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Abstract: Chronic hepatitis B virus (HBV), a potentially life-threatening liver disease, makes people
vulnerable to serious diseases such as cancer. T lymphocytes play a crucial role in clearing HBV virus,
while the pathway depends on the strong binding of T cell epitope peptide and HLA. However, the
experimental identification of HLA-restricted HBV antigenic peptides is extremely time-consuming.
In this study, we provide a novel prediction strategy based on structure to assess the affinity between
the HBV antigenic peptide and HLA molecule. We used residue scanning, peptide docking and
molecular dynamics methods to obtain the molecular docking model of HBV peptide and HLA,
and then adopted the MM-GBSA method to calculate the binding affinity of the HBV peptide–HLA
complex. Overall, we collected 59 structures of HLA-A from Protein Data Bank, and finally obtained
352 numerical affinity results to figure out the optimal bind choice between the HLA-A molecules and
45 HBV T cell epitope peptides. The results were highly consistent with the qualitative affinity level
determined by the competitive peptide binding assay, which confirmed that our affinity prediction
process based on an HLA structure is accurate and also proved that the homologous modeling
strategy for HLA-A molecules in this study was reliable. Hence, our work highlights an effective
way by which to predict and screen for HLA-peptide binding that would improve the treatment of
HBV infection.

Keywords: hepatitis B virus; affinity; MM-GBSA; residue scanning; molecular dynamics

1. Introduction

Infection with Hepatitis B virus (HBV) is a common cause of liver cancer and other
diseases and can even progress to death due to its high carcinogenicity. HBV has now
been identified as a type of DNA virus with a complete envelope that solely targets
human and orangutan cells [1]. Studies have revealed that HBV cannot lead to liver cells
lesions by itself and the damage of liver cells is mainly induced by the associated immune
response [2]. When livers are infected with HBV, HBV can induce the immune response of
cytotoxic T cells and antibodies, which protects people from disease. During this process,
the formation of the peptide–MHC complex is a prerequisite for T cell recognition. Studies
have shown that HBV peptides with a strong binding affinity are presented by MHC
molecules to T cells [3]. Therefore, an analysis of the change in the affinity between HBV
polypeptides and MHC molecules proves helpful in identifying HLA-restricted binding
peptides of HBV.

Major Histocompatibility Complex (MHC) encodes different products specialized
to various species of mammals and is also called Human leukocyte antigen (HLA) in
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humans. HLA class I molecule is a kind of heterodimer formed by heavy chain α and
β2-microglobulin and is expressed on white blood cells, and plays an important role
in the immune system [4]. According to the characteristics of HLA-coding genes, the
HLA class I gene can be divided into the following two categories: classical class I genes
(HLA-A, -B, -C), which are highly genetically polymorphic, and non-classical I genes
(HLA-E, -F, -G). Classical Class I genes are responsible for delivering the peptide (typically
8–12 amino acids in length) to CD8+ T cells, while HLA class II genes (HLA-DR, HLA-DQ,
and HLA-DP) encode HLA proteins presenting peptides with a length of 13–17 amino acids
to CD4+ T cells. There are also HLA III gene regions, which contain genes encoding comple-
ment components C2, C3 and C4 and B factors, etc. An increasing number of studies have
shown that HLA alleles are associated with certain diseases, and HLA-A are known to be
related to immune response pathways in different cancers, among which HLA-A * 33 is
associated with susceptibility to HBV infection [5]. However, the distribution of these HLA
alleles may vary significantly by region and nationality. For the same pathogen, different
populations may have the same overall disease mechanism, but the heterogeneity of HLA
alleles in each population may exhibit different immune patterns against the pathogen. The
relationship between HLA alleles and HBV infection in Chinese and Northeast Asian popu-
lations remains unclear [6]. In addition, there are many studies on the correlation between
HLA-II genotyping and HBV infection and limited studies regarding HLA-I. Therefore,
in this study, we focus on 13 HLA-A genotypes with a total frequency of approximately
95% in Chinese and Northeast Asian populations to explore the association between HBV
infection and T-cell immune responses based on the HLA structure which determines the
function. Studies have demonstrated that the antigen binding grooves of chain α are highly
polymorphic in HLA molecules from diverse species, which presents different peptide
libraries [7]. However, the main chain conformation of peptides, with a bulge in the middle
and both ends embedded in a groove, is conserved and proved to be favorable for HLA
binding and T cell recognition [8]. The higher the conformational complementarity between
the antigen peptide and the peptide binding groove of the HLA molecule, the stronger the
affinity between the two.

Traditional biological experiments used to verify the binding of HBV peptides and
HLA molecules are highly demanding, such as enzyme-linked immunosorbent assay
(ELISA), flow cytometry, and other methods [9,10]. They require strict inclusion criteria
to determine the research object and to collect effective peripheral blood collection from
the patients with hepatitis B infection [11]. Moreover, it is also difficult to rank the affinity
results between different HLA alleles based on the basis of experimental phenotypic results
alone. Therefore, in order to overcome the shortcomings of traditional experiments, we
implemented a structure-based prediction method for peptide–HLA binding affinity, which
has been shown to be more suitable for the prediction of all types of MHC receptors [12].

