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Abstract: M1 microglia induce neuroinflammation-related neuronal death in animal models of
spontaneous subarachnoid haemorrhage. Zileuton is a 5-lipoxygenase inhibitor that reduces the
levels of downstream pro-inflammatory cytokines. This study aimed to investigate whether zileuton
inhibits microglial activation and describe its underlying mechanisms. BV-2 cells were exposed to
1 mg/mL haemolysate for 30 min, followed by treatment with different concentrations (5, 10, 15,
or 20 µM) of zileuton for 24 h. The cells were then assessed for viability, polarisation, and protein
expression levels. Haemolysate increases the viability of BV-2 cells and induces M1 polarisation.
Subsequent exposure to high concentrations of zileuton decreased the viability of BV-2 cells, shifted
the polarisation to the M2 phenotype, suppressed the expression of 5-lipoxygenase, decreased tumour
necrosis factor α levels, and increased interleukin-10 levels. Furthermore, high concentrations of
zileuton suppressed the expression of myeloid differentiation primary response protein 88 and
reduced the phosphorylated-nuclear factor-kappa B (NF-kB)/NF-kB ratio. Therefore, phenotype
reversal from M1 to M2 is a possible mechanism by which zileuton attenuates haemolysate-induced
neuroinflammation after spontaneous subarachnoid haemorrhage.
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1. Introduction

Spontaneous subarachnoid haemorrhage (SAH) is a type of intracranial haemorrhage
mostly caused by a ruptured aneurysm. It has a substantially high mortality rate, with half
of the patients dying within 30 days of the onset of the disease, and patients who survive
suffer from severe and permanent disabilities [1]. The medical cost for patients with sponta-
neous SAH is more than twice that for patients with ischaemic stroke. Although vasospasm
due to SAH was previously considered the most important cause of severe brain injury, an
increasing number of studies have demonstrated that prevention of vasospasm following
SAH does not significantly improve the prognostic outcome of patients. Therefore, recent
studies have focused on the treatment of early brain injury (EBI) immediately after sponta-
neous SAH [2]. EBI occurs within 72 h of aneurysm rupture, resulting in neuronal death
via numerous mechanisms, including the detrimental reaction caused by the blood clots
formed following SAH and transient ischaemic attack induced by SAH. Given that EBI
usually lasts for several days following spontaneous SAH, the development of approaches
to protect neurones from damage has gradually gained attention [3,4].

Microglia are innate immune cells of the central nervous system that generate an
immediate immune response after acute brain injury. Microglia are activated and polarised
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towards either the M1 or M2 phenotype following SAH. The representative cell surface
markers for the M1 phenotype include CD14, CD16, CD32, CD40, CD68, and CD86, whereas
the representative cell surface markers for the M2 phenotype include CD206 and CD163.
Representative inflammatory mediators produced in M1 microglia include interleukin (IL)-
1β, IL-6, IL-8, and tumour necrosis factor (TNF)-α. The representative anti-inflammatory
mediators produced in M2 microglia include IL-10, IL-4, IL-13, and transforming growth
factor (TGF)-β [5–9].

The lipoxygenase family member 5-lipoxygenase (5-LOX) catalyzes the conversion of
arachidonic acid to leukotriene, a potent mediator of many inflammatory processes [10].
Leukotriene B4 (LTB4) is a strong chemoattractant that recruits neutrophils to inflammatory
sites by binding to the high-affinity LTB4 receptor 1 (BLT1). In vivo, it was shown that
nuclear factor-kappa B (NF-κB)-dependent BLT1 mediates LTB4 signalling after SAH. There-
fore, BLT1 may participate in the NF-κB-mediated inflammatory process after SAH [11]. A
previous study on an animal model of spontaneous SAH showed that the expression of
leukotriene LTB4 receptor 1 (BLT1) in microglia was upregulated following haemorrhage,
and the upregulated expression of BLT1 was positively correlated with the activation of
the NF-κB pathway [11]. In BV-2 microglia induced by oxygen-glucose deprivation and
reoxygenation, suppression of the 5-LOX/LTB4 pathway attenuates nuclear translocation
of NF-κB and inflammatory damage [12].

The expression of Toll-like receptor 4 (TLR4) in peripheral blood mononuclear cells
is upregulated under oxidative stress. TLR4 is a pattern recognition receptor mainly
expressed on the cell surface of peripheral macrophages and microglia in the central
nervous system. TLR4 can bind to various molecules, including lipopolysaccharides
(LPSs), heat shock proteins 60/70, fibrinogen, and oxidised lipids to form complexes that
further activate myeloid differentiation primary response protein 88 (MyD88) and toll
receptor-associated activator of interferon (TRIF). The resulting activation of IκB kinase
(IKK) phosphorylates the inhibitor of NF-κB (IκB), which is subsequently degraded by
the proteasome. This process promotes the nuclear translocation of NF-κB, leading to the
production of pro-inflammatory mediators such as TNF-α, IL-6, and IL-12. In this process,
microglia are activated and polarised towards the M1 phenotype with an enhanced release
of pro-inflammatory mediators, further promoting neuronal death [13–15]. MyD88 is a
well-established inflammatory adaptor protein and an essential downstream protein of the
TLR4-signalling pathway. TLR4 binds to damage-associated molecules, including haeme,
fibrinogen, and thrombin. After activation of the TLR-4/MyD88/NF-κB pathway, the
nuclear translocation of phosphorylated NF-κB induces the production of pro-inflammatory
cytokines [16]. The reversal of M1 microglial polarisation is crucial for the treatment of
SAH-induced inflammatory responses. The treatment of LPS-exposed rat microglia with
BW-B70C, a 5-LOX inhibitor, has been reported previously. Exposure of rat microglia to
LPS induced the activation and nuclear translocation of NF-κB. Treatment with BW-B70C
prevented microglial activation by inhibiting the nuclear translocation of NF-κB [17].

Currently, zileuton is primarily administered for the clinical treatment of asthma. It is
a 5-LOX inhibitor that suppresses the downstream production of 5-LOX products, such as
LTB4, LTC4, LTD4, and LTE4. LTB4 recruits neutrophils and eosinophils, whereas LTC4,
LTD4, and LTE4 cause bronchial smooth muscle contraction, mucosal secretion, mucosal
oedema, enhanced bronchial hyperresponsiveness, and endothelial permeability. Zileuton
inhibits the enzymatic activity of 5-LOX and triggers the above-mentioned reactions by
reducing the downstream production of 5-LOX products (e.g., LTB4, LTC4, LTD4, and
LTE4), thereby achieving a therapeutic effect against asthma [18]. Zileuton is not only a
selective 5-LOX inhibitor but has also been shown to suppress the expression of 5-LOX
in an animal model of cerebral ischaemia [19]. In vivo, zileuton improves brain oedema,
blood–brain barrier disruption, and neurologic function by attenuating neuronal apoptosis
through the activation of the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)
signalling pathway after SAH [10].
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The present study aimed to confirm that haemolysate exposure leads to the upregula-
tion of 5-LOX expression, activation of the MyD88/NF-κB pathway, and polarisation of
BV2 cells towards the M1 phenotype using cell-based experiments. Inhibition of BV-2 cell
activation by downregulating the expression of 5-LOX via zileuton was also attempted.
We wanted to confirm whether inhibition of 5-LOX and attenuation of LTB4 would inhibit
the NF-κB pathway and reverse microglial polarisation from M1 to M2 after exposure
to haemolysate. We also evaluated the correlation between the reversal of microglial
polarisation and the MyD88/NF-κB pathway.

2. Results
2.1. Viability of BV2 Cells under Different Concentrations of Zileuton

We determined the survival rate of BV-2 cells treated with different concentrations of
zileuton to gain insight into its effects on BV-2 cells. The cell counts showed that there was
no significant difference in the survival rate between BV-2 cells treated with zileuton (5, 10,
15, and 20 µM) and BV-2-cells in the control group at 24 h after treatment (Figure 1a).

2.2. Viability of Haemolysate-Exposed BV-2 Cells Treated with Different Concentrations of ZILEUTON

We also measured the viability of BV-2 cells treated with different concentrations of
zileuton to explore its effects on haemolysate-exposed BV-2 cells. We found that BV-2 cells
treated with haemolysate plus a vehicle or with 5, 10, and 15 µM zileuton had significantly
higher viability than those in the control group at 24 h after treatment. Haemolysate-
exposed BV-2 cells treated with 20 µM zileuton showed significantly lower viability than
those treated with the vehicle at 24 h after treatment (p < 0.05). In addition, there was no
significant difference in the viability of BV-2 cells in the haemolysate + 20 µM zileuton
group and those in the control group. These results indicated that exposure to haemolysate
induced the proliferation of BV-2 cells, which was suppressed following treatment with
20 µM zileuton. Cells treated with haemolysate plus 20 µM zileuton showed no statistically
significant difference in viability relative to the control group (Figure 1b).

