways within this pathway. These pathways included
phenylpropanoid biosynthesis (17); flavonoid biosynthesis (10); stilbenoid, diarylhep-
tanoid and gingerol biosynthesis (7); isoquinoline alkaloid biosynthesis (5); isoflavonoid
biosynthesis (3); and other leaf-colour-related pathways (Figure 7a).

A DEG enrichment downregulation bubble diagram was constructed, which shows
that the first 20 pathways enriched include pathways involving phenylpropanoid biosyn-
thesis; stilbenoid, diarylheptanoid and gingerol biosynthesis; isoquinoline alkaloid biosyn-
thesis; and isoflavonoid biosynthesis, as well as other pathways (Figure 7b). In conclusion,
YG DEGs involved in the flavonoid synthesis pathway tended to be downregulated. Leaf
colour is directly related to flavonoids, so the DEGs in these pathways regulate the syn-
thesis and accumulation of flavonoids in P. tatarinowii leaves, leading to the formation of
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P. tatarinowii variegated leaves. At the same time, there were also a large number of down-
regulated DEGs involved in the plant hormone signal transduction (24 genes) and plant
pathogen interaction (37 genes) KEGG pathways. The results showed that the different
colour regions of leaves of P. tatarinowii also undergo great changes in expression of genes
involved in the response to external stimuli and plant hormone signal transduction, which
tended to be downregulated in YG.
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Figure 7. Scatter plot of enrichment factors in the KEGG pathways of DEGs. (a) KEGG enrichment
bubble map. The blue box indicates the response to external stimuli and plant hormone signal
transduction. The red box indicates the pathway of flavonoid synthesis. (b) KEGG enrichment bubble
map of downregulated DEGs. (c) KEGG enrichment bubble map of upregulated DEGs. GR indicates
the green region of the leaf, and YG indicates the yellow-green region of the leaf.

The number of DEGs enriched in the upregulated pathways was significantly lower
than that enriched in the downregulated pathways. The bubble map showed that the top
10 pathways of upregulated DEGs mainly involved oxidative phosphorylation, phagosome,
glutathione metabolism, tyrosine metabolism, alpha-linolenic acid metabolism and antho-
cyanin biosynthesis (Figure 7c). These pathways were mainly oxidation- and metabolism-
related pathways, indicating that YG presented with increased metabolism, antioxidant
activity and anthocyanin synthesis.

2.5.5. Flavonoid Biosynthesis Pathways in Different Leaf Colour Regions

Leaf colour in plants is determined by pigments in the vacuoles, especially flavonoids
and anthocyanins. Further analysis of the flavonoid synthesis pathways related to leaf
colour was carried out, and a total of 32 DEGs involved in five flavonoid synthesis path-
ways (phenylpropanoid biosynthesis, flavonoid biosynthesis, anthocyanin biosynthesis,
isoflavonoid biosynthesis, flavone and flavonol biosynthesis, 17, 10, 3, 1 and 1, respectively)
were identified. The transcript abundance of eight key structural gene families, namely
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PAL (phenylalanine ammonia-lyase, 2 DEGs), 4CL (4-coumarate: coenzyme A ligase, 1 DEG),
CHS (chalcone synthase, 1 DEG), HCT (shikimic acid/quinic acid hydroxy cinnamyl transferase,
5 DEGs), CYP75B1 (cytochrome P450 75B1, 1 DEG), DFR (dihydroflavonol 4-reductase, 1 DEG),
LAR (leucoanthocyantin reductase, 2 DEGs) and CYP81E1/E7 (cytochrome P450 81E1/E7,
3 DEGs) were lower in YG than in GR, which is consistent with the leaf colour changes
(Figure 8). The HCT, DFR and LAR genes were significantly downregulated and only one
upregulated gene (BZ1, Bronze1) was found, which is involved in the anthocyanin pathway.
The whole flavonoid synthesis pathway was downregulated.
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2.5.6. Pigment- and Photosynthesis-Related Pathways

