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Abstract: To ensure efficiency in discovery and development, the application of computational
technology is essential. Although virtual screening techniques are widely applied in the early stages
of drug discovery research, the computational methods used in lead optimization to improve activity
and reduce the toxicity of compounds are still evolving. In this study, we propose a method to
construct the residue interaction profile of the chemical structure used in the lead optimization
by performing “inverse” mixed-solvent molecular dynamics (MSMD) simulation. Contrary to
constructing a protein-based, atom interaction profile, we constructed a probe-based, protein residue
interaction profile using MSMD trajectories. It provides us the profile of the preferred protein
environments of probes without co-crystallized structures. We assessed the method using three
probes: benzamidine, catechol, and benzene. As a result, the residue interaction profile of each
probe obtained by MSMD was a reasonable physicochemical description of the general non-covalent
interaction. Moreover, comparison with the X-ray structure containing each probe as a ligand
shows that the map of the interaction profile matches the arrangement of amino acid residues in the
X-ray structure.

Keywords: mixed-solvent molecular dynamics; interaction pattern analysis; residue interaction
profile; visualization

1. Introduction

Drug development is a cost-intensive and time-consuming process. The cost is esti-
mated to be more than USD two billion, and it may take 10–15 years for a new drug to reach
the market [1]. To reduce costs, computational techniques have been applied in various
drug development studies, and many studies have successfully discovered new therapeutic
compounds using these techniques [2–10]. In the early stages of drug discovery, virtual
screening (VS) techniques such as docking simulations are frequently used to discover seed
compounds [11–13]. Kelly et al. showed that high-throughput virtual screening (HTVS)
produced more than 10-fold hit rates compared to traditional HTS [14]. Computational
methods for lead optimization to improve the activity of compounds are also proposed,
such as MP-CAFEE [15], free energy perturbation (FEP) [16,17], and quantum mechanical
(QM) methods [18]. These methods focused on the binding affinity estimation of given
candidate compounds with considerable computational cost; however, methods guiding
or proposing the next substituent of hit compounds in the lead optimization phase are
still evolving.

To improve activity and selectivity, structural optimization that is strongly and specifi-
cally directed at the target protein is necessary. Therefore, the mechanism by which proteins
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recognize compounds and the prediction of protein–ligand binding modes are important
in lead optimization. Several studies have been reported that comprehensively analyze
interaction patterns from protein–ligand complex structures registered in the Protein Data
Bank (PDB) [19]. Imai et al. focused on 14 polar and aromatic amino acid side chains and
carried out contact analysis for protein–ligand complex crystal structures in the PDB [20].
Wang et al. generated 4032 fragments from 71,798 ligands and obtained fragment–residue
interaction profiles [21]. Furthermore, Kasahara et al. reported that 63.4% of the ligand
atoms exhibited one or more interaction patterns, 25.7% of the ligand atoms interacted
without patterns, and the rest had no direct interaction [22]. However, these interaction
patterns have been analyzed only from known databases, and the analysis is limited to the
well-experimented functional groups. In addition, the interaction patterns of the functional
groups investigated in these studies were studied while binding to the target as part of the
compound, and the environment of the protein to which functional group fragments match
has not been directly investigated.

Mixed-solvent molecular dynamics (MSMD) simulations involve MD in the presence
of explicit water molecules mixed with probe molecules or functional group fragments such
as for hotspot detection [23,24] and binding site identification [25,26]. MSMD considers the
flexibility of proteins and can discover hotspots where probes can bind. These hotspots
indicate the protein environment preferred by specific probes. Thus, by analyzing the
interaction pattern between the probe and the protein environment sampled by MSMD,
it is possible to analyze the binding ability and interaction pattern of individual probes,
not part of the functional group of compounds. In particular, by applying drug-like probes
with few reported crystal structures to MSMD, the environment of the protein binding site
to which the unique probe binds can be sampled.