To date, a number of tools and methods based on sequence and structure have been
developed to predict antigen-specific HLA-restricted peptides. Here, we classify sequence-
based methods into five major categories, namely (i) a motif search-based approach in-
cluding SYFPEITHI [13]; (ii) artificial neural networks (ANNs), including NetMHC [14],
NetMHCpan [15]; (iii) a support vector machine (SVM) including SVMH [16], (iv) hidden
Markov models (HMMs) and (v) quantitative matrices-driven methods (QMs), including
BIMAS [17], EPIJEN [18]. Nevertheless, their sensitivity and specificity are uncertain due to
conformational changes and selection between peptides and HLA molecules, resulting in
some false positive results. In addition, studies have shown that the flexibility of peptides
can also increase the difficulty of protein docking [19], which presents great challenge to
structure prediction. Therefore, in order to improve the accuracy of prediction, understand-
ing the conformational changes of HLA molecules and peptides is of vital importance. As is
well known, the higher the conformational complementarity between the antigen peptide
and the peptide binding groove of the HLA molecule, the stronger the affinity between
two [20]. Reasonable binding conformation provides the basis for studying the affinity of
HLA-HBV antigenic peptides. However, some individual HLA genotypes do not have
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crystal structures, and even if individual HLA genotypes have several crystal structures in
PDB, their bound peptides are significantly different from HBV peptides, which makes it
difficult to study the interaction between HLA and HBV peptides. In this study, we used
two approaches to obtain a reasonable initial conformation of binding for the assessment
of affinity. As for HLA genes, which have PDB, we analyzed all structure-bound peptide
sequences and selected the HLA structure with the most similar properties to HBV peptides
as candidate structures used for amino acid scanning mutation analysis. For HLA genes
with no structure, we constructed an HLA heterodimer using homology modeling and
molecular docking, so as to obtain a reasonable initial peptide binding conformation for
subsequent analysis. Then, the binding peptides in the candidate HLA structures were
mutated into HBV peptides, respectively, by means of residue scanning, and the binding
free energy was calculated by MM-GBSA to represent changes in affinity and stability. Con-
sidering the complexity of peptide and HLA binding, some structures need to be sampled
by molecular docking and molecular dynamics simulations to analyze the protein–protein
interaction. In general, we examined the binding affinity between 45 HBV antigenic pep-
tides and HLA and obtained 352 affinity values. According to the test results, the affinity of
HBV peptides and HLA genotypes can be evaluated and ranked, which complements the
traditional experimental methods. At the same time, this research process also provides
convenience for the prediction and screening of HLA molecular binding peptides, and
generates new insights for the prevention and clinical diagnosis of liver cancer.

2. Results
2.1. Selection of HLA Structures for Affinity Analysis

In this Section, structures with a different peptide-bond conformation of HLA obtained
from PDB were screened. Studies have shown that the P2 and PΩ residues of antigenic
peptides play an important role in the combination of antigenic peptides to HLA molecules,
so the HLA structures with similar P2 and PΩ residues with those of HBV peptides were
reserved. For example, in the process of analyzing the affinity between the HBV peptide
(Sequence: FLWEWASVR) and HLA-A * 02:01, HLA-A * 33:03 and HLA-A * 24:02, we used
two different approaches to obtain the candidate HLA structures used for subsequent mu-
tation analysis. As for HLA-A * 33:03, we modelled the structure and evaluated its quality,
for which all parameters are shown in Table S1. As for HLA-A * 02:01 and HLA-A * 24:02,
all structures that were collected were analyzed. As Table 1 shows, the P2 anchor residue
of the HBV-positive peptide FLWEWASVR is lysine (Lys). As for HLA-A * 02:01, which has
the greatest number of structures available in PDB, we chose 1AO7, 1BD2, 1DUZ, 1QEW,
1JHT, 3I6G, 5ENW, 5F9J and 5FA3 (PDB ID) for HLA-A * 02:01, which have the same anchor
sites. As for HLA-A * 24:02, its available structures were relatively scare, so two structures
with PDB ID of 3I6L and 2BCK were selected according to the resolution and peptide length.

Table 1. Selection of HBV-positive peptide and HLA-A genotype.

Positive Peptide Sequence HLA-A Genotype PDB-ID Peptide Resolution (Å)

FLWEWASVR
A * 02:01

1AO7 LLFGYPVYV 2.6
1BD2 LLFGYPVYV 2.5
1DUZ LLFGYPVYV 1.8
1QEW FLWGPRALV 2.2
1JHT ALGIGILTV 2.15
3I6G GLMWLSYFV 2.2

5ENW GLKEGIPAL 1.85
5F9J YLSPIASPL 2.51
5FA3 GLLPELPAV 1.86

A * 24:02
3I6L QFKDNVILL 2.4

2BCK VYGFVRACL 2.8
The red letters mean the P2 and PΩ residues of antigenic peptides.
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2.2. Acquisition of the Initial Conformation of HBV Peptide-HLA Docking

Some HLA genotypes do not have a crystal structure, so we used homology modeling
and molecular docking to construct an HLA heterodimer. However, modelled structures do
not have the original bond peptide. Considering the high similarity between the modelled
structure and the template structure of the antigen binding groove, we used an online tool,
CoDockPP, to dock the predicted HLA heterodimer with the peptide ligand derived from its
template [21]. After that, the predicted complex conformations obtained were comprehen-
sively sorted according to the score value and ligand RMSD, and the top 10 conformations
were selected for subsequent analysis. Here, we selected the top-ranking conformation
after the docking of four model structures (Figure 1). It can be seen that the conformation
of the template ligand and the predicted ligand almost overlap [22]. The ligand RMSD (Å)
values presented in Table 2 are almost all less than 1 Å, indicating that the possibility of
predicting structural changes is small, and that it can be used for subsequent amino acid
mutation tests [23].

Figure 1. Modelled structure docking model. Ligands for modelled receptor structures and
modelled template structures are shown in gray and predictive ligands are colored in magenta.
(A) HLA-A * 11:02 (B) HLA-A * 26:01 (C) HLA-A * 31:01 (D) HLA-A * 33:03.

