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Abstract: Alginate lyase has received extensive attention as an important tool for oligosaccha-
ride preparation, pharmaceutical production, and energy biotransformation. Noncatalytic module
carbohydrate-binding modules (CBM) have a major impact on the function of alginate lyases. Al-
though the effects of two different families of CBMs on enzyme characteristics have been reported, the
effect of two combined CBM32s on enzyme function has not been elucidated. Herein, we cloned and
expressed a new multimodular alginate lyase, VxAly7C, from Vibrio xiamenensis QY104, consisting of
two CBM32s at N-terminus and a polysaccharide lyase family 7 (PL7) at C-terminus. To explore the
function of CBM32s in VxAly7C, full-length (VxAly7C-FL) and two truncated mutants, VxAly7C-TM1
(with the first CBM32 deleted) and VxAly7C-TM2 (with both CBM32s deleted), were characterized.
The catalytic efficiency of recombinant VxAly7C-TM2 was 1.82 and 4.25 times higher than that of
VxAly7C-TM1 and VxAly7C-FL, respectively, indicating that CBM32s had an antagonistic effect.
However, CBM32s improved the temperature stability, the adaptability in an alkaline environment,
and the preference for polyG. Moreover, CBM32s contributed to the production of tri- and tetrasaccha-
rides, significantly affecting the end-product distribution. This study advances the understanding of
module function and provides a reference for broader enzymatic applications and further enzymatic
improvement and assembly.

Keywords: carbohydrate-binding module; alginate lyase; brown algae; catalytic efficiency; product
distribution

1. Introduction

As the main structural polysaccharide of brown algae, alginate accounts for 22% to 44%
of its dry weight [1]. It is an acidic heteropolysaccharide consisting of β-D-mannuronate
(M) and α-L-guluronate (G), arranged in three kinds of blocks: homopolymeric M blocks
(polyM), homopolymeric G blocks (polyG), and heteropolymeric blocks composed of
alternating M and G (polyMG) [2]. Alginate is an important auxiliary material in the fields
of medicine, food, agriculture, and energy [3–5]. As functional oligosaccharides, alginate
oligosaccharides (AOS) have unique bioactivities and health benefits. The bioactivities
of AOS are closely related to the degree of polymerization (DP) [6,7]. The 1,4 glycosidic
bonds of alginate are cleaved by alginate lyases through a β-elimination reaction, and an
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unsaturated double bond between C4 and C5 is formed [8]. Alginate lyases have been used
in the production of AOS, for protoplast production in brown algae, for prevention and
treatment of bacterial biofilms, and in research on alginate structure and composition [9,10].
In past studies, thousands of alginate lyases have been found in marine microorganisms,
brown seaweeds, and mollusks [11] and classified into PL families 5, 6, 7, 14, 15, 17, 18,
31, 32, 34, 36, 39, and 41 in the CAZy database [12]. Thus far, structures for 30 alginate
lyases have been solved and are divided into four-fold classes: the β-jelly roll class (PL7,
-14, -18, and -36), the (α/α)n toroid class (PL5), the parallel β-helix class (PL6, -31), and the
(α/α)6 toroid + anti-parallel β-sheet class (PL15, -17 and -39). Among the 12 structures of
PL7 alginate lyases, only AlyB from Vibrio splendidus OU02 showed a full-length structure
with a carbohydrate-binding modules family 32 (CBM32) and the PL7 catalytic domain
connected by a noncanonical alpha helix linker [13].

Among the increasing number of alginate lyases that have been discovered, some
alginate lyases are multimodule proteins containing the catalytic module and one or
more CBMs [8,14,15]. Initially, these noncatalytic domains were found to bind crystalline
cellulose as their primary ligand [16] and were defined as cellulose-binding domains.
Subsequently, more CBMs binding diverse ligands have been identified [12]. To date,
many CBMs have been identified experimentally or putatively. According to their amino
acid sequence similarity, they are classified into 89 families in the CAZy database. CBMs
do not have the catalytic ability but can affect various properties of the enzyme, such as
targeting of substrates [13], disruption of insoluble substrate structures [17], or regulation
of activity [18]. CBM_4_9, CBM13, CBM16, and CBM32 are the most common CBMs
in alginate lyases. CBM32 is one of the most diverse CBM families [19], with a great
depth of amino acid sequence variability and binding specificity. CBM32 was found
in some GHs and PLs [20–22], and was involved in the recognition of substrates and
changing the substrate specificity of enzymes such as chitosanase, mannanase, and N-
acetylglucosaminidase [23–25]. CBM32 also enhanced enzyme activity by increasing affinity
for substrates [26–28] and impacted the temperature stability [29].