In this article, we propose an “inverse” MSMD for analyzing a probe’s preference of
interaction patterns. First, MSMD simulations with 15 diverse proteins were performed to
sample various protein residue environments preferred by the probe. The residue environ-
ments were then integrated to a residue interaction profile, followed by the visualization of
it. We assessed the proposed analysis using three probes with an aromatic ring: benzami-
dine, catechol, and benzene. Their residue interaction profiles provided a physicochemical
account of general non-covalent interactions, such as electrostatic interactions, hydrogen
bonding interactions, and amide-π stacking interactions. Moreover, the profiles were con-
sistent with the experimental co-crystalized structures, which supports the ability of the
proposed method to detect the actual interaction patterns of functional groups. This is the
first proposal and demonstration of the use of inverse MSMD.

2. Materials and Methods
2.1. Preparation of Proteins

The selection of proteins used in MSMD sampling is crucial to obtain the vari-
ous residue environments utilized to construct a residue interaction profile. We chose
15 proteins that were previously selected by Soga et al. [27] because they collected the
proteins considering their diversity. A list of proteins is shown in Table 1. All proteins were
pre-processed using the following procedure: Protein Preparation Wizard and Prime [28]
in Schrodinger suite 2020-3 (Schrodinger, Inc., New York, NY, USA) were used to fill the
missing loops, side chains, and atoms for all of the selected proteins. N- and C-termini
were capped using N-methyl amide (NME) and acetyl (ACE) capping groups, respectively.
Subsequently, the ligands, co-factors, and additive molecules were removed. Hydrogens
were placed with consideration of hydrogen bonding and ionization states of pH = 7 with
PROPKA [29]. Water molecules with less than two hydrogen bonds to a protein in the
crystal structures were removed, followed by structure optimization with the OPLS3e force
field. Note that the N-terminal of glycoside hydrolase (PDBID: 1H4G) and C-terminal
of endo-1,4-β-xylanase A precursor (PDBID: 1E0X) were removed before the procedure
because of non-standard amino acid and missing main chain atoms, respectively.
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Table 1. The list of proteins utilized in this and originally collected by Soga et al. [27].

PDB Code Chain ID Protein Name

1ZUA X Aldo-keto reductase family 1 member B10
1E0X A Endo-1,4-β-xylanase A precursor
1BK9 Phospholipase A2, acidic
1TU6 A Cathepsin K precursor
1W4P A Ribonuclease pancreatic precursor
1JZF A Azurin precursor

1YMS A β-lactamase CTX-M-9a
2WEA Penicillopepsin
1HEE A Carboxypeptidase A1 precursor
1WBI A Avidin-related protein 2 precursor
1CXV A Collagenase 3 precursor
1H4G A Glycoside hydrolase
1TT1 A Glutamate receptor, ionotropic kainate 2 precursor
2CYB A Tyrosyl-tRNA synthetase
1H60 A Pentaerythritol tetranitrate reductase

2.2. Preparation of Probes

The probe of interest was then pre-processed. The restrained electrostatic potential
(RESP) procedure in the Antechamber module of AmberTools18 [30] was employed to
fit the partial charges to the electrostatic potential, which was calculated using Gaussian
16 Rev B.01 [31]. First, all probe structures were optimized at the B3LYP/6-31G(d) level.
Then, the electrostatic potentials were calculated at the HF level using the optimized
structures. The centers of the electrostatic potentials were placed at the center of each atom.
Additional force field parameters for the probes were derived using the general AMBER
force field 2 (GAFF2), unless otherwise stated.

2.3. Mixed-Solvent Molecular Dynamics (MSMD)

We conducted MSMD using the protocol of EXPRORER [32]. It is worth noting that
the initial positions of the probes affect the results, especially in short MD simulations, and
this initial position dependency influences the convergence of the results of the analysis. To
achieve efficient sampling, the following protocol was independently performed 20 times
with different initial probe coordinates. The procedure was divided into three steps, as
described below.

2.3.1. Initial System Generation

The probes were randomly placed around the protein at a concentration of 0.25 M
using PACKMOL 18.169 [33]. The high concentration enables effective sampling of residue
environments. Second, the system was solvated with water using the LEaP module of
AmberTools18. The Amber ff14SB force field and the TIP3P model [34] were used for the
protein and water molecules, respectively. Additionally, a Lennard–Jones force field term
with the parameters (ε = 10−6 kcal/mol; Rmin = 20 Å) was introduced only between the
center of the probes to prevent their aggregation.