Table 2. CoDockPP butt mold structure.

HLA-A Genotype Score Value kal/mol Ligand RMSD (Å)

A * 11:02 −250.13 0.389
A * 26:01 −332.26 3.100
A * 31:01 −270.40 0.781
A * 33:03 −262.92 0.596

2.3. Analysis of Binding between HBV Peptides and HLA Molecules

We used the Residue Scanning function of Schrödinger software (2020-1, LLC,
New York, NY, USA) to manually mutate HLA-bound peptides into HBV positive pep-
tides, and used the MM-GBSA method to calculate the affinity of the mutated peptides.
Detailed information of the residue scanning results is shown in Table S2. We can find that
different HBV positive peptides have significantly different affinity with HLA-A. According
to the value of ∆Affinity, the most likely structure of HLA-A molecules can be screened pre-
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liminarily and the quantitative ranking of different HLA-A molecules can be made based
on the prediction results. In this study, we selected parts of the ligands presenting negative
affinity, identified from the results of some HLA mutations (Table 3). For the HBV-positive
peptides, FLWEWASVR and ETVLEYLVSV, both have a strong affinity to HLA-A * 02:01.
Different HBV-positive peptides have different limitations, such as VWLSVIWMMW, which
has a strong interaction with HLA-A * 24:02. For the above three HBV positive peptides,
we also selected the complex with the strongest affinity to the HLA structure to produce
a 2D map (Figure 2). In order to clearly show the change of the interaction caused by
HBV peptides compared with HLA original bond peptides, we calculated the number of
different types of interactions (Table 4).

Table 3. Part of the HLA mutation performance.

HBV Peptide HLA-A
Genotype PDB-ID HLA

Peptide
4Affinity
kcal/mol

4Stability
(Solvated)
kcal/mol

4Hydropathy
4Prime
Energy

kcal/mol

Prime
Affinity
kcal/mol

FLWEWASVR

A * 02:01

1AO7 LLFGYPVYV 59.73 48.23 0.47 6.36 −231.538
1BD2 LLFGYPVYV 100.45 57.18 0.31 56.03 −186.495
1DUZ LLFGYPVYV −1 25.04 1.72 −77.56 −215.093
1QEW FLWGPRALV 29.19 3.38 0.76 −44.56 −187.811
1JHT ALGIGILTV −25.79 58.4 −1.97 −64.88 −220.932
3I6G GLMWLSYFV 101.23 93.87 −1.41 135.48 −116.632

5ENW GLKEGIPAL 207.63 162.23 0.49 286.45 −38.59
5F9J YLSPIASPL −10.79 19.31 −0.59 −127.65 −245.795

6NCA YVLDHLIVV −15.94 18.86 0.1 −54.54 −209.7
5FA3 GLLPELPAV 111.81 62.17 1.55 51.95 −112.188

A * 33:03 5WJL
template GTSGSPIVNR −19.43 21.53 −0.70 −56.20 −244.411

A * 24:02
3I6L QFKDNVILL 11.43 13.94 0.82 57.69 −195.086

2BCK VYGFVRACL 23.14 −4.06 1.14 −24.61 −189.799

VWLSVIWMMW

A * 02:01

5F7D GLKEGIPALD 98.89 128.14 2.77 241.54 −129.266
5D9S FVLELEPEWTV 109.48 101.41 4.06 244.59 −132.558
5EOT GLLPELPAVGG 91.86 129.52 2.76 161.08 −141.106
3I6K TLACFVLAAV 39.08 41.57 -0.07 56.11 −160.656
1I4F GVYDGREHTV 135.81 153.98 6.16 391.17 −65.913

A * 02:07 3OXS FLPSDFFPSV 96.17 49.52 4.83 103.16 −142.360

A * 24:02
5WWI LYKKLKREMTF 6.77 3.73 6.62 90.22 −240.244
5WXD LYKKLKREMTF −9.87 12.91 7.73 82.75 −243.243

ETVLEYLVSV

A * 26:01 6AT9
template AQDIYRASYY 76.53 −35.56 2.22 131.59 −109.727

A * 11:01

5WJL GTSGSPIVNR 86.11 38.35 0.58 121.02 −125.356
5WJN GTSGSPIINR 70.9 30.3 1.15 87.87 −164.241
5WKF GTSGSPIVNR 372.07 168.26 0.43 536.89 115.8
5WKH GTSGSPIINR 57.75 25.51 2.3 69.94 −165.814
1QVO QVPLRPMTYK 55.37 −3.89 0.53 34.32 −164.671

A * 02:01

5YXU KLVALGINAV 109.1 66.08 0.18 162.51 −159.462
1I4F GVYDGREHTV 179.02 34.6 4.12 284.63 −22.858
3I6K TLACFVLAAV 3.67 −4.35 −2.31 −55.59 −194.707

3UTQ ALWGPDPAAA −15.25 27.51 1.61 −41.95 −211.162

Table 4. Number of different types of interactions.