At present, compared with the effect of a single CBM on the function of alginate
lyase [13,15,30,31], the effects of two CBMs have been less studied. Several studies on two
different families of CBMs, (e.g., CBM16-CBM32 and CBM35-CBM32) have found that
different families of CBMs exert different functions for enzymatic characteristics, such as
temperature stability, pH adaptability, and enzymatic activity [18,20,29]. However, the
effects of the two combined CBM32s on enzyme function have not been reported. In
this study, a new alginate lyase, VxAly7C, was cloned and expressed from V. xiamenensis
QY104. Sequence analysis revealed that VxAly7C has three domains: two N-terminal
CBM32 domains and a C-terminal alginate lyase catalytic module. We demonstrated the
function of two CBM32s in VxAly7C by comparing the biochemical characteristics, modes
of action, end product distributions, and catalytic efficiency of recombinant VxAly7C and
its truncated mutants. This study promotes the understanding of CBM32, expands the
application of CBM32 in the alginate lyase family, and provides rich material evidence for
the combination and application of multimodule enzymes.

2. Results
2.1. Cloning and Sequence Analysis of the Alginate Lyase Gene

The alginate lyase gene vxaly7c consists of an ORF of 1974 bp, with a GC content
of 41%, and encodes 657 amino acid residues. The SignalP 5.1 analyses indicate that
the signal peptide of VxAly7C contains 24 amino acid residues (Met1-Ala24). Analyses
using the NCBI conserved domain (CD) database, SMART, and Robetta indicate that
VxAly7C contains three functional modules (Leu25-Lys657), including two CBM32s at the
N-terminus (Val44-Phe160 named CBM32-1 and Val186-Phe302 named CBM32-2) and an
alginate_lyase2 domain (Asp391-His653), which exhibits three highly conserved regions of
the PL7 family: R(T/S/C/V)EL(G/R)(E/Q), YFKAGXYXQ, and Q(I/V)H (Figure 1A,B and
Figure 2). Compared with the characterized PL7 alginate lyases listed in the CAZy database,
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VxAly7C has the highest identity (64.57%) with AlyPI from Pseudoalteromonas sp. CY24. The
molecular weight and pI of the full-length enzyme (VxAly7C-FL), the first truncated mutant
(VxAly7C-TM1, deletion of CBM32-1), and the other truncated mutant (VxAly7C-TM2,
deletion of CBM32-1 and CBM32-2) deduced from their amino acid sequences are 70.73,
54.99, 38.67 Da and 5.26, 5.29, 5.38, respectively.
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Figure 1. Construction of VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2. (A), Domain structure
of full-length VxAly7C, VxAly7C-TM1, and VxAly7C-TM2. (B), Models of VxAly7C-FL, VxAly7C-
TM1, and VxAly7C-TM2. (C), Purified recombinant proteins were resolved by SDS-PAGE. Lane M,
molecular weight markers.
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Figure 2. Multiple amino acid sequence alignment of VxAly7C with some crystallized PL7 enzymes.
The secondary structure elements shown above are referenced according to AlyA. AlyA from Klebsiella
pneumoniae subsp. aerogenes (AAA25049); PA1167, from Pseudomonas aeruginosa PAO1 (AAG04556);
A1-II’, from Sphingomonas sp. A1 (BAD16656); AlyA1, from Zobellia galactanivorans DsiJT (CAZ95239);
alyPG, from Corynebacterium sp. ALY-1 (BAA83339).

2.2. Heterologous Expression and Purification of Recombinant VxAly7C-FL, VxAly7C-TM1, and
VxAly7C-TM2

The full-length enzyme VxAly7C-FL and its truncated mutants VxAly7C-TM1 and
VxAly7C-TM2 were expressed in the Escherichia coli BL21 (DE3)/pET-24a (+) system. The
recombinant VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 were purified and migrated
as a single band of approximately 72, 56, and 40 kDa on the SDS-PAGE, respectively
(Figure 1C), which were in good agreement with the calculated molecular weights of the
recombinant protein fused with the (His)6 tag. The total protein yields from 1 L of the
culture medium of recombinant VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 were
5.00 mg, 6.30 mg, and 5.20 mg, respectively. The specific activity of purified VxAly7C-FL
was 40.41 U/nmol, which is lower than that of purified VxAly7C-TM1 and VxAly7C-TM2,
53.73 U/nmol and 54.62 U/nmol, respectively (Table 1). The above results indicate that the
two CBM32s had an antagonistic effect on the catalytic domain, which was not conducive
to the degradation of alginate by the enzyme.
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Table 1. The specific activity of recombinant VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2.

