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Abstract: The emerging field of circular RNAs (circRNAs) has identified their novel roles in the
development and function of many cancers and inspired the interest of many researchers. circRNAs
are also found throughout the healthy body, as well as in other pathological states, but while research
into the function and abundance of circRNAs has progressed, our overall understanding of these
molecules remains primitive. Importantly, recent studies are elucidating new roles for circRNAs
in pregnancy, particularly in the placenta. Given that many of the genes responsible for circRNA
production in cancer are also highly expressed in the placenta, it is likely that the same genes act in
the production of circRNAs in the placenta. Furthermore, placental development can be referred to
as ‘controlled cancer’, as it shares many key signalling pathways and hallmarks with tumour growth
and metastasis. Hence, the roles of circRNAs in this field are important to study with respect to
pregnancy success but also may provide novel insights for cancer progression. This review illuminates
the known roles of circRNAs in pregnancy and the placenta, as well as demonstrating differential
placental expressions of circRNAs between complicated and uncomplicated pregnancies.
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1. Introduction

The placenta, a product of conception with a transient existence, uniquely supports
pregnancy. It plays a critical role in nutrient, waste and gas exchange between the mother
and fetus. Correct placentation underpins fetal development, as well as coordinating
maternal adaptations to pregnancy to maintain maternal and fetal health. In pregnancy
complications characterised by aberrant placentation such as preeclampsia (PE) [1] and
intrauterine growth restriction [2], there is an altered placental transcriptome. Emerg-
ing evidence demonstrates the roles of novel RNA species in pregnancy complications,
particularly circular RNAs (circRNAs).

The first identified circRNA, the hepatitis D viroid, was reported in 1977 [3]. Following
this, circRNAs were found in mammalian cells using electron microscopy in 1979 [4].
Initially, due to their low abundance, they were disregarded as products of misplicing.
Then, in 1991, circular transcripts were found in a variety of normal and neoplastic human
cells [5]. As technology improved, primarily in sequencing capabilities and bioinformatics,
so has the study of the structure and functionality of circRNAs [6].

Many circRNAs have evaded detection until now for two main reasons. Unlike
other small RNAs, circRNAs are not able to be easily separated from mRNA through size
fractionation or electrophoretic mobility as often they differ from their linear form only
in circular structure. They are also easily destroyed by molecular techniques requiring
amplification or fractionation due to their circular form and, as they lack polyadenylation,
they are often discarded when analysing sequencing data [7]. These covalently closed
circular RNA structures remain enigmatic, with a plethora of reported functions and
methods of biogenesis. This review will detail what is currently known about circRNAs,
their implications for placental development and function, and their broader consequences
for pregnancy.
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2. circRNA Biogenesis

circRNAs are produced through backsplicing, a process in which the 3′ end of a down-
stream exon is spliced and covalently linked with the 5′ end of an upstream exon [8–10].
This often leaves behind a transcript which becomes an alternatively spliced linear RNA
product with skipped exons (Figure 1) [11]. The end circRNA product is devoid of 5′ cap-
ping and 3′ polyadenylation, and is consequently resistant to exonuclease activity [12]. It is
possible for circRNAs to consist of one or more exons, sometimes including introns [termed
exonic intronic circRNAs (EIcircRNAs)], or even introns only [termed circular intronic
RNAs (ciRNAs)]. Exonic circRNAs make up approximately 80% of circRNA transcripts and
are mainly located in the cytoplasm, whereas EIcircRNAs and ciRNAs tend to be located in
the nucleus and regulate their cognate linear transcripts [13].
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Figure 1. An example of circRNA biogenesis using backsplicing. circRNAs are produced through
backsplicing and can potentially produce several alternatively spliced products. circRNAs can:
(A) comprise multiple exons, (B,C) comprise a single exon, (D) comprise both exons and introns
(termed exonic intronic circRNAs) or (E) comprise only introns (termed circular intronic RNAs).
After each backsplicing event, the remaining exons are left to form an alternatively spliced transcript.
Graphic created with BioRender.com, accessed on 5 May 2021.