Five components, namely, photosystem II (PS-II), the cyto-chrome b6f complex, pho-
tosystem I (PS-I), the photosynthetic electron transport (PET) chain and F-type ATP syn-
thase, work together to accomplish the light-dependent energy-producing PET reactions
(Figure 9). In this experiment, the PetH gene encoding ferredoxin: NADP+ reductase (FNR)
involved in PET was downregulated in the photosynthetic KEGG pathway, resulting in
the downregulation of the FNR protein. Moreover, the downregulation of the PetH gene
led to NADPH and ATP deficiency and then decreased photoassimilate accumulation in
YG. In the passage of carbon fixation metabolism, we found that two DEGs (maeB1 and
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maeB2) were significantly downregulated. The results showed that there were significant
differences in carbon fixation, which affects carbon homogeneity, and gene downregulation
weakened the fixation of CO2. In addition, we found that eight DEGs involved in starch
and sucrose metabolism were downregulated. Downregulation of these genes may lead to
a decrease in the contents of D- glucose-6P, D- glucose, a-D- glucose-1P, cellobiose, sucrose
and trehalose-6P. In conclusion, the decline in photosynthetic capacity reduces the carbon
assimilation and fixation to a certain extent, resulting in a reduction in photosynthetic
substances and thinning of YG regions of leaves.
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downregulated genes.

Chlorophyll is associated with photosynthetic components, such as PS II and PS I [27].
Photosynthetic components and chlorophyll content are interdependent. Therefore, a lack
of photosynthetic components might lead to chlorophyll deficiency. In YG, only one DEG
(E3.1.1.14) was found to be involved in the metabolic pathway of chlorophyll synthesis and
degradation. This gene plays a role in the degradation of chlorophyll a and chlorophyll b
into chlorophyll-esters, and downregulation of this gene may be the main reason for the
lower chlorophyll content in YG compared with GR.

2.5.7. Amino Acid and Lipid Metabolic Pathways

There were 16 KEGG pathways associated with amino acid metabolism identified in
the transcriptome, and these pathways involved the synthesis and metabolism of several
amino acids and involved taurine and hypotaurine metabolism (Table 4). There were
55 DEGs in these 16 pathways, of which only 6 DEGs were upregulated. There were
11 amino-acid-related metabolic pathways identified in the metabolome, and 18 differ-
entially accumulated metabolites were screened, of which only two metabolites were in-
creased, namely O-succinyl-L-homoserine (involved in cysteine and methionine metabolism)
and 4-hydroxyproline (involved in arginine and proline metabolism), and the other 16 amino
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acid metabolites were decreased. These results indicated that the activity of the amino acid
metabolic pathway of YG was downregulated, and that the abundance of corresponding
amino acid products was also greatly reduced, which naturally affected the accumulation
of related products and other biological activities.

Table 4. Amino acid metabolic pathways.

Transcriptome Metabolomic

Pathway ID Description
Number

Pathway ID Description
Number

Down Up Down Up

map00250 Alanine, aspartate and
glutamate metabolism 2 0 map00220 Arginine biosynthesis 3

map00260 Glycine, serine and
threonine metabolism 2 1 map00250 Alanine, aspartate and

glutamate metabolism 3

map00270 Cysteine and
methionine metabolism 4 0 map00270 Cysteine and

methionine metabolism 1

map00280 Valine, leucine and
isoleucine degradation 1 1 map00330 Arginine and proline