HLA-Peptide Number of
Hydrogen Bonds

Number of
Salt Bridge

Number of
Pi-Pi Bonds

A * 02:01-1JHT- ALGIGILTV 12 1 0
A * 02:01-1JHT-FLWEWAFVR 13 3 1

A * 24:02-5WXD-LYKKLKREMTF 10 1 2
A * 24:02-5WXD-VWLSVIWMMW 10 1 4
A * 02:01-3UTQ-ALWGPDPAAA 11 1 0
A * 02:01-3UTQ-ETVLEYLVSV 14 4 0
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Figure 2. A 2D structure of the interaction between peptide and HLA structure. Residues are
represented by the shape of water droplets. The interactions between residues and ligands are
represented by lines and colored according to different interaction types. The hydrogen bond is
colored in magenta and the Pi-Pi bond is colored in green. Magenta gradient lines represent salt bridge.
(A) Interaction of HLA-A * 02:01 (PDB ID: 1JHT) and its peptide (ALGIGILTV). Hydrogen bonds
are formed between peptide and amino acids TYR7, GLU63, LYS66, ASP77, TYR84, TYR99, THR143,
LYS146, TRP147, TYR159 and TYR171. A salt bridge is formed with residue LYS146. (B) Interaction
of HLA-A * 02:01 (PDB ID: 1JHT) and HBV-positive peptide (FLWEWASVR). Hydrogen bonds are
formed between peptide and amino acids TYR7, GLU63, LYS66, ASP77, TYR84, ARG97, TYR99,
THR143, TRP147, GLU155, TYR159 and TYR171, Pi-Pi bond is formed with residue TYR159 and
salt bridges are formed with residue ARG65, ASP77 and LYS146. (C) Interaction of HLA-A * 24:02
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(PDB ID: 5XWD) and its peptide (LYKKLKREMTF). Hydrogen bonds are formed between peptide
and amino acids TYR7, GLU63, LYS66, HIE70, ASN77, TYR84, LYS146, TRP147, TYR159 and TYR171,
Pi-Pi bonds are formed with residue PHE99 and TYR116, salt bridge is formed with residue GLU63.
(D) Interaction of HLA-A * 24:02 (PDB ID: 5XWD) and HBV positive peptide (VWLSVIWMMW).
Hydrogen bonds are formed between peptide and amino acids TYR7, GLU63, LYS66, ASN77, TYR84,
LYS146, TRP147, GLU155, TYR159 and TYR171, Pi-Pi bonds are formed with residue PHE99, TYR116
and TYR123, salt bridge is formed with residue GLU63. (E) Interaction of HLA-A * 02:01 (PDB ID:
3UTQ) and its peptide (ALWGPDPAAA). Hydrogen bonds are formed between peptide and amino
acids TYR7, GLU63, LYS66, THR73, ASP77, TYR99, THR143, LYS146, TRP147, TYR159 and TYR171,
salt bridge is formed with residue LYS146. (F) Interaction of HLA-A * 02:01 (PDB ID: 3UTQ) and HBV
positive peptide (ETVLEYLVSV). Hydrogen bonds are formed between peptide and amino acids
TYR7, GLU63, ARG65, LYS66, THR73, ASP77, TYR84, TYR99, THR143, TRP147, TYR159 and TYR171,
and salt bridges are formed with residue GLU63, ARG65, LYS66 and LYS146.

2.4. Dynamics Simulation

A disulfide bond is a type of covalent bond, easily formed between two cysteine
residues, which has a vital influence on the stability of protein space and protein activity. In
the process of predicting the structural affinity between an HBV positive peptide and HLA
molecule, the polypeptide chain of some HLA molecules contains two cysteines, which is
linked by disulfide bonds, and the software generally chooses to skip them, as is the case for
the polypeptide chain sequence SSSSCPLSK from one of the structures of HLA-A * 11:01.
For this type of structure, we adopt peptide docking and optimize the structure through
molecular dynamics simulation to obtain RMSD results so as to determine whether the pro-
tein ligand docking is stable (Figure 3). The stable region was selected to calculate the bind-
ing free energy of the complex by MM-GBSA method. It can be used to compare the binding
affinity between different HLA genotypes and HBV-positive peptides. For example, we
performed a 100 ns molecular dynamics simulation for a complex composed of the positive
HBV peptide SMYSCCCTK and HLA-A * 11:01\A * 02:01\A * 03:01 and another complex
composed of HBV peptide ETVLEYLVSV and HLA-A * 26:01\ A * 11:01\ A * 02:01. At the
initial stage of the simulation, the system is in a relatively violent state of motion and the
distance between each atom has not yet found an equilibrium point. As the simulation
progresses, in around the last 50 ns interval, the RMSD value of the docking structure tends
to be flat. According to the corresponding number of trajectory frames, the average binding
free energy can be obtained (Table 5). When the value of binding free energy is smaller, the
binding force between proteins is stronger. Our study can sequence the binding conditions
of an HBV positive peptide and HLA molecule. HBV positive peptide SMYPSCCCTK
binds to HLA-A * 02:01 best, with a binding free energy of −80.997 kcal/mol, followed
by HLA-A * 03:01, while HLA-A * 11:01 has the worst binding free energy. Similarly, the
binding condition of the positive peptide ETVLEYLVSV to HLA molecule A * 11:01 was
the best, was in the middle for A * 26:01 and was found to be the worst for A * 02:01.

Table 5. HBV-HLA combined free energy calculation.

HBV Peptide HLA-A Genotype PDB-ID HLA Peptide Binding Free
Energy kcal/mol

SMYPSCCCTK
A * 11:01 5GRD SSCSSCPLSK −64.234
A * 02:01 1I4F GVYDGREHTV −80.997
A * 03:01 3RL2 QVPLRPMTYK −76.071

ETVLEYLVSV
A * 26:01 modeling −90.805
A * 11:01 5GRD SSCSSCPLSK −93.877
A * 02:01 3UTQ ALWGPDPAAA −76.755
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Figure 3. RMSD of the docking structure. The arrow (red) indicates the selected stable regions, where
the value fluctuates slightly and can be used for subsequent calculations of the binding free energy.
(A) The complex 5GRD-SMYPSCCCTK remained stable between 10 and 100 ns. (B) The complex
1I4F-SMYPSCCCTK remained stable from 80 to 100 ns. (C) The complex 3RL2-SMYPSCCCTK
remained stable between 60 and 100 ns. (D) Compound A * 26:01-ETVLEYLVSV remained stable from
60 to 100 ns. (E) Compound 5GRD-ETVLEYLVSV remained stable from 60 to 100 ns. (F) Compound
3UTQ-ETVLEYLVSV remained stable from 20 to 100 ns.