2.3. Immunofluorescence Staining of CD68 and CD206 Expressed on BV-2 Cells

Herein, we performed immunofluorescence (IF) staining to determine changes in the
expression of CD68 and CD206 in BV-2 cells treated with different concentrations of zileuton
to determine the polarisation of BV-2 cells. CD68 labelled with red fluorescence was the
representative cell surface marker expressed on M1 microglia, whereas CD206 labelled with
green fluorescence was the representative cell surface marker expressed on M2 microglia.
The IF results revealed that treatment with 10, 15, and 20 µM zileuton did not significantly
alter the expression of the cell surface markers CD206 and CD68 in BV-2 cells compared with
the control group (Figure 2a). To determine the polarisation of haemolysate-exposed BV-2
cells following treatment with different concentrations of zileuton, changes in the expression
of CD206 and CD68 in haemolysate-exposed BV-2 cells were also observed by IF staining.
The IF results showed that the expression level of CD206 on the cell surface of haemolysate-
exposed BV-2 cells treated with the vehicle as well as 10, 15, and 20 µM zileuton was higher
than that in the control group. However, the expression level of CD68 on the surface of
haemolysate-exposed BV-2 cells treated with the vehicle and 10 µM zileuton was higher than
that in the control group. The IF results also showed that the haemolysate + 20 µM zileuton
group had a higher cell surface expression level of CD206 and a lower cell surface expression
level of CD68 than the haemolysate + vehicle group (Figure 2b,c). To reveal the polarisation
trend of BV-2 cells, the ratio of the number of CD68-labelled cells to that of CD206-labelled
cells was calculated to determine the M1/M2 ratio of BV-2 cells. The haemolysate + 20 µM
zileuton group displayed a lower CD68+/CD206+ ratio than the haemolysate + vehicle group.
The comparison of the M1/M2 ratio between haemolysate-exposed BV-2 cells treated with
different concentrations (10, 15, and 20 µM) of zileuton and those treated with the vehicle
showed that the haemolysate + 20 µM zileuton group had a lower M1/M2 ratio of BV-2 cells
than the haemolysate + vehicle group (Figure 2d).
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Figure 1. The viability of BV-2 cells. (a) The viability of BV-2 cells exposed to zileuton. Differences in
the viability of BV-2 cells exposed to different concentrations of zileuton were evaluated via the cell
count kit-8 (CCK-8) assay. The x-axis represents the control group and vehicle, as well as different
concentrations (5, 10, 15, and 20 µM) of zileuton; the y-axis represents the cell viability expressed
as a percentage relative to the control group. Using the different concentrations of zileuton for 24 h
did not inhibit the viability of BV-2 cells (n = 5). (b) The viability of haemolysate-exposed BV-2 cells
treated with different concentrations of zileuton. Differences in the viability of haemolysate-exposed
BV-2 cells treated with different concentrations of zileuton were evaluated via the CCK-8 assay. The
x-axis represents the control group and vehicle, as well as different concentrations (5, 10, 15, and
20 µM) of zileuton; the y-axis represents the cell viability expressed as a percentage relative to the
control group. The haemolysate-exposed BV-2 cells treated with the vehicle or 5, 10, and 15 µM of
zileuton showed significantly higher viability than BV-2 cells in the control group (p < 0.001). The
viability of BV-2 cells in the haemolysate + 20 µM zileuton group was significantly lower than that
of cells in the haemolysate group (p < 0.001). There was no significant difference in the viability of
BV-2 cells between the haemolysate + 20 µM zileuton group and the control group. The experimental
results revealed that 20 µM of zileuton can inhibit the haemolysate-induced over-proliferation of BV-2
cells (*** p < 0.001 compared with control; ### p < 0.001 compared with haemolysate group, n = 5).
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Figure 2. The expression of cell surface markers CD206 (for M2 phenotype) and CD68 (for M1
phenotype) on BV-2 cells as revealed by immunofluorescence (IF) staining. (a) Effects of the different
concentrations of zileuton on the expression of CD206 and CD68 on haemolysate-free BV-2 cells
via IF staining. The x-axis represents the control group and different concentrations of zileuton;
the y-axis represents the IF results for CD206 and CD68. The treatment with zileuton alone did
not affect the expression of CD206 and CD68. (b) Effects of the different concentrations of zileuton
on the expression of CD206 and CD68 on haemolysate-exposed BV-2 cells via IF staining. The
x-axis represents the control group and different concentrations of zileuton; the y-axis represents
the IF results for CD206 and CD68. The expressions of CD206 and CD68 on BV-2 cells exposed to
haemolysate were upregulated compared to BV-2 cells in the control group. (c) IF determination of the
proportions of CD206-expressing and CD68-expressing haemolysate-exposed BV-2 cells treated with
different concentrations of zileuton. The x-axis represents the control group, as well as haemolysate-
exposed BV-2 cells treated with the vehicle, 10, 15, and 20 µM of zileuton; the y-axis represents
the ratio of CD206- and CD68-labelled cells to control cells. The haemolysate-exposed BV-2 cells
treated with the vehicle, as well as 10, 15, and 20 µM of zileuton, comprised a greater number of
CD206-labelled cells than BV-2 cells in the control group. The number of CD68-labelled BV-2 cells
in the haemolysate + vehicle group and haemolysate + 10 µM zileuton group was higher than that
in BV-2 cells in the control group. In addition, the haemolysate + 20 µM zileuton group displayed
a higher number of CD206-labelled BV-2 cells and a smaller number of CD68-labelled BV-2 cells
than the haemolysate + vehicle group (p < 0.05) (** p < 0.01, *** p < 0.001 compared with control;
# p < 0.05 compared with haemolysate + vehicle group, n = 3). (d) IF determination of the ratio of
CD68-expressing BV-2 to CD206-expressing BV-2 cells in the presence of haemolysate and different
concentrations of zileuton. The x-axis represents haemolysate-exposed cells treated with the vehicle,
as well as 10, 15, and 20 µM of zileuton; the y-axis represents the ratio of CD68-labelled to CD206-
labelled cells, which decreased significantly in the haemolysate + 20 µM zileuton group compared
with the haemolysate + vehicle group (p < 0.05). Overall, the haemolysate + 20 µM zileuton group
had a lower proportion of M1-polarised BV-2 cells than the haemolysate + vehicle group (# p < 0.05
compared with the haemolysate + vehicle group, n = 3).