2.3.2. Minimization, Heating, and Equilibration

After the construction of the initial structures, the systems were minimized to in-
clude 200 steps using the steepest descent algorithm with harmonic position restraints
on the heavy solute atoms (force constant, 10 kcal/mol/Å2), and then the systems were
minimized a further 200 steps using the steepest descent algorithm without any posi-
tion restraints. After minimization, the system was heated gradually to 300 K during
200 ps constant-NVT MD simulations with harmonic position restraints on the solute heavy
atoms (force constant, 10 kcal/mol/Å2). During the subsequent 800 ps constant-NPT
MD simulations at 300 K and 105 Pa, the force constants of the position restraints were
gradually reduced to 0 kcal/mol/Å2. The P-LINCS algorithm [35] was used to constrain
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all bond lengths involving hydrogen atoms, which allowed the use of 2 fs time steps.
Temperature and pressure were controlled using a stochastic velocity-rescaling (V-rescale)
algorithm [36–38] and a Berendsen barostat [39], respectively. Simulations were performed
using GROMACS 2019.4 [40]. The ParmEd module [41] was used to convert the AMBER
parameter/topology file format to that used by GROMACS.

2.3.3. Production Run

After equilibration, 40 ns constant-NPT MD simulations at 300 K and 105 Pa without
position restraints were performed. All settings were the same as the initial equilibration
step, but a Parrinello–Rahman barostat [42] was used instead of a Berendsen barostat.
Snapshots were taken every 10 ps in the 20–40 ns; thus, 2000 snapshots were produced per
MSMD simulation.

2.4. Inverse MSMD: Construction of Residue Interaction Profile

The workflow for constructing a residue interaction profile from the MSMD simulation
is shown in Figure 1. The detailed procedure is described in this section.
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2.4.1. Determination of Preferable Protein Surfaces

The concentration of probes in the MSMD simulation was unrealistically high, which
could cause artificial interaction profiles even though the concentration is sometimes used
in other MSMD protocols [43]. To omit such artifacts, we limited the residue environment
sampling based on the binding preference of the probes. First, the spatial probability
distribution map (PMAP) was calculated using the following procedure: Atoms in the
snapshots were binned into 1 Å × 1 Å × 1 Å grid voxels, and the voxel occupancy of probe
heavy atoms was calculated. To focus on the protein surface, V was a set of voxels within
5 Å from the protein atoms, and the values at voxel v /∈ V were discarded. Then, the values
were scaled such that the summation of voxels in V was 1.0.

Probes were placed uniformly among the system, resulting in the underestimation of
the probability at deep pockets where access is difficult. Thus, to reduce the underestima-
tion, the largest value among the 20 PMAPs generated from each independent trajectory
was stored for each voxel in V in the second step. The product was named max-PMAP.
Even for a deep pocket where a probe will bind strongly but will rarely approach, a con-
siderable value of voxel v of max-PMAP was observed if the binding occurred only at
least once. Note that the summation of voxels V of max-PMAP was greater than 1.0, while
it originated from the probability. Finally, we defined a preferable protein surface of a
probe as voxels with max-PMAP values equal to or greater than 0.2, which is determined
by visual inspection. Note that the preferable protein surface includes surfaces exposed
to solvent as well as deeper binding pockets (Figure 2). The regions indicate the protein
surfaces where the probe stably exists.
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Figure 2. An example of preferable protein surfaces based-on max-PMAP. Positions shown as meshes
are preferable protein surfaces, where the value of max-PMAP is higher than a threshold. The gray,
orange, and red meshes show the same max-PMAP but different thresholds.