2.5. Binding Analysis of 45 HBV Epitopes and HLA-A Alleles

By analyzing the affinity results of all the epitopes with HLA-A alleles, we finally
demonstrated the binding advantages of these epitopes with different HLA in Table 6.
It can be found that most of the epitopes have a strong interaction with HLA-A * 24:02,
HLA-A * 02:01 and HLA-A * 11:01. Finally, we identified 19 epitopes that strongly inter-
acted with different HLA alleles and were more likely to be present on the cell surface,
which was 68% consistent with our experimental verification [24]. Among them, ten epi-
topes (ILCWGELMNL, SYVNVNMGL, WFHISCLTF, VWLSVIWMMW, MMWYWGPSL,
LYSILSPFL, RLKVFVLGG, LYSSTVPCF, LYSSTVPVF and FYPKVTKYL) have a high bind-
ing affinity to HLA-A * 24:01 and eight epitopes (FLPSDFFPSI, WFHISCLTF, ETVLEYLVSV,
ILSTLPETTV, SPISSIFSR, SMYPSCCCTK, FLWEWASVR and MMWYWGPSL) have a high
binding affinity to HLA-A * 02:01. Epitopes STLPETTVVR and QAGFFLLTR are more
likely to bind to HLA-A * 11:01, while epitopes CPGYRWMCLR and FLWEWASVR have
a high binding affinity to HLA-A * 33:03 and epitope FLPSDFFPSI has a high ability
binding to HLA-A * 02:07. The affinity values of all epitopes with HLA-A alleles can be
found in Table S2.
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Table 6. Binding analysis of 45 HBV epitopes and HLA-A alleles.

Epitopes Origin Protein HBV Genotype(s) Position (Start–End) Bioinformatics Prediction

FLPSDFFPSI HBeAg B/C 47–56 A * 02:07 > A * 02:01 > A * 11:01
LLDTASALY HBeAg A/B/D 59–67 A * 01:01 > A * 11:02

ILCWGELMNL HBeAg B/C 88–97 A * 02:07 > A * 24:02
ASRELVVSY HBeAg B/C 109–117 A * 02:01 > A * 30:01 > A * 02:06

SYVNVNMGL HBeAg A/C/D 116–124 A * 24:02 > A * 02:07
WFHISCLTF HBeAg A/B/C/D 131–139 A * 24:02 > A * 02:07 > A * 02:01

ETVLEYLVSV HBeAg C 142–151 A * 02:01 > A * 11:01 > A * 26:01
ILSTLPETTV HBeAg A/B/C/D 168–177 A * 02:01 > A * 02:03
STLPETTVVR HBeAg A/B/C/D 170–179 A * 11:01 > A * 02:07
ASPISSIFSR HBsAg C 158–167 A * 11:01
SPISSIFSR HBsAg C 159–167 A * 02:01 > A * 11:01
SAISSISSK HBsAg B 159–167 A * 11:01>A * 02:03

LQAGFFSLTK HBsAg B 189–198 A * 02:07 > A * 24:02 > A * 11:02
QAGFFSLTK HBsAg B 190–198 A * 11:01 > A * 31:01
QAGFFLLTR HBsAg C/D 190–198 A * 11:01 > A * 11:02

CPGYRWMCLR HBsAg A/B/C/D 243–252 A * 33:03
LFILLLCLI HBsAg A/C/D 258–266 A * 24:02

LLDYQGMLPV HBsAg A/B/C/D 271–280 A * 02:03 > A * 24:02
SMYPSCCCTK HBsAg C 306–315 A * 02:01 > A * 11:01 > A * 03:01
FLWEWASVR HBsAg C 335–343 A * 02:01 > A * 33:03 > A * 24:02

VWLSVIWMMW HBsAg A/B/C/D 364–373 A * 24:02 > A * 02:01 > A * 02:07
MMWYWGPSL HBsAg A/C/D 371–379 A * 02:01 > A * 02:07 > A * 24:02
MMWFWGPSL HBsAg B 371–379 A * 24:02 > A * 02:07 > A * 03:01

MMWYWGPSLY HBsAg A/C/D 371–380 A * 24:02 > A * 03:01 > A * 02:07
LYSILSPFL HBsAg C/D 379–387 A * 24:02 > A * 02:01

TVNAHQILPK HBx A/D 82–91 A * 11:01 > A * 30:01
TVNAHGNLPK HBx B 82–91 A * 02:01 > A * 11:01 > A * 03:01
TVNAHQVLPK HBx C 82–91 A * 11:01
STTDLEAYFK HBx A/B/C/D 104–113 A * 02:01 > A * 11:01 > A * 02:06
RLKVFVLGG HBx A/B/C/D 128–136 A * 24:02 > A * 30:01
KVFVLGGCR HBx A/B/C/D 130–138 A * 24:02 > A * 31:01
VCAPAPCNF HBx D 142–150 A * 24:02
LYSSTVPCF HBpol B 62–70 A * 24:02 > A * 33:03 > A * 02:01
LYSSTVPVF HBpol C 62–70 A * 24:02 > A * 02:07 > A * 02:01
FYPKVTKYL HBpol D 115–123 A * 24:02 > A * 11:01