Int. J. Mol. Sci. 2022, 23, 4910 6 of 17

2.4. Western Blot Results for IL-10, TNF-α, 5-LOX, MyD88, and NF-κB

IL-10 is a representative anti-inflammatory cytokine expressed in activated BV-2
cells with an M2 phenotype. Western blot results revealed that the haemolysate + vehicle,
haemolysate + 5 µM zileuton, and haemolysate + 10 µM zileuton groups did not dif-
fer significantly from the control group in terms of IL-10 expression. However, the
haemolysate + 15 µM zileuton and haemolysate + 20 µM zileuton groups showed increased
expression of IL-10 compared to the control and haemolysate + vehicle groups (Figure 3a,b).
TNF-α is a representative proinflammatory cytokine expressed in activated BV-2 cells with
the M1 phenotype. The Western blot results revealed that haemolysate-exposed BV-2 cells
treated with the vehicle as well as 5, 10, and 15 µM zileuton had a higher expression
level of TNF-α than BV-2 cells in the control group. The haemolysate + 20 µM zileuton
group showed a reduced expression level of TNF-α compared to the haemolysate + vehicle
group. However, there was no significant difference in TNF-α expression levels between
the haemolysate + 20 µM zileuton group and the control group (Figure 3a,c).
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Figure 3. Western blot results for cytokines from BV-2 cells. (a) Western blot results for IL-10 and
TNF-α. (b) Histogram illustrating the Western blot results for IL-10. The differential expression
of IL-10 in M1- and M2-polarised BV-2 cells was assessed via Western blot assay to gain insight
into the polarisation of BV-2 cells. IL-10 is one of the cytokines expressed on M2 microglia. The
x-axis represents the control group, and haemolysate-exposed cells treated with the vehicle and
different concentrations of zileuton; the y-axis represents expression levels as the relative intensity
of protein bands that appeared in the Western blot assay. Haemolysate-exposed BV-2 cells treated
with 15 and 20 µM of zileuton had a significantly higher level of IL-10 than BV-2 cells in the control
and haemolysate + vehicle groups (* p < 0.05, *** p < 0.001 compared with control; ### p < 0.001
compared with haemolysate + vehicle group, n = 3). (c) Histogram illustrating the Western blot
results for TNF-α. Western blot assay was employed to measure the expression level of TNF-α, which
is a representative cytokine released by M1 microglia. The haemolysate-exposed BV-2 cells treated
with the vehicle, as well as 5, 10, and 15 µM zileuton, had a higher expression level of TNF-α than
BV-2 cells in the control group. Following treatment with 20 µM zileuton, the expression level of
TNF-α decreased significantly compared with that of BV-2 cells in the haemolysate + vehicle group
(p < 0.001). However, there was no significant difference between the haemolysate + 20 µM zileuton
group and the control group (** p < 0.01, *** p < 0.001 compared with control; ### p < 0.001 compared
with the haemolysate + vehicle group, n = 3).
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The expression level of 5-LOX in haemolysate-exposed BV-2 cells treated with the
vehicle and 5 µM zileuton was higher than that in BV-2 cells in the control group 24 h
after treatment. The haemolysate + 20 µM zileuton group displayed a lower expression
level of 5-LOX than the haemolysate + vehicle group. In addition, there was no significant
difference in the expression level of 5-LOX between the haemolysate + 20 µM zileuton
group and the control group (Figure 4a,b).
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The expression of MyD88 in BV-2 cells in the haemolysate + vehicle group was sig-
nificantly higher than that in the control group. After treatment with 5, 10, and 15 µM
zileuton, the expression level of MyD88 did not decrease significantly compared with that
in the haemolysate + vehicle group. However, the haemolysate + 20 µM zileuton group
exhibited a reduced expression level of MyD88 compared to the haemolysate + vehicle
group. In addition, there was no significant difference in the expression level of MyD88
between the haemolysate + 20 µM zileuton and control groups (Figure 4a,c). Changes in
the proportion of activated NF-κB in different groups were determined based on the ratio
of phospho-NF-κB (pNF-κB) to total NF-κB (pNF-κB/NF-κB ratio), measured via Western
blotting. The haemolysate + vehicle group showed a significantly higher pNF-κB/NF-
κB ratio than that of the control group. After treatment with different concentrations of
zileuton, the pNF-κB/NF-κB ratio in the haemolysate-exposed BV-2 cells treated with 10
and 20 µM zileuton was lower than in those treated with the vehicle, but there was no
significant difference compared to the control group (Figure 4a,d).

2.5. Enzyme-Linked Immunosorbent Assay (ELISA) Results for LTB4, IL-1β, TNF-α, IL-10,
and TGF-β

The concentration of LTB4 in the haemolysate + vehicle group was higher than that
of the control group. Following treatment with 5, 10, 15, and 20 µM of zileuton, the
haemolysate-exposed BV-2 cells showed a lower concentration of LTB4 than those treated
with the vehicle. In addition, there was no significant difference in LTB4 concentration
between haemolysate-exposed BV-2 cells treated with zileuton and BV-2 cells in the control
group (Figure 5a). The haemolysate-exposed BV-2 cells treated with the vehicle and
zileuton (5, 10, 15, and 20 µM) had a higher concentration of IL-1β than BV-2 cells in the
control group. The haemolysate-exposed BV-2 cells treated with 10, 15, and 20 µM zileuton
exhibited a lower concentration of IL-1β than those treated with the vehicle (Figure 5b).
The haemolysate-exposed BV-2 cells treated with the vehicle as well as 5, 10, 15, and
20 µM of zileuton had an elevated concentration of TNF-α compared with BV-2 cells
in the control group. The haemolysate-exposed BV-2 cells treated with 15 and 20 µM
of zileuton showed a lower concentration of TNF-α than those treated with the vehicle
(Figure 5c). The haemolysate-exposed BV-2 cells treated with the vehicle as well as 5, 10,
15, and 20 µM of zileuton also showed an increased concentration of IL-10 compared to
the BV-2 cells in the control group. After treatment with 10, 15, and 20 µM of zileuton, the
haemolysate-exposed BV-2 cells showed a higher concentration of IL-10 than those treated
with the vehicle (Figure 5d). Additionally, haemolysate-exposed BV-2 cells treated with
the vehicle as well as 5, 10, 15, and 20 µM of zileuton showed an elevated concentration of
TGF-β compared with the BV-2 cells in the control group. The concentration of TGF-β in
haemolysate-exposed BV-2 cells increased following treatment with 10, 15, and 20 µM of
zileuton compared to that in cells treated with the vehicle (Figure 5e).
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Figure 5. ELISA results for LTB4, IL-1β, TNF-α, IL-10, and TGF-β from the cell culture supernatant.
(a) ELISA results for LTB4. The concentration of LTB4 in the haemolysate + vehicle group was
higher than that in the control group. Following treatment with 5, 10, 15, and 20 µM of zileuton,
the haemolysate-exposed BV-2 cells showed a lower concentration of LTB4 than those treated with
the vehicle. There was no significant difference between haemolysate-exposed, zileuton-treated
BV-2 cells, and BV-2 cells in the control group (*** p < 0.001 compared with control; ## p < 0.01,
### p < 0.001 compared with haemolysate + vehicle group, n = 3). (b) ELISA results for IL-1β. The
haemolysate + vehicle group and the haemolysate + zileuton (5, 10, 15, and 20 µM) groups had a
higher concentration of IL-1β than the control group. The haemolysate-exposed BV-2 cells treated
with 10, 15, and 20 µM of zileuton displayed a lower concentration of IL-1β than BV-2 cells in the
haemolysate + vehicle group (*** p < 0.001 compared with control; # p < 0.05, ### p < 0.001 compared
with haemolysate + vehicle group, n = 3). (c) ELISA results for TNF-α. The haemolysate-exposed
BV-2 cells treated with the vehicle, as well as 5, 10, 15, and 20 µM of zileuton, showed elevated
concentrations of TNF-α compared with the control group. The haemolysate-exposed BV-2 cells
treated with 15 and 20 µM of zileuton showed a lower concentration of TNF-α than those treated with
the vehicle (*** p < 0.001 compared with control; ### p < 0.001 compared with haemolysate + vehicle
group, n = 3). (d) ELISA results for IL-10. The haemolysate-exposed BV-2 cells treated with the vehicle,
as well as 5, 10, 15, and 20 µM of zileuton, had an increased concentration of IL-10 compared with the
control group. After being treated with 10, 15, and 20 µM of zileuton, haemolysate-exposed BV-2 cells
showed a higher concentration of IL-10 than those treated with the vehicle (*** p < 0.001 compared
with control; # p < 0.05, ## p < 0.01, ### p < 0.001 compared with haemolysate + vehicle group, n = 3).
(e) ELISA results for TGF-β. The haemolysate-exposed BV-2 cells treated with the vehicle, as well
as 5, 10, 15, and 20 µM of zileuton, showed an elevated concentration of TGF-β compared with the
control group. Additionally, the concentration of TGF-β was higher in the haemolysate-exposed
BV-2 cells treated with 10, 15, and 20 of zileuton than in those treated with the vehicle (*** p < 0.001
compared with control; ### p < 0.001 compared with haemolysate + vehicle group, n = 3).

3. Discussion

Spontaneous SAH has a high mortality rate. Ruptured aneurysms cause approximately
85% of spontaneous SAH cases are caused by ruptured aneurysms [1]. Haemorrhage due
to a ruptured aneurysm contributes to approximately 5–7% of stroke cases. Most patients
with ruptured aneurysms are in the prime of their lives at approximately 55 years of age,
and are often the backbone of the family and society [20]. The survival rate of patients with
spontaneous SAH caused by ruptured aneurysms has increased by approximately 17% in
the past few decades owing to the availability of therapeutic alternatives to surgery, such



Int. J. Mol. Sci. 2022, 23, 4910 10 of 17

as endovascular embolisation of aneurysms, as well as the improvement in care quality in
the intensive care unit. However, only about half of the patients with spontaneous SAH
survive, often developing severe neurological sequelae [1]. In addition, only approximately
two-thirds of patients who survive are capable of self-care within one year after the onset
of spontaneous SAH [21].