2.4.2. Extraction of Residue Environments at Preferable Protein Surfaces

Next, the protein residue environments around the probe molecules were extracted.
As previously mentioned, we sampled poses on the preferable protein surfaces of the probe.
Extraction of preferable protein surfaces of a probe was performed for each snapshot, and
the probe and amino acid residues around the probe were extracted after detecting the
probe on preferable protein surfaces. Here, we defined “amino acid residues around the
probe” as protein residues with at least one heavy atom that is within 4 Å from any heavy
atom of the probe molecule (Figure 3).
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Figure 3. Definition of amino acid residues around the probe. Yellow residues are “amino acid
residues around the probe”. Amino acid heavy atoms within 4 Å from any heavy atom of the probe
molecule (red molecule) are shown as balls.

2.4.3. Description of Spatial Statistics for Each Type of Residue

Finally, a residue interaction profile, or a set of spatial distribution of residues around
a probe, was described with the following steps. All the sampled residue environments
were aligned by referring to the designated atoms of the probe molecule. The Cβ atoms
of each type of residue were spatially binned into 1 Å × 1 Å × 1 Å grid voxels. The types
of residues used in this study are listed in Table 2. Note that we used Cβ atoms rather
than the side chain atoms (e.g., nitrogen atoms of Lys and aromatic carbon atoms of Phe)
because our aim was to analyze the protein environment, and the direction of the tip of the
side chains is easily changed.

Table 2. Types of residues used in this study. Note that glycine is not included in this table, since it
does not have any Cβ atoms.

Type Residues

Acidic Asp, Glu
Basic Arg, His, Lys

Hydrophilic Asn, Cys, Gln, Ser, Thr
Hydrophobic Ala, Ile, Leu, Met, Pro, Val

Aromatic Phe, Trp, Tyr

2.5. Implementation

The scripts used to generate a residue interaction profile of a probe were implemented
using Python with Biopython [44]. The implementation is included in a GitHub repository
EXPRORER_MSMD https://github.com/keisuke-yanagisawa/exprorer_msmd (accessed
on 22 April 2022) under the MIT license.

3. Results

We tested the proposed method with benzamidine, catechol, and benzene. Ring
systems are key scaffold components in medicinal chemistry [45]; therefore, we selected
these probes with a ring system as examples of available probes. Note that since the GAFF2
force field incorrectly parameterized the amidino group of benzamidine, we manually
assigned “nc” and “cc” GAFF2 atom types for nitrogen and carbon atoms of the amidino
group, respectively, to maintain planarity of the functional group. Additionally, structural
alignment of the probes was performed with all carbon atoms for benzamidine and with
all heavy atoms for catechol and benzene.

https://github.com/keisuke-yanagisawa/exprorer_msmd
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3.1. Benzamidine: Evaluation of the Method

Figure 4 shows the residue interaction profile of benzamidine. Benzamidine has a basic
group and the residue interaction profile correctly and clearly depicted the position of acidic
residues. Furthermore, profiles of multiple types of residues were detected among the
amidino group, indicating hydrogen bonds between the main chains and the amidino group
(Figure 5). For the phenyl group, profiles of acidic, hydrophilic, and hydrophobic residues
were detected in the vertical direction of the phenyl group. This suggests that the protocol
captured amide-π stacking [46]. Therefore, these profiles can provide a physicochemical
account of general non-covalent interactions, and the results demonstrate the validity of
the proposed method.
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Figure 5. An example of interaction pattern between benzamidine and penicillopepsin
(PDBID: 2WEA) obtained from MSMD simulation. Yellow hashed lines show hydrogen bonds.

3.2. Catechol: Interaction Analysis of Hydroxy Groups

Catechol exists as a substructure in several ligands, such as dopamine. It has two
hydroxy groups and a phenyl group. Although it does not have any net charge, which is
different from benzamidine, hydroxy groups can form hydrogen bonds, resulting in stable
binding to proteins.