Protein Specific Activity
(U/mg)

Molecular Weight
(kDa)

Specific Activity
(U/nmol)

VxAly7C-FL 557.82 72.47 40.41
VxAly7C-TM1 946.34 56.72 53.73
VxAly7C-TM2 1351.47 40.41 54.62

To examine the binding ability of recombinant VxAly7C-FL, VxAly7C-TM1, and
VxAly7C-TM2 to the substrate, we determined the enzymatic kinetic parameters. Com-
pared with recombinant VxAly7C-FL, the Km and kcat/Km of recombinant VxAly7C-TM1
and VxAly7C-TM2 increased by 0.35- and 1.16-fold and by 1.35- and 3.25-fold, respectively
(Table 2). The results showed that with the decrease in the CBM32s, both Km and kcat/Km
had an upward trend, which was mainly due to the large increase in the kcat value. It
indicated that although CBM32s were helpful for the binding of enzymes to substrates,
they were not conducive to the degradation of substrates by enzymes.

Table 2. Enzyme kinetic parameters of recombinant VxAly7C-FL and its truncated mutants.

VxAly7C-FL VxAly7C-TM1 VxAly7C-TM2

Km (mM) 8.91 ± 0.11 12.09 ± 0.07 19.23 ± 0.16
kcat (s−1) 1734.86 ± 10.49 5523.81 ± 12.31 15,960 ± 5.14

kcat/Km (s−1·mM−1) 194.93 ± 2.25 456.89 ± 2.45 829.95 ± 9.77

2.3. Biochemical Characteristics of Recombinant VxAly7C-FL, VxAly7C-TM1, and
VxAly7C-TM2

The optimal pH was determined by measuring the enzymatic activities of recombinant
VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 in different pH buffers. The results showed
that the optimum pH of the three recombinant proteins occurred in Tris-HCl buffer, pH 7.05.
Additionally, they maintained high activity at pH 7.0–9.0 (Figure 3A). The pH stability
was determined by measuring the residual activity of recombinant proteins after 6 h
of incubation in different pH buffers. Recombinant VxAly7C-FL, VxAly7C-TM1, and
VxAly7C-TM2 exhibited the best pH stability in glycine-NaOH buffer at pH 10.0, 8.6, and
8.6, respectively. The recombinant VxAly7C-FL maintained more than 80% of the enzyme
activity after incubation at pH 7.6–10.6 for 6 h. Recombinant VxAly7C-TM1 retained more
than 80% of the enzyme activity after incubation at pH 7.6–9.0 for 6 h but less than 60%
of the enzyme activity when the pH was higher than 9.0. However, when recombinant
VxAly7C-TM2 was incubated under alkaline conditions for 6 h, less than 50% of the
enzyme activity remained, especially when the pH was greater than 9.6, and only 40%
of the enzyme activity remained (Figure 3B). The above results indicated that CBM32s,
especially CBM32-2, were particularly important for the pH stability of VxAly7C in an
alkaline environment.

The enzyme activities at different temperatures showed that the optimal temperatures
of recombinant VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 were 30 ◦C, 40 ◦C, and
40 ◦C, respectively (Figure 3C), which indicated that compared with CBM32-2, CBM32-1
had a more significant effect on the optimum reaction temperature. Temperature stability
was characterized by measuring the residual activity of recombinant proteins after incuba-
tion at different temperatures for 1 h. The results showed that recombinant VxAly7C-FL,
VxAly7C-TM1, and VxAly7C-TM2 retained more than 80% of the enzymatic activity after
incubation at 20 ◦C for 1 h. After incubation at 30 ◦C for 1 h, recombinant VxAly7C-FL
retained 82% of the enzyme activity, and recombinant VxAly7C-TM1 and VxAly7C-TM2
retained 69% and 64% of the enzyme activity, respectively. After incubation at 40 ◦C for 1 h,
the recombinant VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 had less than 20% en-
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zyme activity (Figure 3D), which demonstrated that CBM32 could improve the temperature
stability of VxAly7C, and the effect of CBM32-1 was more obvious.
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2.4. Effects of NaCl, Metal Ions, Chelators, and Detergents on Alginate Lyase Activity