Numerous drugs have been employed in previous clinical trials for the treatment
of vasospasm after SAH; however, the reduced incidence rate of vasospasm does not
seem to improve neurological prognosis [22]. Current therapeutic strategies focus on the
prevention of neuronal death, which leads to neurological defects in the brain during
EBI following SAH. Advanced neuroimaging techniques, such as phosphorous magnetic
resonance spectroscopy, have provided insights into EBI after SAH by detecting changes in
energy metabolism in different cerebral territories [23]. Although there is still no consensus
on the time course of EBI, after reviewing the literature, we adopted the following definition
of EBI: an event that occurs within the first 72 h of SAH [20]. Delayed brain injury represents
a series of severe pathological changes that are currently considered sequelae of EBI after
SAH. In addition, vasospasm is no longer considered the cause of delayed brain injury
but one of its clinical manifestations. Therefore, EBI caused by SAH is believed to be
the trigger for delayed cerebral vasospasm and ischaemic nerve injury [24]. It remains
unclear whether prevention or attenuation of EBI can reduce the severity of nerve injury
by decreasing the incidence of delayed brain injury. There is evidence that supports the
theory that EBI intervention prevents delayed neurologic deficits. In vivo, anti-CD47
binds to CD47, an integrin-associated protein expressed on the surface of erythrocytes,
to improve neuroprotection by accelerating erythrocyte-phagocytosis [25]. In vivo and
in vitro overexpression of S-nitrosoglutathione reductase attenuates nitrosative stress to
achieve neuroprotection in EBI after SAH [26].

Previous studies have explored numerous drugs or compounds that inhibit neuronal
death during EBI in cellular and animal models, but these have not yielded excellent clinical
outcomes in humans [27–29]. Several free radicals, which are generated via inflammatory
responses induced by subarachnoid blood clots in spontaneous SAH, trigger the lipid
peroxidation of polyunsaturated fatty acids in the brain. The resulting lipid peroxides
enhance the production of downstream inflammatory mediators leading to neuronal death.
Given these responses, a substantial number of pharmacological studies have focused
on identifying effective inhibitors of spontaneous SAH-induced lipid peroxidation [30].
Previous studies on cellular models of intracerebral haemorrhage (ICH) have confirmed that
hemin induces the upregulation of the expression of 5-LOX and 5-LOX-activating proteins
in the nuclear membrane. The 5-LOX-related metabolite, 5-hydroxyeicosatetraenoic acid, is
converted to a series of leukotrienes, which are inflammatory mediators that induce cell
death. Previous experiments have demonstrated that 5-LOX inhibitors, including zileuton,
BW B70, and BW A4C, improve the survival rate of neurones following haemorrhagic
stroke in mice [31].

Reversal of M1 polarisation plays a key role in preventing spontaneous SAH-induced
nerve injury. For example, activation of retinoic acid receptor (RAR)-α with AM80, a
selective agonist of RAR-α, could suppress nuclear translocation of NF-κB and reverse M1
polarisation to the M2 phenotype [32]. Targeting M1 microglia is an effective method to
suppress neuroinflammation after SAH. In vivo, L-N6-(1-iminoethyl)-lysine (L-NIL), an
inducible nitric oxide synthase (iNOS) inhibitor, inhibits iNOS expression and promotes
ferroptosis in M1 microglia to decrease the release of pro-inflammatory molecules such as
TNF-α, IL-6, and IL-1β [33]. It has been reported that BW-B70C is a 5-LOX inhibitor that can
block the nuclear translocation of NF-κB in LPS-exposed rat microglia, thereby suppressing
the production of downstream pro-inflammatory cytokines [17]. Zileuton is a clinical
5-LOX inhibitor widely administered to patients with asthma. The mechanism underlying
its therapeutic effects is attributed primarily to its anti-inflammatory activity. Previous
studies on animal models of ischaemic stroke demonstrated that zileuton improves the
neurological prognosis of rats by inhibiting inflammatory responses via activation of the
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PI3K/AKT pathway [34]. Zileuton inhibits inflammatory responses and neuronal death by
activating the PI3K/AKT pathway in an animal model of spontaneous SAH [10].

Our preliminary experiments revealed that exposure to haemolysate triggered mi-
croglial proliferation, which was subsequently suppressed by zileuton. The viability of
cells treated with 20 µM zileuton did not differ significantly from that of cells in the control
group. Activated microglia have been reported to accumulate and proliferate in the injured
brain area [35–40]. Further cell-based experiments showed that haemolysate could induce
the overexpression of 5-LOX in BV-2 cells, and the expression of 5-LOX was inhibited by
zileuton. We found that the exposure of BV-2 cells to haemolysate enhanced the expression
of MyD88, which was subsequently suppressed following treatment with 20 µM zileuton.
The elevated ratio of activated NF-κB (i.e., pNF-κB) to total NF-κB induces the activation of
BV-2 cells with an increased tendency toward M1 polarisation and enhances the production
of downstream pro-inflammatory cytokines such as TNF-α [41]. In the present study,
exposure to haemolysate increased the proportion of pNF-κB in BV-2 cells, leading to the
polarisation of BV-2 cells towards the M1 phenotype. However, 20 µM zileuton reduced the
proportion of pNF-κB in BV-2 cells and reversed the M1 polarisation of BV-2 cells towards
the M2 phenotype. These results suggest that the inhibitory effect of zileuton against M1
polarisation of BV-2 cells is achieved by suppressing the expression of 5-LOX and reducing
the biosynthesis of its downstream products. Previous studies have reported that cysteinyl
leukotriene receptor 2 (CYSLTR2) can affect M1/M2 polarisation of microglia through the
NF-κB pathway; specifically, activated CYSLTR2 induces M1 polarisation of microglia by
activating the downstream NF-κB pathway. In contrast, inhibition of CYSLTR2 results in
the polarisation of cells towards the M2 phenotype by suppressing the downstream NF-κB
pathway [42]. The decreased levels of 5-LOX products (e.g., cysteinyl leukotriene) reduced
the activation of CYSLTR2 and the NF-κB pathway, thereby inhibiting M1 polarisation of
BV-2 cells. The M1/M2 polarisation of activated cells following exposure to haemolysate
may be associated with the expression of CYSLTR2.

α-Synuclein is a 140-amino-acid protein expressed in presynaptic cells, and its aberrant
aggregation structure or overexpression may cause Parkinson’s disease. A previous cell-
based experiment on neuroinflammation showed that α-synuclein-induced activation of
TNF-α production in BV-2 cells may be related to the TLR4-mediated PI3K/AKT pathway.
Inhibition of PI3K or AKT can reduce the production of the downstream inflammatory
mediator TNF-α by preventing the nuclear translocation of NF-κB [43]. Our study con-
firmed that zileuton can reverse the haemolysate-induced M1 polarisation of BV-2 cells by
inhibiting the expression of 5-LOX and inhibiting the haemolysate-induced upregulation of
MyD88 expression. In addition, zileuton suppressed the production of pro-inflammatory
cytokines by inhibiting the nuclear translocation of NF-κB in BV-2 cells. A previous study
on neuroinflammation demonstrated that TNF-α production in BV-2 cells may be associ-
ated with the TLR4-mediated PI3K/AKT pathway [43]. In the future, the mechanism by
which zileuton affects the viability of BV-2 cells can be confirmed by determining whether
it prevents the nuclear translocation of NF-κB by inhibiting PI3K or AKT to reduce the
downstream production of TNF-α. The potential association of TLR4-mediated PI3K/AKT
with the inhibitory effect of zileuton against the M1 polarisation of BV-2 cells can be in-
directly confirmed by determining whether the PI3K/AKT activator or TLR4 agonist can
reverse the inhibitory effect of zileuton on the M1 polarisation of BV-2 cells.

During inflammatory responses in the central nervous system, microglia and dendritic
cells exposed to different cytokines may be polarised towards different phenotypes [44]. It
has been reported that LPS is a TLR4 agonist that can induce the upregulation of CYSLTR2
expression during the LPS-induced maturation of dendritic cells [45]. Animal and cell-based
experiments on ischaemic stroke have shown that inhibition of the CYSLTR2-ERK1/2 path-
way can reduce the M1 polarisation of microglia [46]. Haem, a component of haemolysates,
is also a damage-associated molecule that activates the downstream MyD88/NF-κB path-
way after binding to TLR4 [47]. This study demonstrated that haemolysate activates the
MyD88/NF-κB pathway and promotes the polarisation of cells towards the M1 phenotype.
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However, it remains to be confirmed whether haemolysates can upregulate the expression
of CYSLTR2 by interacting with TLR4. Previous studies have revealed an association be-
tween activation of the CYSLTR2-ERK1/2 pathway and M1 polarisation of cells. Therefore,
zileuton may affect the activation of the CYSLTR2-ERK1/2 pathway by suppressing the
expression of 5-LOX and decreasing the level of its product (i.e., cysteinyl leukotriene) with
a reduced effect on CYSLTR2, thereby inhibiting the M1 polarisation of microglia [46].