It has been shown that the biogenesis of circRNAs, while via backsplicing, still in-
volves canonical splicing signals and spliceosomal mechanisms [12]. The experimental
use of isoginkgetin, a splicing inhibitor, inhibits the formation of circRNAs, as well as
linear RNAs [14,15]. Moreover, mutations in the canonical splicing sites of exons inhibit
circularisation and circRNA biogenesis [16–18]. The biogenesis of circRNAs is in constant
competition with linear RNA production through canonical splicing machinery [15]. It has
been shown that the elongation velocity of RNA polymerase II positively correlates with
backsplicing efficiency [19]. This has been corroborated by several studies in which muta-
tions in the RNA polymerase II large subunit significantly reduced RNA pol II elongation
velocity, and thus, backsplicing efficiency and circRNA production [20–22].

There are several ways in which circRNAs can be produced (Figure 2). Complemen-
tary base-pairing (Figure 2A) occurs when complementary inverted sequences in introns
flanking backsplice junctions facilitate circularisation by base-pairing to form a stem-loop-
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like structure which can then be cleaved to form a circRNA. This structure promotes spatial
reduction in splice signals required for backsplicing and thus contributes to RNA circular-
ization [23,24]. Specifically, Jeck et al. [25] first reported on the importance of inverted ALU
repeat elements in backsplice-flanking introns in facilitating circRNA biogenesis. ALU re-
peats are short nucleotide sequence repeats that comprise approximately 11% of the genome
and are primate-specific [26]. These inverted ALU repeats are five times more enriched in
sites of human exonic circRNAs formation. There are also examples of exonic circRNAs
where the entire gene is circularised and no upstream or downstream exons are leftover for
alternatively spliced transcript production, such as SRY, the male sex-determining gene
found on the Y chromosome, which abundantly produces circRNAs [27].
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Figure 2. Methods of circRNA biogenesis. A number of different methods facilitate the circularisation
of circRNAs: (A) Complementary base-pairing (e.g., via Alu repeats) promotes backsplicing due to
spatial reduction in the splice sites. (B) RBP-driven circularisation occurs when RBPs bind flanking
introns and bridge them together for splicing. (C) ciRNA formation: ciRNAs are formed from lariat
introns that escape debranching. C-rich (red) and GU-rich (blue) sequence binding is sufficient for
the intron to avoid debranching and generate a ciRNA. (D) The lariat-driven model of circularisation.
Exon-skipping occurs to bring splice sites into close proximity.

Certain RNA binding proteins (RBPs) are also able to facilitate RNA circularisation
(Figure 2B). For example, the RBP Quaking (QKI), which is highly expressed in the placenta,
aids the biogenesis of circRNAs which are involved in epithelial-mesenchymal transition
(EMT), a process common to placental development and many cancers. Furthermore, QKI
knockdown subsequently inhibits the production of EMT-related circRNAs [18]. However,
for correct functioning QKI requires the assistance of binding sites in introns flanking the
exons to facilitate circRNA biogenesis [18]. Alternatively, the RBP Muscleblind (MBL),
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which is also highly expressed in the placenta, facilitates the biogenesis of the circRNA
(circMbl) from its own cognate RNA by binding to specific MBL conserved sites in flanking
introns [15].

circRNAs can also be formed from RNA lariats (lasso-shaped by-products of RNA
splicing), termed circular intronic RNAs (ciRNAs). Distinct from exonic circRNAs, which
feature a 3′-5′ carbon linkage at the splicing branchpoint, lariat RNAs feature 2′-5′ link-
ages [23]. They can be formed utilising a consensus motif with a GU-rich region, located
near the 5′ splicing point, and a C-rich region, near the branchpoint site in ciRNA-producing
introns, which allow for intron lariat escape from debranching. These regions then facilitate
the circularisation of this intron [28,29] (Figure 2C) and the 3′ ‘tail’ downstream from the
branch point is trimmed to stabilise the ciRNA and protect from exonucleases. This motif
is not enriched in regular introns [23] and has been suggested as an essential RNA element
to expedite intron lariat escape from debranching.