NaCl is essential for the activity of recombinant VxAly7C-FL and its mutants since little
enzymatic activity was detected in the absence of NaCl (Figure 4A). The highest activity
was observed in the presence of 0.3 M NaCl. Recombinant VxAly7C-FL and VxAly7C-TM1
had similar adaptations to NaCl. The enzymatic activity of recombinant VxAly7C-TM2
decreased more than that of recombinant VxAly7C-FL and VxAly7C-TM1 with increasing
NaCl concentration, suggesting that CBM32-2 might be more sensitive to changes in
NaCl than CBM32-1. The effects of other metal ions, chelators, and detergents on the
activities of recombinant VxAly7C-FL and mutants were shown in Figure 4B. The activities
of recombinant VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 were strongly inhibited
by 1 mM EDTA, SDS, Ni2+, Cu2+, or Hg2+. Zn2+ inactivated recombinant VxAly7C-FL,
although recombinant VxAly7C-TM1 and VxAly7C-TM2 retained 37.5% and 54.4% activity,
respectively. Compared with recombinant VxAly7C-FL, the activities of recombinant
VxAly7C-TM1 and VxAly7C-TM2 were more significantly affected by Ca2+ and Fe2+. The
presence of Ca2+ and Fe2+ increased the activity of recombinant VxAly7C-TM1 to 149.9%
and 176.4%, respectively, and the activity of recombinant VxAly7C-TM2 to 139.1% and
194.8%, respectively. The presence of Mn2+ inhibited the activity of recombinant VxAly7C-
FL but increased the activity of its truncation mutants. These results suggested that CBM32
altered the sensitivity of alginate lyase to certain metal ions.
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2.5. Substrate Specificity of Recombinant VxAly7C and Its Truncated Mutants

Compared with the alginate substrate, the recombinant VxAly7C-FL, VxAly7C-TM1
and VxAly7C-TM2 had a similar degradation ability to polyM, which was approximately
30% of that of the alginate substrate. However, when polyG was used as a substrate, the
degradation capacity of the recombinant proteins varied greatly. The abilities of recombi-
nant VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 to degrade polyG were 55.2%, 16.1%,
and 2.7% of that of alginate, respectively (Figure 5). Recombinant VxAly7C-FL favored
the G-block over the substrate of the M-block, whereas recombinant VxAly7C-TM1 and
VxAly7C-TM2 favored the M-block. The results suggested that CBM32 could enhance the
recognition of G-block substrates by VxAly7C, thereby affecting the substrate preference of
the enzyme.
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2.6. Analysis of the Mode of Action and End Product Distribution

The mode of action of recombinant VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2
was examined using high-viscosity alginate as a substrate. The viscosity of a single spot
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was measured, and the reduction was calculated after incubation at 30 ◦C for 0, 1, 2, 5,
10, 20, 30, and 60 min with recombinant VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2
(Figure 6A). The results showed a rapid drop in viscosity during the first 10 min and a slow
drop during the last 50 min. Meanwhile, the absorbances at 235 nm recorded at different
time points showed a steadily increasing trend (Figure 6A), suggesting that they acted as
endo-type alginate lyases.
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Figure 6. Modes of action and end products of alginate degradation by recombinant VxAly7C-
FL and its truncated mutants. (A), Modes of action of recombinant VxAly7C-FL, VxAly7C-TM1,
and VxAly7C-TM2. One mL of enzyme (10 U) was added to 9 mL of substrate solution, followed
by incubation at 30 ◦C for different times. The changes in reduction in viscosity (solid line) and
absorbance at 235 nm (dotted line) were measured. (B–E), End products of recombinant VxAly7C-FL,
VxAly7C-TM1, and VxAly7C-TM2 analyzed by gel filtration chromatography and negative ion ESI-
MS. Elution volume was 17.10 mL for unsaturated disaccharides (∆DP2), 14.90 mL for unsaturated
trisaccharides (∆DP3), and 12.90 mL for unsaturated tetrasaccharides (∆DP4).