A previous cell-based experiment showed that the product of 5-LOX is essential
for nuclear translocation, that is, the activation of NF-κB in LPS-exposed macrophages.
Animal experiments also revealed that macrophages in LPS-exposed 5-LOX–/– mice had
lower nuclear translocation of NF-κB than those in wild-type mice. Thus, 5-LOX plays
an important role in the MyD88-dependent activation of NF-κB [48]. A previous study in
an animal model of spontaneous SAH showed that the expression of BLT1 in microglia
was upregulated following haemorrhage, and the upregulated expression of BLT1 was
positively correlated with activation of the NF-κB pathway [11]. In a cell-based experiment,
LTB4 induced activation of murine BV-2 cells in an autocrine manner following thrombin
exposure. U-75302 is a BLT1 antagonist that inhibits the activation of BV-2 cells and
reduces the production of downstream pro-inflammatory cytokines [49]. We inferred
that the products of 5-LOX (e.g., LTB4) bind to BLT1 and enhance the production of pro-
inflammatory cytokines by promoting the activation of BV-2 cells via MyD88-dependent
NF-κB activation. In the present study, we suggest that zileuton (5-LOX inhibitor) prevents
the activation of BV-2 cells by inhibiting the expression of 5-LOX in BV-2 cells, which
reduces the binding of 5-LOX products binding to the BLT1 receptor (e.g., LTB4).

Our study suggested that high concentrations of zileuton inhibited haemolysate-
induced activation and proliferation of BV-2 cells, thereby reducing the production of
downstream pro-inflammatory cytokines. It is recognised that zileuton regulates the activa-
tion of BV-2 cells through the MyD88/NF-κB pathway, but the specific mechanism remains
unclear. In addition, whether upstream regulation is achieved via TLR4, CYSLTR2, or BLT1
remains to be clarified. Co-cultivation of microglia with other neurones or neuroglia will be
carried out in future studies to determine whether zileuton exerts the same protective effect
on neurones. In vivo, zileuton has been shown to improve neurological function in many
central nervous system diseases, including spontaneous SAH, intracerebral haemorrhage,
Alzheimer’s disease, ischaemic brain damage, and depression [10,34,50–52]. Although
there is no clinical indication for its use in central nervous system diseases, zileuton is a
Food and Drug Administration-approved therapy for asthma [53]. In the future, zileuton
might be valuable for treating spontaneous SAH, a fatal disease currently lacking effective
therapy to attenuate severe neurologic deficits.

4. Materials and Methods
4.1. Cellular Model

BV-2 cells are widely employed in cell-based experiments to explore the viability of mi-
croglia because they exhibit many microglial characteristics [54,55]. The BV-2 cells (EP-CL-
0493; Elabsciences Biotechnology; Houston, TX, USA) were used in this study and cultured
in Dulbecco’s modified Eagle’s medium (DMEM; 11995-056, Gibco) containing 10% foetal
bovine serum (FBS; TMS-013-BKR, Merck) and 1.5 µg/L penicillin/streptomycin/neomycin
(03-033-1B, Biological Industries) at an atmospheric temperature of 37 ◦C with high hu-
midity in an incubator supplemented with 5% CO2. After inoculation into a medium
containing 1 mg/mL of haemolysate for 30 min, the BV-2 cells were treated with different
concentrations (5, 10, 15, or 20 µM) of zileuton and harvested 24 h after treatment.

4.2. Preparation of Haemolysate

Arterial blood samples were collected from the rats and centrifuged at 800× g for
5 min. The resulting supernatant was discarded, and the pellet (erythrocytes) was rinsed
three times with phosphate-buffered saline (PBS) (PBS:erythrocyte > 5:1) and lysed using
four freeze/thaw cycles. Subsequently, the erythrocyte lysate was diluted 1:1 with PBS
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and centrifuged at 6000× g for 30 min to harvest the supernatant, which contained the
haemolysate. The concentration of the haemolysate was determined using Drabkin’s
reagent (D5941, Sigma Aldrich).

4.3. Treatment with Zileuton

The stock solution of zileuton (HY-14164, MedChemExpress) was used in this study
and was prepared in 0.2% dimethyl sulfoxide (DMSO; D8418, Sigma Aldrich) at a con-
centration of 10 mM. Before the experiment, the stock solution of zileuton was diluted
with DMEM containing 10% FBS to 5, 10, 15, or 20 µM. The vehicle (control treatment)
contained 0.2% DMSO. In the cell-based experiment, BV-2 cells were exposed to 1 mg/mL
haemolysate in the culture medium for 30 min and treated with zileuton for 24 h.

4.4. Cell Viability Assay

The Cell Counting Kit-8 (CCK-8; C0005, TargetMol) was used to evaluate the viability
of cells treated with haemolysate and different concentrations of zileuton. The aim of
the assay was to confirm that haemolysate could induce BV-2 cell proliferation, whereas
zileuton attenuated this effect. After being suspended in a culture medium (0.5 mL), the
BV-2 cells were inoculated into a 24-well plate at a cell density of 5 × 104 cells/mL and
incubated for 24 h before treatment with zileuton. The viability of cells treated with zileuton
was assessed using the CCK-8 assay based on the degree of CCK-8 reduction. Briefly, BV-2
cells were inoculated into a culture medium containing 0.5 mg/mL CCK-8 and incubated
at 37 ◦C for 1 h. WST-8 in CCK-8 was reduced by dehydrogenases in BV-2 cells to generate
orange-yellow formazan, a metabolite that can be dissolved in the culture medium. The
concentration of soluble formazan was determined by measuring the absorbance at 450 nm
using a microplate reader (MULTISKAN FC, Thermo Fisher Scientific, Tokyo, Japan). The
concentration of formazan was expressed as a percentage of the absorbance of the control.

4.5. Immunostaining of Cells

2.5 × 104 cells BV-2 cells were inoculated into an 8-well chamber slide at 500 µL/well
and exposed to 1 mg/mL of haemolysate for 30 min before treatment with zileuton at 5,
10, 15, or 20 µM. After 24 h of treatment, the cell culture supernatant was discarded, and
cells on the cell culture slide were fixed with 4% paraformaldehyde at room temperature
for 30 min, rinsed twice with Tris-buffered saline (TBS), and incubated at 4 ◦C for 16 h
with rabbit anti-CD206 (Proteintech, 1:200) and mouse anti-CD68 (Bio-Rad Laboratories,
1:200) primary antibodies. Subsequently, the cells on the glass slide were rinsed twice
with TBS and incubated at room temperature for 90 min with the following secondary
antibodies: goat anti-rabbit Alexa Fluor®488 (Jackson ImmunoResearch, 1:200) and goat
anti-mouse Alexa Fluor®594 (Jackson ImmunoResearch, 1:200). After rinsing twice with
TBS, the glass slide was mounted using FluoroshieldTM with 4′,6-diamidino-2-phenylindole
(DAPI). The stained cells were observed under a fluorescence microscope (BX43, Olympus).
The fluorescence intensities of DAPI, CD206, and CD68 were analysed using the ImageJ
software (National Institutes of Health, NIH). DAPI was used as the nuclear counterstain.

4.6. Western Blotting

1 × 105 BV-2 cells suspended in a 2 mL culture medium were incubated into a 6-well
plate for 24 h and cultured with zileuton for 24 h. These cells were harvested and resus-
pended in ice-cold lysis buffer (M-PER Mammalian Protein Extraction Reagent, 78501,
Thermo Fisher Scientific) including protease inhibitors (cOmplete™, Mini, EDTA-free
Protease Inhibitor Cocktail, 4693159001, Roche, Basel, Switzerland) and phosphatase in-
hibitors (PhosSTOP, 4906845001, Roche). The protein concentration in the supernatant
was measured using Bradford assay (Protein Assay Dye Reagent Concentrate, 5000006,
Bio-Rad Laboratories). An equal amount of cell lysate was separated on a 10% sodium
dodecyl sulfate-polyacrylamide gel and electrotransferred onto a polyvinylidene difluoride
(PVDF) membrane. The PVDF membrane was then immersed in TBS with 0.1% Tween®20
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detergent (TBST) and 5% skimmed milk powder at room temperature for 1 h to reduce
non-specific antibody binding. Subsequently, PVDF membranes were rinsed with TBST
and incubated for 2 h at room temperature with the following primary antibodies:

1. Microglial markers: M1 marker, CD68 (1:500, MCA341R, Serotec); M2 marker, CD206
(1:1000, 18704-1-AP, proteintech).

2. 5-LOX (1:1000, ab169755, Abcam), TLR4 (1:1000, PA5-23124, Thermo Fisher Scientific),
MyD88 (1:1000, 23230-1-AP, Proteintech), NF-κB (1:1000, 10754-1-AP, Proteintech),
pNF-κB (1:1000, 3033, Cell Signalling Technology), IL-10, TNF-α, and β-actin (1:10,000,
A5441, Sigma-Aldrich).