The lariat-driven model of circularisation (Figure 2D) can encompass a variety of the
above techniques for circRNA biogenesis. Middle exons of a linear transcript are ‘skipped’
to allow an upstream 3′ splice donor to covalently bond to a downstream 5′ splice acceptor.
The spliceosome then removes the introns to form the final circRNA product.

3. circRNA Function

There are several functions for circRNAs that have been identified to date. A small
number of circRNAs are able to be translated (Figure 3A) (e.g., the Hepatitis δ agent,
a circular RNA satellite virus of the Hepatitis B virus [30]) while engineered circRNAs can
undergo translation if an internal ribosomal entry site (IRES) is included in the design [7].
However, the majority of circRNAs appear to be non-coding.
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Figure 3. circRNA functions. circRNAs are able to complete numerous roles: (A) Translation can occur
in the presence of an IRES. (B) circRNAs can function as miRNA sponges, by “mopping up” miRNAs
and preventing their actions. (C) mRNA traps (inhibits translation) by sequestering the translation
start site on mRNA. (D) circRNAs are also able to bind proteins, including RBPs and (E) enzyme–
substrate complexes, to facilitate actions (denoted with **) such as phosphorylation, ubiquitylation
and acetylation. (F) circRNAs can form circ-R-loops with DNA and impede transcription, facilitating
DNA breaks. (G) circRNAs can also influence the host promoter region, altering DNA replication
and transcription.

Some specific, highly expressed circRNAs function as miRNA sponges (Figure 3B).
The exonic circRNAs from CDR1as [31], cerebellum-related antigen 1, and SRY [12], the
testis-determining factor, have been shown to bind miRNAs without degrading them,
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inhibiting their function. Each of these circRNAs also has multiple miRNA binding sites in
its sequence. The circRNA for CDR1as has 74 confirmed sites for miR-7 binding, as well as
being densely seeded with Argonaute protein binding sites which allow for Argonaute–
miRNA complexes to bind. The circRNA for SRY has 16 binding sites for miR-138 and
coprecipitates with Argonaute 2. However, the concept that circRNAs act as miRNA
sponges has recently been debated.

Whilst it is true that some circRNAs function efficiently as miRNA sponges, such as
ciRS-7 [12], the notion of circRNAs functioning as sponges has been questioned due to the
stoichiometric ratio of circRNA to miRNA molecules within the cell [32]. Given that the
majority of circRNAs are produced at less than 2.5 copies per cell [18], it is improbable that
they are able to significantly regulate the expression of miRNAs, which are often produced
at 900–80,000 copies per cell [33]. The potential for circRNAs to mediate miRNA expression
is likely to be reserved only for circRNAs with unusually high expression within cells, and
multiple miRNA binding sites per molecule. Thus, new studies to examine the potential
function of circRNAs as miRNA sponges may need to seek further validation through
experiments that involve more than dual luciferase assays. However, this is not to suggest
that many circRNAs do not have important cellular functions. As the majority of circRNAs
are produced at ~2.5 copies per cell, this indicates an approximate 1:1 ratio with the DNA
transcripts in each cell. Indeed, interaction with DNA is another function of circRNAs that
has important implications in molecular biology (this is explored further below).

circRNAs can also function as transcriptional regulators, termed “mRNA traps”
(Figure 3C). One example of this is the exonic circRNA produced from the Fmn (flavin
mononucleotide) gene in mice, which is proposed to sequester the translation start site on
the mRNA, reducing protein synthesis [34]. circRNAs can also bind proteins (Figure 3D), as
previously mentioned, circMbl can sequester the Muscleblind RBP [15]. Furthermore, cir-
cANRIL, a circRNA in the antisense non-coding RNA in the INK4 locus (ANRIL) long non-
coding RNA, regulates the maturation of precursor ribosomal RNA, therefore controlling
ribosome biogenesis [15]. circRNAs have also been shown to facilitate the phosphorylation,
ubiquitylation and acetylation [15] of proteins (Figure 3E), and participate as structural
components of protein complexes [15]. Importantly, circRNAs have been shown to bind to,
and facilitate breakages in DNA (see below) (Figure 3F). circRNAs have also been reported
to recruit proteins to specific subcellular loci [15] and influence host transcript promoter
regions (Figure 3G). With their many attributed functions, it is no surprise that circRNAs
have been implicated to play a role in many pathophysiological and physiological states;
this review will focus on their role in pregnancy.