The end products of recombinant proteins were analyzed by gel filtration chromatog-
raphy and negative ion ESI-MS. The results showed that the end degradation products
of recombinant VxAly7C-FL and VxAly7C-TM1 were tri- and tetrasaccharides, and the
peak area analysis showed that their molar ratios were 3.71:1.00 and 4.68:1.00, respectively
(Figure 6B–D). The end degradation products of recombinant VxAly7C-TM2 were di-, tri-,
and tetrasaccharides with a molar ratio of 1.71:4.00:1.00 (Figure 6B,E). The results suggested
that CBM32 contributed to the production of tri- and tetrasaccharides and that CBM32-2
was less conducive to the production of disaccharides with low degrees of polymerization
than CBM32-1. The above results demonstrated that CBM32s did not affect the mode of
action of VxAly7C but significantly affected the distribution of degradation end products.



Int. J. Mol. Sci. 2022, 23, 4795 9 of 15

3. Discussion

With the in-depth exploration of marine polysaccharide-degrading enzymes, in ad-
dition to alginate lyases with only catalytic domains, many multimodule alginate lyases
have emerged. However, most multimodule alginate lyases include one auxiliary catalytic
module, such as CBM, and one catalytic domain [14,19], and only a few alginate lyases
contain two or more auxiliary modules. The auxiliary catalytic module of the alginate
lyase AlyQ from Persicobacter sp. CCB-QB2 includes CBM16-CBM32 [32], DP0100 from
Defluviitalea phaphyphila Alg1 is the CBM35-CBM32-FN3 domain [20], and TsAly7B from
Thalassomonas sp. LD5 contains CBM9-CBM32 [18]. In this study, we discovered the new
alginate lyase VxAly7C with two CBM32s and explored the effects of the CBM32s on the
catalytic activity, biochemical characteristics, and end product distribution by analysis of
the full-length protein and its truncated mutants.

Compared with recombinant VxAly7C-FL, the catalytic activity of the mutants in-
creased with the reduction of modules. The kcat/Km of recombinant VxAly7C-TM1 with
truncated CBM32-1 was 2.35 times that of VxAly7C-FL. The kcat/Km of recombinant
VxAly7C-TM2 containing only the catalytic domain was 4.25 times that of VxAly7C-FL
and 1.82 times that of VxAly7C-TM1 (Table 2), indicating that CBM32s had an inhibitory
effect on the enzymatic activity of VxAly7C. In our previous studies on the alginate lyase
VxAly7B of V. xiamenensis QY104 [14], we found that CBM32 was not conducive to the
catalysis of soluble substrates by the enzyme. The same phenomenon also occurred in
alginate lyase AlyM from Microbulbifer sp. CGMCC 14061 [29] and AlyH from Marinimi-
crobium sp. H1 [33]. Although the Km of recombinant VxAly7C-TM2 was higher than that
of VxAly7C-FL and VxAly7C-TM1, the change in kcat was more significant, increasing the
kcat/Km of recombinant VxAly7C-TM2. The enzymatic kinetic parameters of AlyQ from
Persicobacter sp. CCB-QB2 also showed a similar trend, but its CBM32 contributes to the
catalysis of the substrate by the enzyme. The Km, kcat, and kcat/Km of the truncated AlyQ
mutants all showed a decreasing trend with the reduction of the domains in AlyQ [32]. In
addition to AlyQ, the CBM32 of alginate lyase TsAly7B from Thalassomonas sp. LD5 [18]
and glycoside hydrolases SsGalNagA from Streptococcus suis 05ZYH33 [21] both promoted
enzyme activity. Differences in the sequence and structure of CBM32 might affect the
flexibility of the full-length protein or the catalytic domain, thereby conferring different
variations of enzymatic activity characteristics [34].