metabolism 2 1

map00300 Lysine biosynthesis 2 0 map00340 Histidine metabolism 1

map00310 Lysine degradation 1 0 map00360 Phenylalanine
metabolism 1

map00330 Arginine and proline
metabolism 5 0 map00400

Phenylalanine, tyrosine
and tryptophan

biosynthesis
1

map00340 Histidine metabolism 1 0 map00430 Taurine and
hypotaurine metabolism 1

map00350 Tyrosine metabolism 4 1 map00460 Cyanoamino acid
metabolism 1

map00360 Phenylalanine
metabolism 4 1 map00472 D-Arginine and

D-ornithine metabolism 1

map00380 Tryptophan metabolism 7 0 map00480 Glutathione metabolism 2

map00410 beta-Alanine
metabolism 3 1

map00430 Taurine and
hypotaurine metabolism 2 0

map00450 Selenocompound
metabolism 1 0

map00460 Cyanoamino acid
metabolism 5 0

map00480 Glutathione metabolism 5 1

Twelve lipid metabolism pathways were involved in fatty acid synthesis and degrada-
tion, sphingolipid metabolism, glycerophospholipid metabolism, steroid metabolism, etc.
(Table 5). There were 27 DEGs identified as being involved in the 12 pathways, and only 2
of these DEGs were upregulated. Three of the twelve pathways were directly related to
fatty acid synthesis, fatty acid elongation and fatty acid degradation. In the lipid synthesis
pathway, upregulation of the accD (acetyl-CoA carboxylase subunit D) gene directly affects
the synthesis of malonyl-CoA, while FAB2 (delta-12 fatty acid desaturase 2) downregulation
affects the production of hexadecenoic acid and octadecenoic acid. In the process of fatty
acid elongation, the downregulation of the KCS (3-ketoacyl-CoA synthase) gene directly
affects carbon chain elongation. Downregulation of the ALDH (aldehyde dehydrogenase) gene
during fatty acid degradation affects lipid differentiation and degradation. According to
the metabolome, only one alpha-linolenic acid metabolism pathway was found, with a total
of two differentially accumulated metabolites, namely 9-oxononanoic acid (upregulated)
and traumatic acid (downregulated). These results indicate that in YG, the lipid metabolism
pathway is mostly downregulated, and the downregulation of genes affects the synthesis
and metabolism of lipids, which in turn affects phospholipid bilayer formation, nucleotide
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generation and metabolism and other lipid-related biological activities. Indeed, the DEGs
involved in purine metabolism (2) and pyrimidine metabolism (1) were downregulated at
the transcriptional level.

Table 5. Lipid metabolic pathways.

Pathway ID Description
Number

Down Up

Transcriptome

map00061 Fatty acid biosynthesis 1 1
map00062 Fatty acid elongation 2 0
map00071 Fatty acid degradation 1
map00073 Cutin, suberine and wax biosynthesis 1
map00100 Steroid biosynthesis 1
map00561 Glycerolipid metabolism 6 0
map00564 Glycerophospholipid metabolism 3
map00590 Arachidonic acid metabolism 1
map00591 Linoleic acid metabolism 2 0
map00592 alpha-Linolenic acid metabolism 4 1
map00600 Sphingolipid metabolism 2 0
map01040 Biosynthesis of unsaturated fatty acids 1

Metabolomic map00592 alpha-Linolenic acid metabolism 1 1

2.5.8. Computer Prediction Analysis of Transcriptome Factors (TFs)

TFs can bind to cis-acting elements of target gene promoters to regulate plant de-
velopment, secondary metabolism and stress resistance. Unigenes were compared to the
information of the Plant Transcription Factor Database (PlantTFDB) to obtain TF family
classification information corresponding to the unigenes. The prediction results of TFs
revealed (Figure 10a) a total of 704 genes, belonging to 33 TF families. The top four TF
families with the largest number of genes were the MYB (117), AP2/ERF (69), C2C2 (55)
and bHLH (51) families. There were 55 differentially expressed TF genes, of which 10 were
upregulated and 45 downregulated (Figure 10b,c). B3, AP2/ERF, MYB, WRKY and bHLH
TFs were the most downregulated TFs, the numbers of which were eight, six, six, five and
four, respectively.

2.6. RT-qPCR Validation

Twelve genes (eleven downregulated and one upregulated) that were highly and
differentially expressed; that exhibited a greater than 2-fold increase in expression; and that
were related to starch and sucrose metabolism, glutathione metabolism, carbon fixation in
photosynthetic organisms, porphyrin metabolism, photosynthesis, flavonoid metabolism
and plant hormone signal transduction were subjected to RT–qPCR. The results showed
that the expression trends of all of the selected genes were consistent with those identified
from the transcriptome data (Figure 11).

2.7. Analysis of Differentially Accumulated Metabolites
2.7.1. Statistics and Analysis of Differentially Accumulated Metabolites

A total of 602 metabolites were identified in the metabolome, mainly amino acids,
carboxylic acids, fatty acids, neurotransmitters and monosaccharides (Figure 12a). In total,
116 differentially accumulated metabolites were detected, among which 67 decreased and
49 increased (Figure 12b). The classification of these differentially accumulated metabolites
showed that the metabolites of the green tissue and yellow-green tissue were significantly
different. Among the decreased metabolites, lipids and lipid-like molecules accounted
for 12 metabolites, followed by organic acids and their derivatives and organohetero-
cyclic compounds, which accounted for 8 metabolites (Figure 12c). Conversely, lipids and
lipid-like molecules (11) and organoheterocyclic compounds (5) accounted for the highest
proportions of the metabolites whose abundance decreased (Figure 12d).
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2.7.2. KEGG Annotations of Differentially Accumulated Metabolites

The differentially accumulated metabolites were enriched in 31 KEGG metabolic path-
ways. The differentially accumulated metabolites were involved mostly in amino acid
synthesis or metabolism, purine metabolism, alpha-linolenic acid metabolism pathways,
the pentose phosphate pathway and the ABC transporter pathway (Figure 13a). Significant
DEGs associated with the synthesis or metabolism of multiple amino acids, pyrimidine
metabolism, phenolic acids and alkaloid biosynthesis or metabolism, ascorbate and al-
darate metabolism and phenylalanine metabolism were detected (Figure 13b). In addition,
upregulated expression of DEGs involved in purine metabolism, caffeine metabolism and
vitamin B6 metabolism was observed (Figure 13c).
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metabolites. GR indicates the green region of the leaf, and YG indicates the yellow–green region of
the leaf.