KVTKYLPLDK HBpol D 118–127 A * 11:01
TLWKAGILYK HBpol A/B/C/D 150–159 A * 03:01 > A * 24:02 > A * 11:02
FLLAQFTSA HBpol A/B/C/D 524–532 A * 02:03 > A * 02:07
LLAQFTSAI HBpol A/B/C/D 525–533 A * 02:03
PTYKAFLCK HBpol C/D 671–679 A * 11:01 > A * 02:06

HTAELLAACF HBpol A/B/C/D 726–735 A * 24:02 > A * 26:01
RSRSGAKLI HBpol B/C 737–745 A * 02:01 > A * 02:06 > A * 30:01
RSRSGANIL HBpol B/C 737–745 A * 02:01 > A * 30:01
KLIGTDNSV HBpol A/C 743–751 A * 02:01 > A * 02:03
KLIGTHNSV HBpol B 743–751 A * 02:01 > A * 02:03 > A * 11:01

3. Discussion

The identification of immunogenic peptides is a multi-step process that requires a great
deal of time and labor to complete. For antigens with known sequences, the traditional
experimental method synthesizes a large number of overlapping peptides and then screens
the peptides with immunogenicity using cell experiments, which is time-consuming and
labor-intensive. In recent years, the rapid development of bioinformatics has made it
faster and more accurate to predict mutations and to obtain high-resolution HLA typing
from tumor genomes. Croft et al. studied the immunogenicity of viral antigenic peptides
presented by MHC class I molecules on the surface of virus-infected cells and found that
peptide–MHC binding affinity was the best predictor of immunogenicity [25]. In this study,
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the affinity values of different peptide–MHC complexes were predicted using bioinfor-
matic methods, thereby providing a new idea for screening immunogenicity candidate
neoantigens and shortening the development time of vaccines.

At present, sequence-based peptide–MHC affinity prediction methods have become
the most potent candidate for affinity prediction. However, their dependence on training
data makes these methods more effective at predicting high-frequency HLA alleles than
low-frequency ones. Therefore, a new, non-offset method is still needed to better predict
the affinity of each HLA molecule to the peptide. Based on the following two reasons,
we proposed a structure-based prediction method, in which a P-MHC complex model
was constructed using a calculation method, providing affinity predictions according to
the model. Firstly, although MHC molecules have a high degree of polymorphism, there
are only differences in amino acids at individual positions among different molecules.
According to the principle that the primary sequence of a protein determines spatial
conformation, we can use homology modeling techniques to construct MHC molecules of
interest for study. Secondly, the binding pattern of the peptide terminus to MHC class I
molecules is highly conservative and is constrained by the F pocket in the antigen binding
slot. We can use the conserved peptide terminal to design a docking scheme and obtain a
reasonable conformation of a peptide–MHC molecule for molecular dynamics simulations.

In this study, considering the multiple complex conformations of individual HLA
alleles, we performed a sequence analysis on the bond peptides inherent in the HLA
crystal structure. Since the binding force between the peptide and HLA molecule is
mainly provided by the hydrogen bond network formed by the P2 and PΩ sites of the
peptide and the antigen binding groove of HLA, in cases where the residues of the main
anchor site of the HLA-bound peptide were consistent with the positive HBV peptide, we
reserved the HLA structure for subsequent residue scanning analyses to obtain a reasonable
peptide–HLA docking conformation. For HLA alleles without an established structure,
we used homology modeling, molecular docking and dynamics simulation to obtain a
reasonable docking conformation of the HBV peptide and HLA molecule.

Based on molecular dynamics simulations and MM-GBSA calculations, which per-
formed well in predicting the relative binding ability of protein–ligand, we obtained
352 affinity values of 45 HBV positive peptides and 13 HLA genotypes present in dif-
ferent populations. The 45 epitopes here were verified as real epitopes using ex vitro
enzyme-linked immunosorbent spot (ELISPOT) and in vitro co-culture (using patients’
peripheral blood mononuclear cells). Previously, we experimentally verified the binding
ability of these peptides to HLA by flow cytometry, and categorized affinity levels as low,
medium, and high [24]. However, this kind of experimental method has limitation on
obtaining the exact value of affinity. Here, our bioinformatic methods can effectively quan-
titatively predict the situation and provide specific affinity values that can be compared
between different groups, which complements the limitations of the experimental method
and is suitable for preliminary prediction in the absence of experimental samples or in the
case of an excessive sample size so as to provide clues. In summary, our predicted results
were highly consistent with the level of qualitative affinity measured by the competitive
peptide-binding experiment [24].