After incubation with the primary antibodies, the PVDF membrane was incubated with
horseradish peroxidase-conjugated secondary antibody [1:2000, anti-rabbit (111-035-144,
Jackson ImmunoResearch) or anti-mouse (AP124P, Chemicon)]. Finally, the PVDF mem-
brane was rinsed and incubated in an enhanced chemiluminescence reagent (PerkinElmer),
according to the manufacturer’s instructions. The resulting signal intensity was analysed
using ImageJ software (NIH).

4.7. ELISA

BV-2 cells were inoculated into a 24-well plate and exposed to 1 mg/mL haemolysate
for 30 min, followed by treatment with 5, 10, 15, or 20 µM zileuton for 24 h. The cell
culture supernatant was harvested to measure cytokine concentrations using the following
ELISA kits: IL-1β (KE10003, Proteintech), TNF-α (KE10002, Proteintech), IL-10 (KE10008,
Proteintech), TGF-β (RK00057, ABclonal), and LTB4 (E-EL-0061, Elabscience).

4.8. Statistical Analyses

All data are expressed as mean ± standard error of the mean. Differences between
groups were analysed using a one-way analysis of variance, followed by Tukey’s or Bonfer-
roni post hoc tests. Statistical analyses were conducted using SPSS Statistics (version 24.0;
IBM Inc.). Statistical significance was set at p < 0.05.

5. Conclusions

Treatment with 20 µM zileuton suppressed haemolysate-induced proliferation and
activation of BV-2 cells. Zileuton potentially inhibits haemolysate-induced high expression
of 5-LOX and reduces M1 polarisation of BV-2 cells by inhibiting the MyD88/NF-κB
pathway, thereby preventing the activation of BV-2 cells. The 5-LOX inhibitor, zileuton,
might attenuate haemolysate-induced neuroinflammation after spontaneous SAH.

Author Contributions: H.-Y.S., Y.-C.T., H.-P.T. and C.-L.L. conceived and designed the study. H.-Y.S.,
Y.-C.T. and C.-L.L. acquired data. H.-Y.S., Y.-C.T. and C.-L.L. conducted the data analysis and
interpretation. H.-Y.S., Y.-C.T. and C.-L.L. drafted the manuscript. H.-Y.S., Y.-C.T., H.-P.T. and C.-L.L.
revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The authors received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and analysed in the present study are available from
the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Loch Macdonald, R.; Schweizer, T.A. Spontaneous subarachnoid haemorrhage. Lancet 2017, 389, 655–666. [CrossRef]
2. Sehba, F.A.; Hou, J.; Pluta, R.M.; Zhang, J.H. The importance of early brain injury after subarachnoid hemorrhage. Prog. Neurobiol.

2012, 97, 14–37. [CrossRef] [PubMed]
3. Chen, S.; Feng, H.; Sherchan, P.; Klebe, D.; Zhao, G.; Sun, X.; Zhang, J.; Tang, J.; Zhang, J.H. Controversies and evolving new

mechanisms in sub-arachnoid hemorrhage. Prog. Neurobiol. 2014, 115, 64–91. [CrossRef] [PubMed]

http://doi.org/10.1016/S0140-6736(16)30668-7
http://doi.org/10.1016/j.pneurobio.2012.02.003
http://www.ncbi.nlm.nih.gov/pubmed/22414893
http://doi.org/10.1016/j.pneurobio.2013.09.002
http://www.ncbi.nlm.nih.gov/pubmed/24076160


Int. J. Mol. Sci. 2022, 23, 4910 15 of 17

4. Gaberel, T.; Gakuba, C.; Zheng, Y.; Lépine, M.; Lo, E.H.; Leyen, K.V. Impact of 12/15-lipoxygenase on brain injury after
sub-arachnoid hemorrhage. Stroke 2019, 50, 520–523. [CrossRef]

5. Zheng, Z.V.; Wong, K.C.G. Microglial activation and polarisation after subarachnoid hemorrhage. Neuroimmunol. Neuroinflamm.
2019, 6, 1.

6. Jurga, A.M.; Paleczna, M.; Kuter, K.Z. Overview of General and Discriminating Markers of Differential Microglia Phenotypes.
Front. Cell. Neurosci. 2020, 14, 198. [CrossRef]

7. Walker, D.G.; Lue, L.-F. Immune phenotypes of microglia in human neurodegenerative disease: Challenges to detecting microglial
polarization in human brains. Alzheimer’s Res. Ther. 2015, 7, 56. [CrossRef]

8. Subramaniam, S.R.; Federoff, H.J. Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson’s Disease. Front.
Aging Neurosci. 2017, 9, 176. [CrossRef]

9. Song, G.J.; Suk, K. Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases. Front.
Aging Neurosci. 2017, 9, 139. [CrossRef]

10. Liu, L.; Zhang, P.; Zhang, Z.; Liang, Y.; Chen, H.; He, Z.; Sun, X.; Guo, Z.; Deng, Y. 5-Lipoxygenase inhibition reduces inflammation
and neuronal apoptosis via AKT signaling after subarachnoid hemorrhage in rats. Aging 2021, 13, 11752–11761. [CrossRef]

11. Ye, Z.-N.; Zhuang, Z.; Wu, L.-y.; Liu, J.-p.; Chen, Q.; Zhang, X.-s.; Zhou, M.-l.; Zhang, Z.-h.; Li, W.; Wang, X.-l.; et al. Expression
and cell distribution of leukotriene B4 receptor 1 in the rat brain cortex after experimental subarachnoid hemorrhage. Brain Res.
2016, 1652, 127–134. [CrossRef] [PubMed]

12. Li, H.; Wang, Y.; Wang, B.; Li, M.; Liu, J.; Yang, H.; Shi, Y. Baicalin and Geniposide Inhibit Polarization and Inflammatory Injury of
OGD/R-Treated Microglia by Suppressing the 5-LOX/LTB4 Pathway. Neurochem. Res. 2021, 46, 1844–1858. [CrossRef] [PubMed]

13. Akhter, N.; Madhoun, A.; Arefanian, H.; Wilson, A.; Kochumon, S.; Thomas, R.; Shenouda, S.; Al-Mulla, F.; Ahmad, R.; Sindhu, S.
Oxidative Stress Induces Expression of the Toll-Like Receptors (TLRs) 2 and 4 in the Human Peripheral Blood Mononuclear Cells:
Implications for Metabolic Inflammation. Cell. Physiol. Biochem. 2019, 53, 1–18. [CrossRef] [PubMed]

14. Zhou, Y.; Zhang, T.; Wang, X.; Wei, X.; Chen, Y.; Guo, L.; Zhang, J.; Wang, C. Curcumin modulates macrophage polarisation
through the inhibition of the toll-Like receptor 4 expression and its signaling pathways. Cell. Physiol. Biochem. 2015, 36, 631–641.
[CrossRef]

15. Lan, X.; Han, X.; Li, Q.; Gao, Y.; Cheng, T.; Wan, J.; Zhu, W.; Wang, J. Pinocembrin protects hemorrhagic brain primarily by
inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav. Immun. 2017, 61, 326–339. [CrossRef]

16. Ahmed, H.; Khan, M.; Kahlert, U.; Niemelä, M.; Hänggi, D.; Chaudhry, S.; Muhammad, S. Role of Adaptor Protein Myeloid
Differentiation 88 (MyD88) in Post-Subarachnoid Hemorrhage Inflammation: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 4185.
[CrossRef]

17. Jatana, M.; Giri, S.; Ansari, M.A.; Elango, C.; Singh, A.K.; Singh, I.; Khan, M. Inhibition of NF-kappaB activation by 5-lipoxygenase
inhibitors protects brain against injury in a rat model of focal cerebral ischemia. J. Neuroinflamm. 2006, 3, 12. [CrossRef]

18. Helmy, M.M.; Hashim, A.A.; Mouneir, S.M. Zileuton alleviates acute cisplatin nephrotoxicity: Inhibition of lipoxygenase pathway
favorably modulates the renal oxidative/inflammatory/caspase-3 axis. Prostaglandins Other Lipid Mediat. 2018, 135, 1–10.
[CrossRef]

19. Tu, X.-K.; Yang, W.-Z.; Shi, S.-S.; Chen, C.-M.; Wang, C.-H. 5-lipoxygenase inhibitor zileuton at-tenuates ischemic brain damage:
Involvement of matrix metalloproteinase 9. Neurol Res. 2009, 31, 848–852. [CrossRef]