2.8. Correlation Analysis of DEGs and Differentially Accumulated Metabolites

In total, 22 KEGG pathways were shared between the transcriptome and metabolome
(Figure 14a). These pathways mostly focused on amino acid synthesis and metabolism,
alpha-linolenic acid metabolism, phenolic acids and alkaloid biosynthesis or metabolism,
ABC transporters and phenylalanine metabolism (Figure 14b). We further analysed the
global metabolic pathways of the DEGs via iPath3.0 (http://pathways.embl.de (accessed
on 4 August 2021)) [28]. As shown in Figure S1, most DEGs were annotated to carbohy-
drate metabolism, amino acid metabolism, energy metabolism, nucleotide metabolism,
metabolism of cofactors and vitamins, and biosynthesis of other secondary metabolism.
Among these DEGs, those involved in the following were significantly enriched: phenylala-
nine, tyrosine and tryptophan biosynthesis; glutathione metabolism; arginine biosynthesis;
arginine and proline metabolism; alanine, aspartate and glutamate metabolism in amino
acid metabolism; and purine metabolism in nucleotides. These findings indicate that there
were significant differences in amino acid metabolism and nucleotide metabolism in the dif-
ferent colour regions of leaves of P. tatarinowii ‘Jinyuyuan’, which might affect the synthesis
of pigments and other secondary metabolites.

http://pathways.embl.de
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3. Discussion
3.1. Explanation of Morphological Variation in P. tatarinowii ‘Jinyuyuan’ Leaves

In this study, the leaf thickness of P. tatarinowii ‘Jinyuyuan’ was found to differ in
different leaf colour areas of the same leaf. Similar phenomena have been found in other
plant species, e.g., in H. macrophylla ‘Maculata’ [3], Aucuba japonica ‘Variegata’, albino tea
and Phalaenopsis aphrodite subsp. formosana [21,29,30]. In several previous studies, it has
been reported that the invasion of pathogens and viruses can lead to the curling and
thickness differences in leaves [31,32]. However, there are other underlying factors at play
in the leaf development in this study. Paraffin sections showed that the yellow-green area of
the leaves was significantly thinner than the green area; that the cells in the upper and lower
epidermis, palisade tissue and spongy tissue were smaller in the yellow-green area than in
the green area; and that the cells in the green area were closely arranged, while those in the
yellow-green area were loosely arranged. Chloroplast ultrastructure observations revealed
that the size and degree of development of chloroplasts in the yellow-green area were
smaller and lower, respectively, than those in the green area, which was the direct cause
of different leaf thicknesses. According to the transcriptomic and metabolic differences
identified in this study, the underlying contributing factor may be that the differential
expression of chlorophyll synthesis and metabolism-related genes leads to a decrease in
photosynthesis levels, which leads to both a decrease in assimilation ability and a decrease
in the contents of assimilates such as sucrose and starch. Guggisberg et al. [33] also showed
that the abnormal xylem structure in the yellow leaf area blocked sugar transport and could
not provide sufficient amounts of carbon for leaf isoprene biosynthesis through the MEP
pathway. In addition, the activities of amino acid synthesis and metabolism, lipid synthesis
and other metabolic pathways were obviously downregulated, and the contents of amino
acids and lipids involved in differential metabolism were decreased. The decreased contents
of carbohydrates, amino acids, lipids, etc., eventually lead to significantly thinner leaves in
the yellow-green areas than in the green areas, resulting in different leaf thicknesses.

3.2. Genes Associated with Variegated Leaf Colour Formation in P. tatarinowii ‘Jinyuyuan’

Chlorophyll concentration directly affects the colour of leaves and photosynthesis. Leaf
colour variation is usually caused by chlorophyll deficiency. Many chlorophyll-deficient
mutants have been identified in rice, maize and Arabidopsis thaliana [34–36]. In this study,
the chlorophyll content in yellow-green leaves was significantly lower than that in green
areas, which affected the normal leaf colour of P. tatarinowii and ultimately resulted in a
variegated leaf phenotype in which there was a chlorophyll deficiency. On the basis of
transcriptomic differences, we identified a DEG, E3.1.1.14, which is related to chlorophyll
synthesis and metabolism. This gene plays a role in the degradation of chlorophyll a and
chlorophyll b into chlorophyllide, and its downregulation may be the main factor for the
lower chlorophyll content of YG compared with GR.