However, the molecular dynamics simulation method we adopted, strictly speaking,
is a simulation of the model under the thermodynamic system to obtain the state of
the model at the simulated time and set temperature, which does not constitute a real
experimental system. Moreover, some studies have shown that the temperature of the
dynamic simulation will have different effects on the secondary and tertiary structures
of proteins. If the temperature is too high, it may be of little referential significance for
practical experiments.
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The CD8+ T cell response is critical to HBV infection [26]. There are also some
databases indicating the presence of HLA class I epitopes in hepatitis B virus, such as
Hepitopes, but they are mainly limited to HLA-A * 02:01, A * 24:02 or B * 07:02, which are
common supertypes in Caucasians [27]. Therefore, we hope to predict the binding affinity
between HLA molecules and HBV antigenic peptides by studying the effects of mutations
on binding affinity and stability, and to reasonably screen out the restrictive antigenic
peptides targeting high frequency HLA-A in Chinese and Northeast Asian populations.
Based on our research process, we can carry out quantitative sequencing according to the
affinity value between an antigen peptide and HLA, establish an hepatitis B virus peptide
library by screening high affinity peptides in the high frequency HLA population in China
and Northeast Asia, and can also study the related tumorigenesis mechanism by comparing
the changes in the antigen peptide and HLA association caused by mutations. In our study,
352 affinity values were predicted from 45 HBV peptides, and the best possible limiting HLA
molecules were screened out based on the data (HLA-A * 24:02, A * 02:01, A * 11:01, A * 33:03,
A * 02:07), which saved time and costs for subsequent research. Moreover, our prediction
was not limited to the known structure of HLA molecules, as we also predicted the HBV
limitation of HLA molecules of unknown structure based on homologous modeling and
protein docking. At present, a set of structure-based research procedures explored in this
research has achieved some preliminary results, but it is still worth improving on. Further
studies will be conducted on structure-based affinity prediction to provide additional
useful information about peptide–HLA interactions and to improve the prediction time
and accuracy. It is believed that in the future, the structure-based prediction method will
complement the sequence-based prediction method, saving on labor in the identification of
immunogenic peptides, and speeding up the development of tumor vaccines.

4. Materials and Methods
4.1. HLA Structure Source

In this paper, structures of HLA-A genotypes in the PDB (Protein Data Bank) database
were collected by means of MMseqs2 to ensure conformational integrity. As for HLA
genotypes that do not have an established structure, such as HLA-A * 33:03, we modelled
the structure by homologous modeling and molecular docking. First, we collected the com-
plete HLA I class alpha chain amino acid sequences from the IPD-IMGT/HLA database
(http://www.ebi.ac.uk/ipd/imgt/hla/, accessed on 13 April 2020). Second, we used
the Advanced model function of Schrödinger software (2020-1, LLC, New York, NY, USA)
to construct the HLA alpha chain based on sequence similarity calculated by BLAST.
Third, structures were submitted to SAVES (https://saves.mbi.ucla.edu/, accessed on
13 July 2020) for a reliability test, then we fixed the unreasonable conformation and recorded
the parameters of each structure. Forth, the refined HLA class I alpha chains and the
beta chains from templates were docked by means of molecular docking, accomplished
using the CoDockPP online tool [21]. Finally, we evaluated the rationality of the het-
erodimer in Molprobity [28]. All test parameters of the modelled structures are provided in
the Supplementary Materials (Table S1).

4.2. HBV Positive Peptide

The amino acid sequences of four HBV proteins (HBsAg, HBeAg, HBpol and HBx)
of four genotypes A, B, C and D were obtained by referring to the Uniprot database
(https://www.uniprot.org/, accessed on 13 October 2018). Furthermore, we used six
epitope prediction tools (SVMHC-SYFPEITHI/MHCPEP, IEDB-ANN/SMM, NetMHC,
SYFPEITHI, BIMAS, EPIJEN) to obtain high frequency HLA-restricted positive epitopes
with 9 or 10 amino acids, and eventually 45 HBV-positive peptides for subsequent simulated
prediction. Detailed information about these 45 epitopes is presented in Table 6.

http://www.ebi.ac.uk/ipd/imgt/hla/
https://saves.mbi.ucla.edu/
https://www.uniprot.org/
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4.3. Selection of HLA Structure

The majority of the HLA molecules with different genotypes contain a variety of differ-
ent structures, which are mainly diverse from the peptide segment bound by their antigen
binding groove. For the factor in which the binding groove of HLA-I molecules is closed at
both ends, antigenic peptides are limited in length and usually consist of 8–11 amino acids.
Unlike HLA I molecules, the antigen-peptide binding slots of class II molecules are open,
and can therefore accommodate longer peptides, of typically 13 to 18 amino acids. How-
ever, the binding of antigen peptides to HLA molecules is inclusive and different HLA
molecules can bind to various antigen peptides. Relevant studies have demonstrated
that there are 6 binding pockets (A–F pockets) on HLA molecules, but each pocket has
a different degree of contribution. In general, the binding force is mainly provided by
the hydrogen bond network formed between the second and ninth anchor residues of
the antigenic peptide and the B and F bags of the HLA molecule [29]. Therefore, we first
performed a sequence analysis on the peptides bound in the collected HLA structures.

HLA complex structures with the same anchor-binding residues as HBV peptides were
selected as candidates. For those HLA complexes whose anchors were not consistent with
HBV positive peptides, we selected the structures most similar to HBV mutated peptides
according to the length, amino acid sequence and crystal resolution of the p-HLA complex
for amino acid scanning mutations.

For the groups that it was not suitable to obtain the docking conformation of HBV
peptide and HLA by amino acid scanning mutation, we chose to use the protein docking
method to obtain reasonable conformation. Ten optimal structures can be obtained based
on a knowledge-based scoring function and site constraint protein docking method in
CoDockPP [21], in which a distance-based scoring method is trained according to the
iterative method of statistical mechanics [22], and the formula is as follows:

Score = Σijuij(r)uij stands for effective pairwise potentials

In this article, a total of four structures, A1102, A2601, A3303 and A3101, respectively,
are modelled, and this method was adopted for all of them.