20. Rass, V.; Helbok, R. Early Brain Injury After Poor-Grade Subarachnoid Hemorrhage. Curr. Neurol. Neurosci. Rep. 2019, 19, 78.
[CrossRef]

21. Rinkel, G.J.; Algra, A. Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2011,
10, 349–356. [CrossRef]

22. Macdonald, R.L.; Higashida, R.T.; Keller, E.; Mayer, S.A.; Molyneux, A.; Raabe, A.; Vajkoczy, P.; Wanke, I.; Bach, D.;
Pharm, A.F.; et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage
undergoing surgical clipping: A randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011,
10, 618–625. [CrossRef]

23. Treichl, S.A.; Ho, W.M.; Steiger, R.; Grams, A.E.; Rietzler, A.; Luger, M.; Gizewski, E.R.; Thomé, C.; Petr, O. Cerebral Energy Status
and Altered Metabolism in Early Brain Injury After Aneurysmal Subarachnoid Hemorrhage: A Prospective 31P-MRS Pilot Study.
Front. Neurol. 2022, 13, 319. [CrossRef] [PubMed]

24. Ren, H.; Kong, Y.; Liu, Z.; Zang, D.; Yang, X.; Wood, K.; Li, M.; Liu, Q. Selective NLRP3 (Pyrin Domain–Containing Protein 3)
in-flammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke 2018, 49, 184–192. [CrossRef]

25. Xu, C.-R.; Li, J.-R.; Jiang, S.-W.; Wan, L.; Zhang, X.; Xia, L.; Hua, X.-M.; Li, S.-T.; Chen, H.-J.; Fu, X.-J.; et al. CD47 Blockade
Accelerates Blood Clearance and Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage. Front. Immunol.
2022, 13, 823999. [CrossRef]

26. Wang, L.; Wang, Z.; You, W.; Yu, Z.; Li, X.; Shen, H.; Li, H.; Sun, Q.; Li, W.; Chen, G. Enhancing S-nitrosoglutathione reductase
decreases S-nitrosylation of Drp1 and reduces neuronal apoptosis in experimental subarachnoid hemorrhage both in vivo and
in vitro. Brain Res. Bull. 2022, 183, 184–200. [CrossRef]

27. Lucke-Wold, B.P.; Logsdon, A.F.; Manoranjan, B.; Turner, R.C.; McConnell, E.; Vates, G.E.; Huber, J.D.; Rosen, C.L.; Simard,
J.M. Aneurysmal Subarachnoid Hemorrhage and Neuroinflammation: A Comprehensive Review. Int. J. Mol. Sci. 2016, 17, 497.
[CrossRef]

http://doi.org/10.1161/STROKEAHA.118.022325
http://doi.org/10.3389/fncel.2020.00198
http://doi.org/10.1186/s13195-015-0139-9
http://doi.org/10.3389/fnagi.2017.00176
http://doi.org/10.3389/fnagi.2017.00139
http://doi.org/10.18632/aging.202869
http://doi.org/10.1016/j.brainres.2016.10.006
http://www.ncbi.nlm.nih.gov/pubmed/27725151
http://doi.org/10.1007/s11064-021-03305-1
http://www.ncbi.nlm.nih.gov/pubmed/33891262
http://doi.org/10.33594/000000117
http://www.ncbi.nlm.nih.gov/pubmed/31162913
http://doi.org/10.1159/000430126
http://doi.org/10.1016/j.bbi.2016.12.012
http://doi.org/10.3390/ijms22084185
http://doi.org/10.1186/1742-2094-3-12
http://doi.org/10.1016/j.prostaglandins.2018.01.001
http://doi.org/10.1179/174313209X403913
http://doi.org/10.1007/s11910-019-0990-3
http://doi.org/10.1016/S1474-4422(11)70017-5
http://doi.org/10.1016/S1474-4422(11)70108-9
http://doi.org/10.3389/fneur.2022.831537
http://www.ncbi.nlm.nih.gov/pubmed/35295831
http://doi.org/10.1161/STROKEAHA.117.018904
http://doi.org/10.3389/fimmu.2022.823999
http://doi.org/10.1016/j.brainresbull.2022.03.010
http://doi.org/10.3390/ijms17040497


Int. J. Mol. Sci. 2022, 23, 4910 16 of 17

28. Young, A.M.; Karri, S.K.; Helmy, A.; Budohoski, K.P.; Kirollos, R.W.; Bulters, D.; Kirkpatrick, P.J.; Ogilvy, C.S.; Trivedi, R.A.
Pharmacologic Management of Subarachnoid Hemorrhage. World Neurosurg. 2015, 84, 28–35. [CrossRef]

29. Savarraj, J.P.J.; Parsha, K.; Hergenroeder, G.W.; Zhu, L.; Bajgur, S.S.; Ahn, S.; Lee, K.; Chang, T.; Kim, D.H.; Liu, Y.; et al. Systematic
model of peripheral inflammation after subarachnoid hemorrhage. Neurology 2017, 88, 1535–1545. [CrossRef]

30. Zhang, X.; Wu, Q.; Lu, Y.; Wan, J.; Dai, H.; Zhou, X.; Lv, S.; Chen, X.; Zhang, X.; Hang, C.; et al. Cerebroprotection by salvianolic
acid B after experimental sub-arachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radic. Biol. Med.
2018, 124, 504–516. [CrossRef]

31. Karuppagounder, S.S.; Alin, L.; Chen, Y.; Brand, D.; Bourassa, M.W.; Dietrich, K.; Wilkinson, C.M.; Nadeau, C.A.; Kumar, A.;
Perry, S.; et al. N-acetylcysteine targets 5 lipoxygen-ase-derived, toxic lipids and can synergize with prostaglandin E2 to inhibit
ferroptosis and improve outcomes following hemorrhagic stroke in mice. Ann. Neurol. 2018, 84, 854–872. [CrossRef] [PubMed]

32. Tian, Y.; Liu, B.; Li, Y.; Zhang, Y.; Shao, J.; Wu, P.; Xu, C.; Chen, G.; Shi, H. Activation of RARα Receptor Attenuates Neuroinflam-
mation After SAH via Promoting M1-to-M2 Phenotypic Polarization of Microglia and Regulating Mafb/Msr1/PI3K-Akt/NF-κB
Pathway. Front. Immunol. 2022, 13, 839796. [CrossRef] [PubMed]

33. Qu, W.; Cheng, Y.; Peng, W.; Wu, Y.; Rui, T.; Luo, C.; Zhang, J. Targeting iNOS Alleviates Early Brain Injury After Experimental
Subarachnoid Hemorrhage via Promoting Ferroptosis of M1 Microglia and Reducing Neuroinflammation. Mol. Neurobiol. 2022,
59, 3124–3139. [CrossRef] [PubMed]

34. Tu, X.-K.; Zhang, H.-B.; Shi, S.-S.; Liang, R.-S.; Wang, C.-H.; Chen, C.-M.; Yang, W.-Z. 5-LOX Inhibitor Zileuton Reduces
Inflammatory Reaction and Ischemic Brain Damage Through the Activation of PI3K/Akt Signaling Pathway. Neurochem. Res.
2016, 41, 2779–2787. [CrossRef] [PubMed]

35. Sapkota, A.; Gaire, B.P.; Kang, M.G.; Choi, J.W. S1P2 contributes to microglial activation and M1 polarisation following cerebral
ischemia through ERK1/2 and JNK. Sci. Rep. 2019, 9, 12106. [CrossRef]

36. Lin, F.L.; Yen, J.L.; Kuo, Y.C.; Kang, J.J.; Cheng, Y.W.; Huang, W.J.; Hsiao, G. HADC8 inhibitor WK2-16 therapeu-tically targets
lipopolysaccharide-induced mouse model of neuroinflammation and microglial activation. Int. J. Mol. Sci. 2019, 20, 410.
[CrossRef]

37. Monif, M.; Burnstock, G.; Williams, D.A. Microglia: Proliferation and activation driven by the P2X7 receptor. Int. J. Biochem. Cell
Biol. 2010, 42, 1753–1756. [CrossRef]

38. Wu, M.; Xu, L.; Wang, Y.; Zhou, N.; Zhen, F.; Zhang, Y.; Qu, X.; Fan, H.; Liu, S.; Chen, Y.; et al. S100A8/A9 induces microglia
activation and promotes the apoptosis of oligodendrocyte precursor cells by activating the NF-κB signaling pathway. Brain Res.
Bull. 2018, 143, 234–245. [CrossRef]