The chloroplast is an important organelle for photosynthesis in plants, and it is also
the site of synthesis and accumulation of photosynthetic pigments such as chlorophyll and
carotenoids [37]. Studies have shown that plants with variable leaf colour also exhibit vary-
ing degrees of structural change. Yang et al. [38] reported that there was an abundance of
thylakoid in the cells of Pseudosasa japonica green leaves, while a large number of abnormal
vacuoles accumulated in albino leaf cells. Similar structural changes were also found in
a study of leaf colour mutants of Anthurium andraeanum ‘Sonate’; chloroplasts in green
leaf cells had typical characteristics, and the thylakoid membranes were clear, containing
a small amount of amyloid, while the structure of granum lamellae in the mutated leaf
regions was loose and scattered, with a large number of starch grains [39]. The tissue
structure of yellow regions of leaves of G. biloba ‘Variegata’ was significantly different from
that of normal green leaves. In the yellow leaves of the mutant, the chloroplast membranes
appeared blurry, there were few granum lamellae layers, the lamellar structure was loose
and dispersed, osmophilic particles were more distributed and densely arranged, and there
were a large number of vacuoles in the cells [22]. A large amount of osmiophilic particles
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were also found in the white area of H. macrophylla ‘Maculata’ leaves [3]. In this present
study, we found that ‘Jinyuyuan’ also exhibited similar phenomena: the green area of the
leaves had large chloroplasts, small vacuoles, large starch grains, fewer osmophilic grains,
orderly lamellae and thick lamellae of the inner capsule, while the yellow-green area had
just the opposite. These structural changes may affect the development of plastids and
normal photosynthesis and may hinder the synthesis and accumulation of chlorophyll,
resulting in leaf colour variation.

Flavonoids are secondary metabolites of polyphenols that widely exist in various
organs of plants and participate in the regulation of flower, leaf and fruit colour formation.
Plant flavonoids can be divided into seven types, some of which are flavonoids, flavonols
and anthocyanins [40], which are regulated by the MYB, bHLH and WD TFs [41]. Five
flavonoid synthesis pathways were found in this study. We identified 32 DEGs related
to flavonoid synthesis from these pathways, of which 31 were downregulated in the
yellow-green region. Our RT-qPCR results also showed that the expression of genes
regulating flavonoid synthesis was downregulated in the leaves of the mutant, indicating
that flavonoid synthesis was inhibited in the leaves of the mutant. This may be the main
reason for the yellow leaf colour of P. tatarinowii ‘Jinyuyuan’ leaves. In addition, the
anthocyanin pathway is active in P. tatarinowii leaves, but leaves do not present red or blue
colour, which may be due to low anthocyanin contents or the lack of expression of TF genes
such as MYB, bHLH and WRKY. Studies have shown that MYB and bHLH transcription
factors and WD40 proteins usually form a highly conserved MYB-bHLH-WD40 (MBW)
transcription complex that regulates the biosynthesis of anthocyanins in plants [42]. In this
study, 117 MYB, 51 bHLH and 43 WRKY TF genes were identified, from which 6 MYB,
5 WRKY and 4 bHLH differentially expressed TF genes were screened and removed; these
genes may be closely related to leaf colour changes. It can also be inferred that there is
potential to breed P. tatarinowii plants that have red or blue leaves.

In addition, studies have shown that plant hormones and light signals are closely
related to the synthesis of flavonoids involved in flower colour and leaf colour [40,43,44]. In
this study, DEGs were also enriched in signal transduction pathways, which includes plant
hormone signal transduction (24 genes) and MAPK signalling pathway-plant (9 genes).
Moreover, the DEGs were mostly enriched in plant hormone signal transduction (24 genes)
and plant–pathogen interaction (37 genes) KEGG pathways, and there is likely coordination
that occurs between the two pathways.

In conclusion, we hypothesize that the formation of variegated leaves is the direct
result of transcriptional and post-transcriptional regulation. As such, we suspect that the
direct cause of variegated leaves of P. tatarinowii ‘Jinyuyuan’ is caused by transcriptional
and post-transcriptional regulation. Mutations in pigment and flavonoid synthesis path-
way genes and transcription factors directly affect pigment and flavonoid synthesis and
degradation, which in turn affects related protein synthesis and enzyme activity, leading to
the formation of different colours.