4. The Role of circRNAs in Pregnancy

circRNAs are expressed throughout reproductive tissues in healthy pregnancy and
are differentially expressed between healthy and complicated pregnancy. However, the
question of whether this is cause or effect requires further research. Studies that have
examined circRNAs expressed in reproductive tissues and detected in maternal serum in
pregnancy are limited and summarised in Table 1.
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Table 1. Summary of research on circRNAs in female reproductive tissues and blood during pregnancy (limited to studies using primary tissue).

Author Year Tissue Pregnancy Status Key Findings Limitations

Fan X, et al. [35] 2015 Mouse—oocytes and
preimplantation embryos Uncomplicated (assumed)

Detected 2891 circRNAs from 1316 host genes. A majority of
these circRNAs are unique to the preimplantation stage and

a large proportion of them exhibit dynamic expression
patterns during this developmental process.

Sequencing using the SUPeR-seq method could
possibly limit depth of circRNA sequencing due

to no enrichment using RNase R.

Szabo L, et al. [36] 2015 Fetal tissue—unspecified,
various species Uncomplicated (assumed)

Developed an algorithm to compare established data sets in
human, rat and mouse tissue and cell lines, with their
generated circRNA data from RNA-seq on fetal tissue.

This study assumes a degree of conservation
between species.

Zhang YG, et al. [37] 2016 Human maternal red blood
cells PE vs. uncomplicated

The levels of circ_101222 in red blood cells of patients with
PE were significantly higher than in healthy women. Using
ENG in combination with circ_101222 improved confidence

for the prediction of PE.

Qian Y, et al. [38] 2016 Human placenta PE vs. preterm birth (PTB) 143 circRNAs were up-regulated and 158 were
down-regulated in PE samples compared with preterm.

Use of microarray is not as comprehensive as
sequencing techniques. PTB placenta is used as a

gestational age control but PTB can occur for
multiple reasons and is a pathology of pregnancy.

Caution on interpretation is required.

Qian Y, et al. [39] 2017 Human
placenta—chorionic villi

Recurrent spontaneous abortion
(RSA) vs uncomplicated

594 aberrantly expressed circRNAs between gestational
age-matched RSA and healthy placentae. Of these, 335

circRNAs were up-regulated and 259 were down-regulated.

No validation or investigation into results or
mechanisms.

Cheng J, et al. [40] 2017 Human granulosa cells
Non-pregnant

Advanced age (AA ≥ 38 years)
vs. young age (YA ≤ 30 years)

46 upregulated and 11 downregulated circRNAs in AA
samples compared with YA.

Use of microarray is not as thorough as
sequencing techniques.

Zhang S, et al. [41] 2018 Mouse—endometrium Uncomplicated (assumed)

Used microarray to find that 101 upregulated and 75
downregulated circRNAs at implantation sites compared

with interimplantation sites. Four randomly selected
circRNAs were validated for their expression using qRT-PCR

Use of microarray is not as comprehensive as
sequencing techniques.

Bai Y, et al. [42] 2018 Human placenta PE vs. uncomplicated

151 circRNAs were upregulated and 149 were
downregulated in PE samples compared with normal.
Possible biomarker hsa_circ_0007121 had a significant

predictive index

Only 3 of the 10 circRNAs for validation matched
sequencing results.

Jiang M, et al. [43] 2018
Human maternal
peripheral blood

mononuclear cells
PE vs. uncomplicated

884 circRNAs were downregulated and 1294 circRNAs were
upregulated in PE samples compared with control.

circ_0004904 and circ_0001855 combined with PAPP-A
might be biomarkers for PE detection.