The residue interaction profile of catechol is shown in Figure 6. Interestingly, the acidic
group showed clear localization compared to the other residue groups. This indicates the
possibility of detecting not only obvious interactions but also non-intuitive interactions.
Further analysis regarding the same is provided in the discussion section. Additionally,
the profiles of the phenyl group were similar to those of benzamidine; however, the areas
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of localization were wider than those of benzamidine. Ghanakota et al. showed that the
wider localization of probe atoms can be converted to entropic terms [47]. Thus, the present
observations may indicate weaker binding of a catechol substructure to proteins.
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profiles of hydrophobic, hydrophilic, aromatic, basic, and acidic residues, respectively. The molecule
structure is that of catechol.

3.3. Benzene: Interaction Analysis of Phenyl Group Itself

Benzamidine and catechol both have phenyl groups, and their groups show clear
residue interaction profiles. On the other hand, benzene did not display a profile in the
vertical direction (Figure 7). Instead, weak profiles were detected in the horizontal direction.
This indicates that interaction with only a single amide-π stacking is insufficiently stable at
the surface of proteins.
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4. Discussion
4.1. Comparison to Co-Crystallized Structures

We compared the constructed residue interaction profiles and crystal structures for
further verification of the appropriateness of the method.
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4.1.1. Benzamidine

To demonstrate the validity of the residue interaction profile obtained by MSMD, the
crystal structures of kinase CK2 (1LPU) and trypsin (2ZPS) with the residue interaction
profile are shown in Figure 8. These crystal structures include benzamidine and can be
compared to the preferred residue environment obtained by wet experiments. In the
residue interaction profile of benzamidine obtained by MSMD, acidic residues are widely
present near the amidino group. In kinase CK2 and trypsin, Glu81 and Asp170 are located
near the profile of acidic residues. In kinase CK2, Val53, Ile66, and Ile174 are in the profile
of hydrophobic residues above and below the aromatic ring of benzamidine. Notably, the
profile of hydrophilic residues above and below the aromatic ring was suggested by MSMD.
Ser171 of trypsin is located near the aromatic ring of benzamidine, which overlaps with
the profile of hydrophilic residues. These two examples of X-ray structures, which are not
included in the set of proteins for MSMD simulation, suggest that the residue interaction
profile of a probe is reasonable and has generalization performance for any protein.
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Figure 8. X-ray structure with residue interaction profile of benzamidine obtained from MSMD
simulation. (A) Kinase CK2 with benzamidine (PDBID: 1LPU); (B) trypsin with benzamidine
(PDBID: 2ZPS). Green, cyan, gray, blue, and red meshes indicate profiles of hydrophobic, hydrophilic,
aromatic, basic, and acidic residues, respectively.

4.1.2. Catechol

To validate the residue interaction profile of catechol obtained by MSMD, we com-
pared it with X-ray structures that included catechol molecules. Figure 9 shows the X-ray
structures of catalase and protocatechuate 3,4-dioxygenase, including catechol. On super-
imposing the residue interaction profile of catechol over the X-ray structure, Asp110 of
catalase is in the profile of acidic residues. The hydrophobic residue interaction profile
above and below the aromatic ring contains Leu150 and Leu181 of catalase and Leu35
of protocatechuate 3,4-dioxygenase. In addition, the crystal structure of protocatechuate
3,4-dioxygenase showed that Lys355 overlapped with the interaction profile of the basic
residues. The amino acid residues around catechol in these X-ray structures are consis-
tent with the residue interaction profile obtained by MSMD and support the simulation
results. Again, these two proteins were not included in the set of proteins for MSMD
simulation; thus, it indicates the generalization performance of the profile and the proposed
method itself.
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Figure 9. X-ray structures with the residue interaction profile of catechol obtained from MSMD
simulation. (A) Catalase with catechol (PDBID: 4QON); (B) protocatechuate 3,4-dioxygenase with
catechol (PDBID: 2BUQ). Green, cyan, gray, blue, and red meshes indicate profiles of hydrophobic,
hydrophilic, aromatic, basic, and acidic residues, respectively.