3.3. Analysis of the Redox Capacity of P. tatarinowii ‘Jinyuyuan’

Aluru et al. [45] showed that oxidative stress mainly occurred in the white area of
leaves, as the green area had extra energy dissipation machinery, which ultimately allowed
the green area to form. Brehelin et al. [46], Velikova et al. [47] and Wang et al. [25] reported
that the stromal lamellae of yellow tissue appeared blurry, that starch granules were
degraded, and that plastid globules and vesicles aggregated in large numbers, all of which
indicated an oxidative stress response. Similar phenomena were also found in the present
study. In the yellow-green region of leaves, the chloroplasts were small, the vacuoles were
large, the starch grains were small, and the osmophilic grains increased significantly in
number, indicating the occurrence of oxidative stress. At the same time, the MDA content
in the yellow-green region was significantly higher than that in the green region, which
also reflected that the response to oxidative stress in the yellow-green region was more
severe than that in the green region.
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To remove reactive oxygen, cells employ a complex antioxidant system that includes
antioxidant vitamins such as vitamins B, C and E, and antioxidant enzymes such as SOD,
CAT and POD, which can eliminate the toxic active substances and reduce damage to
cells [48,49]. In the present study, vitamin B6 in YG was significantly upregulated, and
physiological indicators also showed that the activities of antioxidant enzymes in YJB were
higher than those in GR; specifically, the activities of SOD, CAT and APX showed extremely
significant differences in the different colour regions, indicating enhanced antioxidant
capacity in the YG region. In addition, two significantly upregulated products related to
amino acid metabolism were identified from the metabolomics data, one of which was
4-hydroxyproline (which is in the arginine and proline metabolism pathways), which was
consistent with the proline content measurement results. The proline content in YG was
significantly higher than that in GR, which also improved the tissue antioxidant capacity.
At the same time, six DEGs involved in the oxidative phosphorylation pathway were
identified according to the transcriptomic data and the upregulated expression of four of
these DEGs in turn regulated the decomposition of peroxide into H2O, eliminating toxic
substances and reducing damage to cells, and two downregulated DEGs were found to
regulate H+ production (Figure S2). The mechanism of enhanced antioxidant activity in the
YG region was analysed at the gene level.

4. Materials and Methods
4.1. Plant Materials

The experimental materials used were three-year-old P. tatarinowii ‘Jinyuyuan’ grafted
seedlings. The test site was located in the city of Tai’an, Shandong Province (36◦11′07′ ′ N,
117◦06′51′ ′ E). Young leaves of ‘Jinyuyuan’ were collected in May 2021, and the GR and YG
in each of the used leaves were separated. The leaves were wrapped in aluminium foil and
immediately flash frozen in liquid nitrogen, after which samples were brought back to the
laboratory and stored at −80 °C. Each sample contained more than 10 leaves.

4.2. Morphological Observations

Leaves were assessed with a Royal Horticultural Society Colorimetric Card (RHSCC)
under natural light. RHSCC is published by the Royal Horticultural Society and is the
standard reference for recording plant colour in horticulture worldwide, with 920 colours.
The plant part was placed under the colorimetric hole or next to the colour block. A
portable chroma-meter (CM-5, Konica Minolta, Japan) was used to measure the brightness
(L*) and two chroma components (a * and b *) in different colour areas of the leaves under
natural light, which was repeated 5 times. The chroma (c*) and phase angle (h) were then
calculated as c* = (a*2 + b*2)1/2; h = arctan (a*/b*).

4.3. Microstructure and Ultramicrostructure Observations

Leaves including both green and yellow-green zones were collected, fixed in formalin-
acetic acid-alcohol (FAA) for 12 h with a vacuum device and then subjected to a gradient of
alcohol dehydration. The treated leaves were subsequently embedded in paraffin and cut
into 10 µm slices with an RM2016 slicer (Leica, Wetzlar, Germany). After dewaxing, the
samples were stained with 1% sarranine and 0.5% fast green and then incubated with three
tubes of xylene for 5 min. Finally, the tissue sections were mounted with neutral balsam.
Images were then collected with an upright optical microscope equipped with a digital
camera (Eclipse E100+DS U3) (Nikon, Tokyo, Japan) [50].