Use of microarray is not as thorough as
sequencing techniques. As blood was collected at
the time of disease, there is no way to be certain
that circ_0004904 and circ_0001855 are causes of

PE and not resultant.

Zhou W, et al. [44] 2018 Human placenta PE vs. uncomplicated
Two circRNAs were up-regulated and 47 were

down-regulated in PE compared with control placentae.
Hsa_circRNA_3286 reduced invasion in HTR-8/SVneo cells.

RNase R enrichment for circRNAs not completed
on RNA-seq samples. Only 3 of the 10 circRNAs

for validation matched sequencing results.

Hu X, et al. [45] 2018 Human placenta
Maternal whole blood Severe PE vs. uncomplicated

4569 upregulated and 3984 downregulated circRNAs
between severe PE and healthy pregnancy. Identified

hsa_circ_0036877 as a potential novel blood biomarker for
early PE.

Use of microarray is not as thorough as
sequencing techniques. Significant differences in
BMI, gestational age at delivery and % caesarean
sections between severe PE and control groups.
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Table 1. Cont.

Author Year Tissue Pregnancy Status Key Findings Limitations

Shen, XY, et al. [46] 2019 Human placenta PE vs. uncomplicated
circTNRC18 upregulated in PE placentae. circTNRC18

reduced trophoblast cell migration and EMT. circTNRC18
repressed miR-762 activity and elevated Grhl2 protein.

Wang H, et al. [47] 2019 Human placenta GDM vs. uncomplicated

Three circRNAs were upregulated and 43 were
downregulated between GDM and normal placentae. Ten

randomly selected circRNAs were validated for their
expression using qRT-PCR.

RNase R enrichment for circRNAs not completed
on RNA-seq samples. Only 3 of the 10 circRNAs

for validation matched sequencing results.

Cao M, et al. [48] 2020 Human umbilical cord
blood GDM vs. uncomplicated

229 upregulated and 278 downregulated circRNAs between
GDM and healthy pregnancy. Exosome particle size was
larger and exosome concentration was higher in GDM.

Use of microarray is not as thorough as
sequencing techniques. RNase R enrichment for
circRNAs not completed on microarray samples.

Oudejans C, et al.
[49] 2020 Human maternal platelets Uncomplicated (assumed) Proof of concept study showing that pregnancy-specific

circRNAs can be detected in first-trimester platelet RNA.
Could possibly limit depth of circRNA

sequencing due to no enrichment using RNase R.

Yang H, et al. [50] 2020 Human maternal blood GDM vs uncomplicated

Blood samples (n = 12) were collected from GDM and
healthy pregnant women between 15–24 weeks’ gestation

prior to RNase R treatment and circRNA
microarray analysis.

Use of microarray for detection of circRNAs is not
as thorough as sequencing techniques. No

mention of gestational age matching between
GDM and controls.

Wang D, et al. [51] 2020 Human placenta Macrosomia vs. uncomplicated

Circ-SETD2 was upregulated in placentae of patients with
fetal macrosomia. Circ-SETD2 upregulation increased

proliferation and invasion in HTR-8/SVneo cells. Suggested
circ-SETD2/miR-519a/PTEN axis involved in regulating

trophoblasts in macrosomia.

Use of lnc-microarray for detection of circRNAs is
not as thorough as sequencing techniques.

Wang H, et al. [52] 2020 Human placenta and
maternal plasma GDM vs. uncomplicated

Circ_0005243 was identified using RNase R (determining
circular form). Circ_0005243 expression was downregulated
in placenta and maternal plasma in GDM. Knockdown of

circ_0005243 in HTR-8/SVneo cells suppressed cell
proliferation and migration and increased secretion of
inflammatory factors (TNF-α and IL-6). It also reduced
β-catenin expression and increased nuclear NF-κB p65

nuclear translocation.

Zhang Y, et al. [53] 2020 Human placenta and
in vivo rat model PE vs. uncomplicated

CircSFXN1 was identified using RNase R (determining
circular form). CircSFXN1 was elevated in PE placenta.