Similar to TsAly7B [18], CBM32s in VxAly7C increase the adaptability of the enzyme
in an alkaline environment. Under alkaline conditions, as the amount of CBM32 increased,
the pH stability of the recombinant protein improved (Figure 3B). The pH adaptability of
surface charges to thermolysin-like proteases was investigated by inserting or removing
charges on the protein surface [35]. Different CBMs caused pullulanase to show different
degrees of activity at different pH values, suggesting that the effect of CBM on the pH
adaptability of recombinant pullulanase might be due to the change in surface charge
and the different binding ability to the substrate [36]. Therefore, the charge distribution
of the protein caused by CBM32s in an alkaline environment might help maintain the
normal conformation of VxAly7C. The presence of CBM32 has an important effect on
the adaptability of the enzyme to temperature, and the roles played by different alginate
lyases are not the same. CBM32 in AlyH [33] decreased the temperature stability of the
enzyme, while CBM32 in Aly5 [37] increased the temperature stability of the enzyme. Re-
combinant VxAly7C-TM1 and recombinant VxAly7C-TM2 were not significantly different
in optimum temperature and temperature stability but were significantly different from
those of recombinant VxAly7C-FL. The optimum temperature of the truncated mutants
changed from 30 ◦C to 40 ◦C for the full-length protein, and the temperature stability of
the mutants decreased compared with that of recombinant VxAly7C-FL (Figure 3C,D),
indicating that CBM32-1 has a greater impact on the temperature adaptability of the en-
zyme, while CBM32-2 has no significant effect. Models for VxAly7C-FL, VxAly7C-TM1,
and VxAly7C-TM2 were generated using Robetta, and protein interactions were calculated
by PIC (http://pic.mbu.iisc.ernet.in/ (accessed on 25 February 2022)). Compared with
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VxAly7C-TM1 and VxAly7C-TM2, we found that the presence of CBM32-1 increased one
intraprotein hydrophobic interaction and two intraprotein main chain-side chain hydrogen
bonds between CBM32-2 and the PL7 catalytic domain, which might increase the structural
stability of VxAly7C-FL. CBM32s might be beneficial for maintaining rigid protein struc-
ture, as structural changes associated with increased protein stability are often described as
leading to an increase in overall structural stiffness, which is likely to be accompanied by a
decrease in catalytic performance [38,39].

As a substrate-binding domain, CBM has been receiving increased attention in sub-
strate recognition research. At present, various types of CBMs are known to exhibit
different mechanisms of action on substrate binding. CBM13 from the alginate lyase AlyL2
in Agarivorans sp. L11 predisposed the enzyme to degrade M-block substrates and increased
the disaccharide content of the product [31]. The minimal degradation substrate of the
CBM32 truncation mutant of Aly5 in Flammeovirga sp. MY04 changed from UDP5 to UDP6.
The content of UDP2 and UDP3 in the product significantly decreased, while the UDP4-7
content significantly increased [37], indicating that the presence of CBM32 promoted en-
zyme binding and degradation of lower molecular weight oligosaccharides. The absence of
N-terminal CBM32 resulted in a complex distribution of degradation products of Aly7A in
Vibrio sp. W13 and was not conducive to the production of trisaccharides [40]. This shows
that CBM32 causes Aly7A to adopt a unique mode of action on the substrate, positioning
the cleavage of a trisaccharide. CBM32 in VxAly7C displayed a clear preference for sub-
strate recognition. Both CBM32s contribute to the recognition and degradation of polyG
by VxAly7C (Figure 5). The increase in the number of CBM32 was positively correlated
to the content of the tetrasaccharide in the end product. The end product of recombinant
VxAly7C-TM2 contained 25% disaccharides (Figure 6B), indicating that CBM32 contributed
to the production of larger molecular weight oligosaccharide products.

The presence of substrate-binding residues in CBM32 also provides insights into
the preferential binding of substrates and the specific distribution of products. Substrate
binding experiments and crystal structure analysis demonstrated that CBM32 of AlyQ
from Persicobacter sp. CCB-QB2 only bonded to the unsaturated sugar unit of the substrate,
which might be a result of the high variability of the region around Trp303 that leads to
the involvement of CBM32 in binding different substrates [32]. The loss of fluorescence
polarization change for W129A of CBM32 in AlyB from V. splendidus OU02 toward the
trisaccharide indicated a significant role of Trp129 in substrate binding [13]. Among the
crystallized CBM32s, the CBM32-1 and CBM32-2 showed the highest identity (51.18%
and 66.18%) with that of CBM32 from AlyB. The structures of CBM32s in VxAly7C were
obtained by homologous modeling with SWISS-MODEL using CBM32 from AlyB (PDB
ID: 5zu6). The results of homology modeling were consistent with the structure simulated
by Robetta. Among them, Trp154 in CBM32-1, Trp296 in CBM32-2, Trp303 in AlyQ, and
Trp129 in AlyB were in the same spatial position, suggesting that the conservation of Trp
may contribute to the critical role of CBM32 in VxAly7C in substrate binding and product
distribution. Furthermore, Arg98 in CBM32-1, Arg240 in CBM32-2, and Arg248 in AlyQ [32]
correspond to steric positions, which also seem to be potential functional residues with
interactions with the carboxyl group in the substrate. We represented the positions of Arg
and Trp in CBM32s by electrostatic surface potential. The results showed that Arg was
located in the alkaline-rich region, while Trp and Arg were spatially adjacent, suggesting
that they were likely to be potential residues for interaction with substrates (Figure 7).
Therefore, the potential substrate-binding residues in CBM32s might allow for it to act as a
“controller” to regulate the specific recognition and degradation of substrates by VxAly7C.
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4. Materials and Methods
4.1. Bacterial Strains, Plasmids, and Chemicals