Pieces (1 mm × 1 mm) of the green and yellow-green regions of the leaves were fixed
in 2.5% glutaraldehyde (pH 7.4) for 2 h with a vacuum device. After washing three times
with 0.1 M phosphate buffer (pH 7.2), the cells were fixed in 1% osmic acid at 4 ◦C for
2 h. Then, the samples were dehydrated via a gradient of ethanol. Subsequently, the
samples were embedded in Epon-Araldite resin for penetration and placed in a mould
for polymerization. After semithin sections were used for positioning, ultrathin sections
of 60–80 nm were made using a Leica UC7 ultrathin slicer (Leica, Wetzlar, Germany) and
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collected for microstructure analysis. The cells were subsequently counterstained with
3% uranyl acetate and 2.7% lead citrate. Then, the cells were observed with an HT7700
transmission electron microscope (Hitachi, Tokyo, Japan) [51].

4.4. Determination of Pigment Contents

For determination of the chlorophyll content, a plant chlorophyll content kit (CPL-2-G,
Comin Biotechnology, Suzhou, China) was used. The chlorophyll a content (mg/g fresh
weight) was calculated as 0.01*(12.7*A663-2.69*A645)*D/m; the chlorophyll b content (mg/g
fresh weight) was calculated as 0.01*(22.9*A645-4.68*A663)*D/m; and the total chlorophyll
content (mg/g fresh weight) was calculated as 0.01*(20.21*A645 + 8.02*A663)*D/m, where
D is the dilution factor and m is the sample mass (g). The carotenoid content (µg/g fresh
weight) was calculated as 31.25 × ∆A/W, where W is the sample quantity (g); ∆A is equal
to the A of the determination tube, the A of a blank tube, for which a spectrophotometer
was used to quickly determine the absorbance value at 450 nm (A).

4.5. Assays of Protective Enzyme Activities and MDA Contents

Samples (0.1 g) of the GR and YG were separately weighed and ground in 1 mL of
extraction solution in an ice bath. Then, the homogenate was poured into a centrifuge
tube and centrifuged at 8000× g for 10 min at 4 ◦C. The soluble protein content was
measured using a BCAP-1-W assay kit (Comin, Suzhou, China). The activities of SOD,
POD, CAT and APX were measured using a BC0170 SOD assay kit (Comin, Suzhou, China),
a BC0090 POD assay kit (Comin, Suzhou, China), a BC0200 CAT assay kit (Comin, Suzhou,
China) and an APX-1-W assay kit (Comin, Suzhou, China). Similarly, the MDA content
was measured using a BC0025 MDA assay kit (Comin, Suzhou, China) [52,53]. Assays
were performed according to the manufacturer’s instructions from the Suzhou Cominbio
Technology Co., Ltd. (http://www.cominbio.com/ (accessed on 4 August 2021)).

4.6. RNA Preparation, RNA Sequencing (RNA-seq) and Differential Gene Expression Analysis

The GR and YG leaf tissue (100 mg) from frozen leaf tissue (3 replicates) was ground
through a high-throughput grinder (wonbio-96, Shanghai, China), which was placed in the
grinding tube (including a 0.6 cm steel ball). The grinding tube and the metal adapter were
immersed in liquid nitrogen and frozen, and the grinding was carried out at 55 Hz and 15 s
with high-speed shock grinding. Total RNA was extracted from samples using TRIzol®

reagent (an RNA purification reagent for plant tissue) according to the manufacturer’s
instructions (Invitrogen, Carlsbad, CA, USA), and genomic DNA was removed using
DNase I (Takara Biomedical Technology (Beijing) Co., Ltd., Beijing, China). Then, the
integrity and purity of the total RNA quality were determined by a 2100 Bioanalyzer
(Agilent Technologies, Inc., Santa Clara, CA, USA) and quantified using an ND-2000
instrument (NanoDrop, Thermo Scientific, Wilmington, DE, USA). Only high-quality RNA
samples (OD260/280 = 1.8~2.2, OD260/230 ≥ 2.0, RNA (1 µg) integrity number (RIN ≥ 8.0,
28S/18S ≥ 1.0)) were used to construct sequencing libraries. Oligo (dT) Magnetic beads
were used for A–T base pairing with polyadenylation to isolate mRNA from total RNA for
analysis of transcriptome information. The cDNA libraries were sequenced via paired-end
sequencing using the Illumina NovaSeq 6000 System platform (Illumina, CA, USA). We
used DESeq2software to determine the statistical enrichment of DEGs in Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [54].