Knockdown of circSFXN1 promoted TEV-1 cell invasion and
HUVEC angiogenesis—this effect was opposed with

circSFXN1 overexpression. Pregnant rats injected with
sFLT1-expressing adenovirus had in increased blood
pressure and proteinuria; si-circSFXN1 reversed this.
CircSFXN1 recruits sFLT1, validated by RNA-protein

pulldown, RNA immunoprecipitation and dual-luciferase
reporter assays.

Use of microarray is not as thorough as
sequencing techniques, although the study

validates these results with qRT-PCR.
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Table 1. Cont.

Author Year Tissue Pregnancy Status Key Findings Limitations

Zhou B, et al. [54] 2020 Human placenta PE vs. uncomplicated

CircZDHHC20 was identified using RNase R (determining
circular form). CircZDHHC20 was up-regulated and

miR-144 was down-regulated in PE placenta. CircZDHHC20
overexpression in HTR-8/SVneo cells repressed trophoblast
proliferation, migration, and invasion. miR-144 regulated

circZDHHC20 was inhibited by GRHL2.

Zhu H, et al. [55] 2020 Human placenta PE vs. uncomplicated

Circ_0085296 was identified using RNase R (determining
circular form). Circ_0085296 elevated in PE placenta.
Knockdown of circ_0085296 in HTR-8/SVneo cells

promoted trophoblast cell proliferation, invasion, and
migration. miR-144 down-regulated in PE placenta, directly
bound to circ_0085296 and E-cadherin. Circ_0085296 bound

to miR-144 to regulate E-cadherin.

Qi T, et al. [56] 2020 Human placenta PE vs. uncomplicated

CircUBAP2 (hsa_circ_0003496) was downregulated in PE
placentae. CircUBAP2 knockdown suppressed

HTR-8/SVneo cell proliferation and migration. CircUBAP2
sponges miR-1244 to regulate FOXM1. Cotransfection of

si-circUBAP2 and a miR-1244 inhibitor partially restored cell
proliferation and migration induced by

circUBAP2 depletion.

Li X, et al. [57] 2021 Human placenta PE vs. uncomplicated

Circ_0001438 and NLRP3 were elevated in PE placenta.
Knockdown of circ_0001438 promoted cell proliferation,

migration and invasion but inhibited apoptosis and
inflammatory responses in

HTR-8/SVneo cells. Circ_0001438 bound to miR-942 to
regulate NLRP3.

RNase R treatment not used—Circ_0001438 was
not enriched for circular form only.

Ma B, et al. [58] 2021 Human placenta PE vs. uncomplicated
252 upregulated and 109 downregulated circRNAs between
preeclamptic and healthy placentae; 6 circRNAs were further

validated using qPCR.

No mention of gestational age matching between
PE and controls.

Tang R, et al. [59] 2021 Human placenta PE vs. uncomplicated

CircLRRK1 was identified using Actinomycin D and RNase
R (determining circular form). circLRRK1 was elevated in

PE placenta. Knockdown of circLRRK1 promoted cell
proliferation, migration and invasion in HTR-8/SVneo cells.

circLRRK1 bound to miR-223-3p to regulate PI3K/Akt
signalling.

Chen H, et al. [60] 2021 Maternal plasma GDM vs. uncomplicated

Circ_0008285 was increased, while circ_0001173 was
decreased, in GDM samples. Circ_0008285 correlated with
total cholesterol and LDL-C levels. Circ_0001173 correlated
with glycated haemoglobin. High glucose media promoted

HTR-8/SVneo cell proliferation, invasion, and migration,
while circ_0008285 knockdown exerted the opposite effect.

High glucose media contained 30 mmol/L
glucose which is potentially too high for

physiological relevance.
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Table 1. Cont.

Author Year Tissue Pregnancy Status Key Findings Limitations

Dai W, et al. [61] 2021 Human placenta and
maternal plasma PE vs. uncomplicated

Circ_0004904 levels were elevated in PE placentae and
maternal plasma. Aberrant circ_0004904 expression

inhibited autophagy and induced JEG3 cell proliferation and
invasion. Circ_0004904 also regulated ATG12 levels via
miR-570, as well as controlling the FUS/VEGF axis in

HTR-8/SVneo and JEG3 cells.