E. coli strains DH5α and BL21(DE3) were cultured at 37 ◦C in Luria-Bertani (LB) broth
or on LB agar supplemented with kanamycin sulfate (30 µg/mL) when relevant. Vector
pET-24a (+) plasmids (Takara Co., Ltd., Dalian, China) were used for recombinant protein
expression. The culture of V. xiamenensis QY104 and genome acquisition were as reported
previously [14]. The source of the substrate was as described in previous reports [41]. All
chemical reagents were of analytical grade.

4.2. Sequence Analysis

For functional annotation of the predicted proteins, identity analysis of amino acid
sequences was performed using the BLAST algorithm on the NCBI (http://www.ncbi.nlm.
nih.gov (accessed on 12 February 2022)). The theoretical isoelectric point (pI) and molecular
weight (MW) were calculated using the Compute pI/MW Tool (http://web.expasy.org/
compute.pi/ (accessed on 20 December 2021)). Signal peptides were identified using the
SignalP 5.1 server. Protein modules and domains were identified by using the SMART (http:
//smart.embl-heidelberg.de/ (accessed on 1 March 2016)) and NCBI conserved domain
(CD) databases. The amino acid sequence alignment between VxAly7C and crystallized
PL7 alginate lyases was obtained using ClustalW and further aligned with ESPript 3.0
(http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi (accessed on 5 January 2022)). Models
for VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 were generated using Robetta (https:
//robetta.bakerlab.org/ (accessed on 25 February 2022)) and visualized by PyMOL. The
sequence of VxAly7C was submitted to GenBank under Accession number OM793717.

4.3. Construction of Recombinant VxAly7C and Its Truncated Mutants

To express the full-length (without signal peptides) VxAly7C (VxAly7C-FL) and its
truncated mutants VxAly7C-TM1 and VxAly7C-TM2, the appropriate DNA fragments
were amplified by PrimeSTAR™ HS DNA Polymerase (Takara Co., Ltd., Dalian, China)
using genomic DNA from V. xiamenensis QY104 as a template. The primers (PVxAly7C-FL-
F/R, PVxAly7C-TM1-F, and PVxAly7C-TM2-F) are shown in Table S1. The PCR products
were digested with NdeI and SalI and ligated into pET-24a (+).

4.4. Heterologous Expression and Purification of Recombinant Alginate Lyase

The constructs were transformed into E. coli BL21 (DE3) cells and initially cultured in
LB broth at 37 ◦C and 160 r/min. The cells were grown until the OD600 reached 0.4-0.6, and
the broth was supplemented with isopropyl-1-thio-β-D-galactoside (IPTG) at a final con-
centration of 0.1 mM to initiate protein expression before culturing at 18 ◦C and 160 r/min
for an additional 24 h. The cells were harvested at 4 ◦C and 12,000 r/min for 10 min. The
pellet was resuspended with binding buffer [20 mM phosphate buffer (PB), 500 mM NaCl]
and crushed by a high-pressure crusher (JNBIO, Guangzhou, China). The crude enzyme
solution was obtained by centrifugation at 4 ◦C and 12,000 r/min for 20 min. Recombinant
VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 were purified from the soluble fraction
using a HisTrap HP column (GE Healthcare, Stamford, CT, USA). The purity and molec-
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ular weights of the purified proteins were determined by SDS-PAGE on a 12.5% (w/v)
resolving gel.

4.5. Enzyme Activity and Kinetic Parameter Assay

The alginate lyase activity was measured as the increase in absorbance at 235 nm.
Unless otherwise stated, 100 µL of solution with 12 µg enzyme was reacted with 900 µL
of substrate solution [0.3% (w/v) alginate, 20 mM PB plus 0.3 mM NaCl, pH 7.3] at 30 ◦C
(recombinant VxAly7C-FL) or 40 ◦C (recombinant VxAly7C-TM1 and VxAly7C-TM2)
for 10 min. One unit (U) was defined as the amount of enzyme required to increase the
absorbance at 235 nm by 0.1 per min. For the studies of substrate specificity, polyM or polyG
was used as the substrate. The kinetic parameters of recombinant VxAly7C-FL, VxAly7C-
TM1, and VxAly7C-TM2 were measured by using 10 different alginate concentrations
[ranging from 0.1% (w/v) to 1% (w/v)] of substrate solution at 30 ◦C or 40 ◦C for 3 min. The
Km and catalytic efficiency (kcat/Km) values were determined as previously reported [14].