4.7. RT-qPCR Validation

RNA was used for cDNA synthesis using a reverse transcription kit (Takara). Quanti-
tative PCR was performed on a 7500 Fast Real-Time PCR System (Thermo Fisher Scientific)
using a TB Green® Premix Ex Taq™ Kit (TaKara). The amplification and extension rate
of this Taq enzyme was 1–2 kb/min, and the fluorescence quantitative extension time
was 30 s, which can cover a length of approximately 500 bp. The PCR procedure was as
follows: holding at 95 ◦C for 30 s, followed by 40 cycles of 95 °C for 5 s and then melting
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at 60 ◦C for 30 s. Transcription initiation factor (TAF) was used as an internal control
for RT-qPCR analysis. By the use of the 2−∆∆T method, the relative expression levels of
candidate genes were obtained by normalization with TAF expression, and each target
sample was biologically replicated three times. All the values represent the means ± SDs
(n = 3), and Student’s t-test was used to determine significant differences. The sequences of
all primers used are listed in Table S4.

4.8. UPLC-MS

Fifty milligrams of solid leaf material were accurately weighed, and the metabolites
were extracted using 400 µL of methanol/water (4/1, v/v) solution. The mixture was
then incubated at −20 ◦C and subjected to a high-throughput tissue crusher (Wonbio-96c,
Shanghai Wanbo Biotechnology Co., Ltd., Shanghai, China) at 50 Hz for 6 min, followed by
vortexing for 30 s and ultrasonication at 40 kHz for 30 min at 5 ◦C. The samples were then
incubated at −20 ◦C for 30 min to precipitate the proteins. After centrifugation at 13,000× g
at 4 °C for 15 min, the supernatant was carefully transferred to sample vials for LC-MS/MS
(UHPLC -Q Exactive HF-X, Thermo Fisher Technology (Shanghai, China) Co., Ltd.).

4.9. Data Analysis

The data were statistically analysed, and data processing and analysis were performed
with Excel 2010 and SPSS 22.0 statistical analysis software, respectively. Analysis of variance
was performed to determine the differences in the parameters between the two different
kinds of leaf tissues. For RNA-seq, statistical analysis of the raw counts of genes that
were differentially expressed in the two conditions was performed with DESeq2 software.
Genes with a false discovery rate (FDR) < 0.01 and a fold change (FC) ≥2 according to
DESeq analysis were considered differentially expressed. For UPLC-MS/MS, information
for chemical compounds was obtained from mass spectra, retention times, the Human
Metabolome Database (HMDB) (http://www.hmdb.ca/ (accessed on 4 August 2021)),
the METLIN (https://metlin.scripps.edu/ (accessed on 4 August 2021)) database and a
custom-made database, and the resulting data were analysed by principal component
analysis and t-tests. Hierarchical cluster analysis (HCA) and orthogonal partial least-
squares discriminant analysis (OPLS-DA) were performed by R-software to identify the
differences between the nine leaf samples. OPLS-DA was used to identify the differences in
metabolite composition between the samples according to variable importance in projection
(VIP) values ≥ 1 and fold changes ≥2 or ≤0.5.

5. Conclusions

Unbalanced development led to different colour regions of leaves of P. tatarinowii
‘Jinyuyuan’. The yellow-green regions of the leaves were significantly thinner than the
green regions were. The chloroplast ultrastructure showed that the chloroplasts in the
yellow-green regions were small, the volume of the vacuoles was large, the volume of
the starch grains was small, the number of osmophilic grains increased significantly, the
lamellae of the inner member were loosely arranged and thin (which was accompanied
by oxidative stress), and the antioxidant activity increased. The transcript levels in the
yellow-green region were mostly decreased, in which 31 differentially downregulated
genes were identified, and only 1 differentially upregulated gene involved in the flavonoid
synthesis pathway was detected. In the yellow-green regions, a key gene involved in
chlorophyll synthesis and metabolism was downregulated, which led to significantly less
chlorophyll in YG than in GR. In addition, the photosynthetic level in YG decreased,
which led to a decrease in assimilation ability; reduced sucrose, starch and other assimilate
contents; and obviously thinner leaves. In addition, the activity of the amino acid synthesis
and metabolic pathways and lipid synthesis and metabolic pathways showed an obvious
downward trend, and the contents of amino acids and lipids decreased; however, the
oxidative phosphorylation pathway related to oxidative activity showed an upward trend,
the vitamin B6 content increased, and the antioxidant capacity of cells in the yellow-
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green area showed an upward trend. In summary, the variegated leaves of P. tatarinowii
‘Jinyuyuan’ are the result of transcriptional and post-transcriptional regulation. Mutations
in genes and TF genes involved in the pigment and flavonoid synthesis pathways directly
affect the pigment and flavonoid synthesis and degradation, further affecting the carbon
assimilation and carbon fixation related to protein synthesis and enzyme activity, lipid
synthesis and degradation, and other metabolic pathways. Thus, the plant leaves present a
different colour.
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