39. Möller, T.; Hanisch, U.-K.; Ransom, B.R. Thrombin-Induced Activation of Cultured Rodent Microglia. J. Neurochem. 2002,
75, 1539–1547. [CrossRef]

40. Zheng, Z.V.; Lyu, H.; Lam, S.Y.E.; Lam, P.K.; Poon, W.S.; Wong, G.K.C. The dynamics of microglial polarisation reveal the resident
neuroinflammatory responses after subarachnoid hemorrhage. Transl. Stroke Res. 2020, 11, 433–449. [CrossRef]

41. Huang, M.; Li, Y.; Wu, K.; Yan, W.; Tian, T.; Wang, Y.; Yang, H. Paraquat modulates microglia M1/M2 polarisation via activation
of TLR4-mediated NF-κB signaling pathway. Chem. Biol. Interact. 2019, 310, 108743. [CrossRef] [PubMed]

42. Zhao, R.; Ying, M.; Gu, S.; Yin, W.; Li, Y.; Yuan, H.; Fang, S.; Li, M. Cysteinyl leukotriene receptor 2 is involved in inflammation
and neuronal damage by mediating microglia M1/M2 polarisation through NF-κB pathway. Neuroscience 2019, 422, 99–118.
[CrossRef] [PubMed]

43. Shao, Q.H.; Yan, W.F.; Zhang, Z.; Ma, K.L.; Peng, S.Y.; Cao, Y.L.; Yuan, Y.-H.; Chen, N.-H. Nurr1: A vital participant in the
TLR4-NF-κB signal pathway stimulated by α-synuclein in BV-2 cells. Neuropharmacology 2019, 144, 388–399. [CrossRef] [PubMed]

44. Fischer, H.G.; Reichmann, G. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J. Immunol.
2001, 166, 2717–2726. [CrossRef]

45. Thivierge, M.; Stankova, J.; Rola-Pleszczynski, M. Toll-like receptor agonists differentially regulate cysteinyl-leukotriene re-ceptor
1 expression and function in human dendritic cells. J. Allergy Clin. Immunol. 2006, 117, 1155–1162. [CrossRef]

46. Zhao, Y.; Gan, Y.; Xu, G.; Yin, G.; Liu, D. MSCs-derived exosomes attenuate acute brain injury and inhibit microglial inflammation
by reversing CysLT2R-ERK1/2 mediated microglia M1 polarisation. Neurochem. Res. 2020, 45, 1180–1190. [CrossRef]

47. Okada, T.; Suzuki, H. Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal sub-arachnoid
hemorrhage. Neural Regen. Res. 2017, 12, 193–196.

48. Serezani, C.H.; Lewis, C.; Jancar, S.; Peters-Golden, M. Leukotriene B4 amplifies NF-κB activation in mouse macrophages by
reducing SOCS1 inhibition of MyD88 expression. J. Clin. Investig. 2011, 121, 671–682. [CrossRef]

49. Hijioka, M.; Futokoro, R.; Ohto-Nakanishi, T.; Nakanishi, H.; Katsuki, H.; Kitamura, Y. Microglia-released leukotriene B4 promotes
neutrophil infiltration and microglial activation following intracerebral hemorrhage. Int. Immunopharmacol. 2020, 85, 106678.
[CrossRef]

50. Hijioka, M.; Anan, J.; Ishibashi, H.; Kurauchi, Y.; Hisatsune, A.; Seki, T.; Koga, T.; Yokomizo, T.; Shimizu, T.; Katsuki, H. Inhibition
of Leu-kotriene B4 Action Mitigates Intracerebral Hemorrhage-Associated Pathological Events in Mice. J. Pharm. Exp. Ther. 2017,
360, 399–408. [CrossRef]

51. Chu, J.; Li, J.-G.; Praticò, D. Zileuton Improves Memory Deficits, Amyloid and Tau Pathology in a Mouse Model of Alzheimer’s
Disease with Plaques and Tangles. PLoS ONE 2013, 8, e70991. [CrossRef]

http://doi.org/10.1016/j.wneu.2015.02.004
http://doi.org/10.1212/WNL.0000000000003842
http://doi.org/10.1016/j.freeradbiomed.2018.06.035
http://doi.org/10.1002/ana.25356
http://www.ncbi.nlm.nih.gov/pubmed/30294906
http://doi.org/10.3389/fimmu.2022.839796
http://www.ncbi.nlm.nih.gov/pubmed/35237277
http://doi.org/10.1007/s12035-022-02788-5
http://www.ncbi.nlm.nih.gov/pubmed/35262869
http://doi.org/10.1007/s11064-016-1994-x
http://www.ncbi.nlm.nih.gov/pubmed/27380038
http://doi.org/10.1038/s41598-019-48609-z
http://doi.org/10.3390/ijms20020410
http://doi.org/10.1016/j.biocel.2010.06.021
http://doi.org/10.1016/j.brainresbull.2018.09.014
http://doi.org/10.1046/j.1471-4159.2000.0751539.x
http://doi.org/10.1007/s12975-019-00728-5
http://doi.org/10.1016/j.cbi.2019.108743
http://www.ncbi.nlm.nih.gov/pubmed/31299241
http://doi.org/10.1016/j.neuroscience.2019.10.048
http://www.ncbi.nlm.nih.gov/pubmed/31726033
http://doi.org/10.1016/j.neuropharm.2018.04.008
http://www.ncbi.nlm.nih.gov/pubmed/29634982
http://doi.org/10.4049/jimmunol.166.4.2717
http://doi.org/10.1016/j.jaci.2005.12.1342
http://doi.org/10.1007/s11064-020-02998-0
http://doi.org/10.1172/JCI43302
http://doi.org/10.1016/j.intimp.2020.106678
http://doi.org/10.1124/jpet.116.238824
http://doi.org/10.1371/journal.pone.0070991


Int. J. Mol. Sci. 2022, 23, 4910 17 of 17

52. Li, D.-D.; Xie, H.; Du, Y.-F.; Long, Y.; Reed, M.N.; Hu, M.; Suppiramaniam, V.; Hong, H.; Tang, S.-S. Antidepressant-like effect of
zileuton is ac-companied by hippocampal neuroinflammation reduction and CREB/BDNF upregulation in lipopolysaccharide-
challenged mice. J. Affect Disord. 2018, 227, 672–680. [CrossRef] [PubMed]

53. Kubavat, A.H.; Khippal, N.; Tak, S.; Rijhwani, P.; Bhargava, S.; Patel, T.; Shah, N.; Kshatriya, R.R.; Mittal, R. A Randomized,
Comparative, Multicentric Clinical Trial to Assess the Efficacy and Safety of Zileuton Extended-Release Tablets With Montelukast
Sodium Tablets in Patients Suffering From Chronic Persistent Asthma. Am. J. Ther. 2013, 20, 154–162. [CrossRef]

54. Blasi, E.; Barluzzi, R.; Bocchini, V.; Mazzolla, R.; Bistoni, F. Immortalization of murine microglial cells by a v-raf/v-myc carrying
retrovirus. J. Neuroimmunol. 1990, 27, 229–237. [CrossRef]

55. Zhang, X.-Y.; Chen, L.; Yang, Y.; Xu, D.-M.; Zhang, S.-R.; Li, C.-T.; Zheng, W.; Yu, S.-Y.; Wei, E.-Q.; Zhang, L.-H. Regulation of
rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1. Brain Res. 2014, 1572, 59–71.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.jad.2017.11.047
http://www.ncbi.nlm.nih.gov/pubmed/29174741
http://doi.org/10.1097/MJT.0b013e318254259b
http://doi.org/10.1016/0165-5728(90)90073-V
http://doi.org/10.1016/j.brainres.2014.05.026
http://www.ncbi.nlm.nih.gov/pubmed/24858057

	Introduction 
	Results 
	Viability of BV2 Cells under Different Concentrations of Zileuton 
	Viability of Haemolysate-Exposed BV-2 Cells Treated with Different Concentrations of ZILEUTON 
	Immunofluorescence Staining of CD68 and CD206 Expressed on BV-2 Cells 
	Western Blot Results for IL-10, TNF-, 5-LOX, MyD88, and NF-B 
	Enzyme-Linked Immunosorbent Assay (ELISA) Results for LTB4, IL-1, TNF-, IL-10, and TGF- 

	Discussion 
	Materials and Methods 
	Cellular Model 
	Preparation of Haemolysate 
	Treatment with Zileuton 
	Cell Viability Assay 
	Immunostaining of Cells 
	Western Blotting 
	ELISA 
	Statistical Analyses 

	Conclusions 
	References