4.6. Biochemical Characteristics of Recombinant VxAly7C-FL and Its Truncated Mutants

The optimal pH of the enzymatic activity was determined using 50 mM Na2HPO4-
citric acid buffer (pH 3.0–6.0), 50 mM Na2HPO4-NaH2PO4 buffer (pH 6.0–8.0), 50 mM
Tris-HCl buffer (7.0–8.0) and 50 mM glycine-NaOH buffer (pH 8.6–10.6) in the assay system.
To determine the pH stability, the residual activity was measured after the enzymes were
incubated in the above buffers for 6 h at 4 ◦C. The optimal temperature of the recombinant
VxAly7C-FL and its truncated mutants was determined by measuring the activity at
different temperatures (0, 10, 20, 25, 30, 32, 35, 37, 40, 45, 50, 60, 70 ◦C). The temperature
stability of enzymes was examined by measuring the residual activity after the enzymes
were incubated at 0–70 ◦C for 1 h in 20 mM PB (pH 7.3). The effects of NaCl on recombinant
VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 activity were examined by monitoring the
enzymatic activity at various concentrations (0–1 M) of NaCl in substrate solution [0.3%
(w/v) alginate, pH 7.3]. The effects of metal ions, chelators, and detergents on recombinant
VxAly7C-FL, VxAly7C-TM1, and VxAly7C-TM2 activity were investigated by measuring
the enzymatic activity in the presence of various cations or chelators at a final concentration
of 1 mM.

4.7. Substrate Specificity, Mode of Action, and End Product Distribution Analysis

To study the substrate specificity, alginate, polyM, and polyG (0.3% (w/v) in 20 mM
PB plus 300 mM NaCl, pH 7.3) were used as substrates in the standard enzymatic assay
described above. One mL (10 U) of purified enzyme was added to 9 mL of high-viscosity
alginate substrate solution and incubated at 30 ◦C for 0, 1, 2, 5, 10, 20, 30, or 60 min. After
boiling for 10 min to halt the reaction, the viscosity and UV absorbance at 235 nm of each
reaction mixture were measured to determine the mode of action of recombinant proteins.

The reaction mixture containing 0.1 mL (10 U) purified enzymes and 0.4 mL substrate
solution was incubated at 30 ◦C overnight. The end products were analyzed using a
Superdex peptide 10/300 GL gel filtration column (GE Healthcare, Madison, WI, USA)
equilibrated with 0.2 M NH4HCO3 and detected at 235 nm by fast protein liquid chromatog-
raphy (FPLC). The end products were analyzed by negative ion electrospray ionization
mass spectrometry (ESI-MS) from 0 to 1500 m/z. The scope with no significant product
peaks is not shown.

5. Conclusions

In this study, we cloned and expressed a new multimodule alginate lyase, VxAly7C,
consisting of two CBM32s at the N-terminus and a PL7 domain at the C-terminus. The
function of CBM32s in VxAly7C was elucidated by the characterization of full-length
(VxAly7C-FL) and two truncated mutants, VxAly7C-TM1, and VxAly7C-TM2. The kcat/Km
of recombinant VxAly7C-TM2 was 829.95 ± 9.77, which was 1.82 and 4.25 times that
of recombinant VxAly7C-TM1 and VxAly7C-FL, respectively, indicating that CBM32s



Int. J. Mol. Sci. 2022, 23, 4795 13 of 15

attenuated the enzyme activity. The stability of recombinant VxAly7C-FL in an alkaline
environment (pH 7.6–10.6) was better than that of the truncated mutants, and it retained
82% of the enzyme activity at 30 ◦C for 1 h, which was higher than the 69% or 64% enzyme
activity of the truncated mutants. Furthermore, the presence of CBM32s predisposed
recombinant VxAly7C to preferentially degrade G-block substrates and increased the
content of tri- and tetrasaccharides in the end product. This work would enhance the
understanding of the function of the domains within alginate lyases and provide new
insights for multimodule utilization.
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