4.4. Scanning Amino Acid Mutation

The amino acid scanning mutation developed based on the calculation method of
binding free energy can change the properties of some residues without transforming the
conformation of the protein backbone, so as to explore the influence of the protein function.
We use the residue scanning calculation module of BioLuminate (version 1.0, Schrödinger,
2020-1, LLC, New York, NY, USA) to calculate the binding capability of HLA molecules
and positive peptides. This module uses the MM-GBSA method, combines the OPLS2005
force field and the VSGB solvent model. Difference in net binding free energy between the
wild-type protein and mutant-type protein was calculated using the thermodynamic cycle
so as to compare the system energy of the two. Firstly, we selected affinity and stability
as the criteria to estimate the structure, manually design and modify candidate mutant
residues and set them as simultaneous mutations. After that, we performed sorting in
accordance with the protein affinity after mutation, and defined the affinity threshold
predicted by MM-GBSA with 3 kal/mol [30]. Due to the fact that HBV positive peptides
belong to a minor number of peptides, the scanning of amino acid mutations can achieve
site-directed mutation at the binding position of the original antigen peptide of the HLA
molecule, effectively eliminating the confusion caused by an inaccurate docking posture. If
the number of amino acids mutated at the same time reaches more than 8, it needs to be
calculated by script. We used WinSCP software (version 5.17.7) to modify the amino acids.
WinSCP securely copies and edits files between local and remote devices. By running the
newly modified file script through Xshell we were able to obtain the mutation results.
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4.5. Molecular Docking

Molecular docking is an effective method for predicting binding patterns and the
affinity between ligand receptors and proteins, providing a series of possible theoretical
conformations after recognition, and further optimizing the spatial structure of proteins
through subsequent molecular dynamics simulations [31]. According to the changing
degree of protein conformation, it is mainly divided into the following three categories:
rigid docking, semi-flexible docking and flexible docking. The antigenic peptides of HLA
molecules are diverse, and part of the peptide chains contain cysteine residues, which may
be skipped in the mutant design due to the tendency to form disulfide. Therefore, in order
to enhance the rationality of the experiment, we performed a dynamic simulation on the
structure that cannot be mutated in residue scanning.

First of all, the molecular docking described in our test uses the Peptide docking of
the Glide module, which regards receptors as rigid structures, but can subtly modify the
docking of receptors and ligands by softening the active site area. Taking the peptide ligand
as the constraint object, we automatically set up the receptor docking box to generate and
input the sequence of the positive peptide to be mutated in the Text. Then, we obtained
a set of peptide-docking poses. We used the superimposition function of Schrödinger to
calculate the conformational similarity between the docking pose and binding pose of the
peptide and selected the pose with the lowest RMSD Score.

4.6. Molecular Dynamics Simulation

With the evolution of computer technology, mechanism of experimental phenomena
can be visually demonstrated through software simulation, which can effectively predict
the wet experiment beforehand. The accuracy of the simulation will improve the economic
effectiveness of the experiment and make a greater contribution to scientific research.
Molecular dynamics simulates the Newtonian dynamics of the model system, which can
capture the conformational changes of the protein in the course of the interaction, as well
as the coordinates, velocity and energy trajectories of the particles [32]. Schrödinger’s
Desmond module is our preferred method for performing high-performance molecular
dynamics simulations and supporting GPU acceleration. The docking structure was placed
in the prepared simulation system which used an OPLS3E force field and SPC water
molecule model. This force field has a higher accuracy for the structural performance and
conformation evaluation of the protein ligand [33]. In addition, the overall model system
will run a 100 ns molecular dynamics simulation at a temperature of 300K and a pressure
of 1bar. According to the laws of thermodynamics, the model system will be prone to a
state with the lowest binding free energy and the most stable structure.

4.7. Protein Ligand Interaction Analysis

A Simulation Interaction Diagram panel can be applied to visualize the information
of the simulated protein–ligand interactions and obtain the RMSD and RMSF values of
the protein–ligand as well as the hydrogen bond and hydrophobicity. RMSD can be used
for determining whether the protein complex is stable during the simulation process [34].
The molecular systems simulated by molecular dynamics are valuable only when the
conformation is extracted and analyzed at equilibrium.

In cases that the RMSD value still displays a fluctuation over a wide range, the
simulation architecture changes and requires a longer simulation time. Root Mean Squared
Deviation (RMSD) is a distance function and can be calculated to effectively determine
whether the structure is in a steady state, which is of great significance for further analysis.
The calculation formula is as follows:

RMSDx =

√√√√√√ 1
N

N

∑
i=1

(
r′i(tx)− ri(tre f )

)2
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In this formula, N is the number of atoms selected, and tref is the reference time
(generally, the corresponding time of the first frame is t = 0). r′ is the position of the selected
atoms in frame x after superimposing on the reference frame, where frame x is recorded at
time tx. The procedure is repeated for each frame in the simulation trajectory.

4.8. Binding Free Energy Calculation

The theoretical study of protein–ligand interactions and the rapid development of
computer-aided medicine design have led to great progress in the calculation of binding
free energy. Molecular dynamics simulation indirectly calculates the binding free energy
between proteins by establishing a Thermodynamic cycle [35]. It is well known that
Free Energy Perturbation (FEN) and Thermodynamic Integration (Ti) are classic methods.
However, these two methods have some limitations due to the need to strictly define the
computing system and because they are time-consuming [36]. In recent years, the MM/PB
(GB) SA method for the combined free energy calculation of molecular dynamics trajectory
files has attracted increasing attention. Studies have highlighted that MM/GBSA presents
promising performance in predicting the relative binding free energy of protein ligands,
and combines precision and speed comprehensively [37].

The calculation formula is as follows: MM/GBSA dG Bind (NS) = Complex-Receptor-Ligand.
The NS = NO Strain, which is means the conformational change of the receptor ligand

during the formation of the complex is not considered.
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