4.2. Detection of Aromatic Residues’ Profile

Despite several agreements between the X-ray structures and residue interaction pro-
files obtained from MSMD simulation, the profiles of aromatic residues were not detected
sufficiently in spite of the threshold being the same among all residue types. One possible
reason is the size of the side chains. Aromatic side chains have a relatively large structure
compared to other types of residues, leading to a wider placement of the Cβ atoms. In this
study, we aimed to show the residue-based interaction profile; thus, we focused on the
Cβ atoms, which are common among almost all residues. However, it is also important to
know the interaction profiles of specific atoms of side chains. The implementation already
has the functionality to generate the profiles of any specific atoms, as well as Cβ. An
exemplary interaction profile of aromatic rings is shown in Figure S1 in Supplementary
Materials. Although it is a preliminary visualization and the signal of the profile is not
stronger than that of Cβ atoms of acidic residues, the visualization result will suggest the
π-π stacking more directly and will be informative for lead optimization.

4.3. Consideration of Binding Stability

In this study, we sampled residue environments at preferable protein surfaces to
omit artifacts of MSMD simulation. The above results indicate that the sampled residue
environments were informative; however, preferable protein surfaces can be classified into
two types:

1. Strong binding affinity between a probe molecule and the protein surface, which
allows a single probe molecule to bind stably to the surface.

2. Frequent access of probe molecules to the protein surface, which makes multiple
probe molecules bind to the protein surface alternatively.

The aim of this sampling was to obtain a residue interaction profile in which a probe
molecule binds stably. The protein surfaces of the first type were suitable for this purpose.
The surfaces of the second type might be important in providing access to the binding site,
but the binding affinity with the probe may not necessarily be strong.

To obtain more appropriate residue interaction profiles, we tried to filter out residue
environments whose probes were not stably situated. Here, we defined a stable probe
molecule as a probe molecule that moved less than 3 Å from a place where the molecule was
500 ps before. The selection of stable samples omitted 77.4% of the residue environments
of benzamidine, 88.0% of those of catechol, and 94.5% of those of benzene. However,
Figure 10 reveals only a slight difference with and without filtering. Although filtering
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slightly enhanced the localization of residues, the results indicated that there was no
significant difference between stable surfaces and accessible surfaces.
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Figure 10. Comparison of residue interaction profiles of benzamidine obtained from MSMD sim-
ulation with and without consideration of moving distance of probe molecules. (A) Without the
selection of stable probe molecules (note that it is the same figure as Figure 4); (B) with the selection
of stable probe molecules. Green, cyan, gray, blue, and red meshes indicate profiles of hydrophobic,
hydrophilic, aromatic, basic, and acidic residues, respectively.

4.4. Substituent Evaluation with Residue Interaction Profiles

As mentioned in the Introduction, structural optimization that is strongly and specif-
ically directed at a target protein is necessary in lead optimization. Residue interaction
profiles can help the optimization step by suggesting whether a substituent is feasible for
a protein binding pocket space. For instance, superimposing the interaction profile on a
co-crystalized structure indicates how well the existing substituent matches the protein
surface environment (Figure S2). Furthermore, residue interaction profiles of dozens of
probes enable the establishment of a recommendation system by computational substitu-
tion of an initial compound and superimposition profiles of corresponding substituents or
probes. Therefore, constructing residue interaction profiles of many probes with variation
will enhance the impact in lead optimization processes.

5. Conclusions

In this article, we proposed inverse MSMD for analyzing a probe’s preference of
interaction patterns. Unlike the analysis from known data, such as X-ray, Cryo-EM, and
NMR structures, the method can process arbitrary probes, and the results are free from
any chemical context of molecules. We assessed the method using benzamidine, catechol,
and benzene, resulting in good agreement with the experimental structures. This method
indicates where protein surfaces provide suitable binding sites for a probe and this, in turn,
can be applied to lead optimization by suggesting substituents based on the vacant spaces
of a binding pocket. More precisely, for a target protein surface where the next substituents
on hit compounds are placed, the method provides information on which substituents are
better in accordance with the residue interaction profiles of multiple probes or possible
substituents. The next step in our method will involve proposing a quantitative metric of
how well the residue environment and the residue interaction profile match. Furthermore,
the construction of the residue interaction profile database is effective for the computational
lead optimization process because the profiles can be applied to arbitrary proteins.
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