Ping Z, et al. [62] 2021 Maternal blood PE vs. uncomplicated

121 differentially expressed circRNAs were upregulated and
30 downregulated in PE samples. Functional and pathway
enrichment analysis was conducted using Gene Ontology

and KEGG databases.

Could possibly limit depth of circRNA
sequencing due to no enrichment using RNase R.

No mechanistic studies conducted or PCR
validation of results.

Zhang L, et al. [63] 2021 Human placenta GDM vs. uncomplicated

Circ-PNPT1 levels were elevated in GDM placentae and high
glucose (HG)-induced HTR-8/SVneo cells. HG-induced

arrest of cell viability, migration, invasion and apoptosis was
reversed with circ-PNPT1 knockdown. Circ-PNPT1 also

sponged miR-889-3p to regulate PAK1. HTR-8/SVneo cell
line experiments showed circ-PNPT1 was packaged into

exosomes and internalised by surrounding cells.

Exosome studies were conducted in
HTR-8/SVneo cell line, not replicated in placental
explants or maternal blood. High glucose media
contained 25 mmol/L glucose which is potentially

too high for physiological relevance.

Tang M, et al. [64] 2021
Human placental villous

tissue and embryos
In vivo mouse model

Unexplained recurrent
spontaneous abortion (URSA) vs.

uncomplicated

Circ-0050703 (circRNA-DURSA) is downregulated in URSA
placental villous tissue. In vitro, circRNA-DURSA silencing
results in cell apoptosis and circRNA-DURSA competitively

binds miR-760, regulating HIST1H2BE. In vivo,
circRNA-DURSA silencing decreased number of embryos

successfully implanted.

Yao P, et al. [65] 2021 Human placenta Fetal growth restriction vs.
uncomplicated

Circ_0074371 and LRP6 were downregulated, and
miR-582-3p was upregulated in fetal growth restriction
(FGR) placentae and HTR-8/SVneo cells. Circ_0074371

sponges miR-582-3p to regulate LRP6. Circ_0074371
knockdown induced HTR-8/SVneo cell cycle arrest,

apoptosis, and inhibited cell proliferation, migration, and
invasion, which was reversed with a miR-582-3p inhibitor.

Fan Z, et al. [66] 2021 Human placenta PE vs. uncomplicated

Circ_0011460 is upregulated in PE placentae, and
overexpression in HTR-8/SVneo cells suppressed

proliferation, migration and invasion, and increased cell
apoptosis. Circ_0011460 also sponges miR-762 and

regulates HTRA1.

Li C, et al. [67] 2021 Human placenta PE vs. uncomplicated

Circ_0111277 and NFAT5 expression were increased in PE
placentae and miR-424-5p was decreased. Circ_0111277

knockdown increased cell viability, migration, invasion, and
angiogenesis in HTR-8/SVneo cells. Circ_0111277 acted as a

sponge of miR-424-5p to regulate NFAT5 expression.
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Zhou F, et al. [68] 2022 Human placenta PE vs. uncomplicated

Circ_0007121 is downregulated in PE placentae.
Upregulation of circ_0007121 promotes cell proliferation,
migration, invasion and EMT. Circ_0007121 also sponges

miR-421 and thus regulates ZEB1 expression.

Huang Y, et al. [69] 2021 Human umbilical cord
blood—exosomes isolated GDM vs. uncomplicated

Larger exosomes and greater number of exosomes in
umbilical cord blood of GDM patients. Circ_0074673 was

upregulated in exosomes from GDM and in HUVECs
co-cultured with exosomes. Loss of exosomal circ_0074673
facilitated the proliferation, migration, and angiogenesis of

high glucose-HUVECs via the miR- 1200/MEOX2 axis.

High glucose media contained 25 mM glucose
which is potentially too high for physiological

relevance.

Shan L, et al. [70] 2021 Human placenta PE vs. uncomplicated

miR-331-3p negatively correlates with circ_0026552 relative
expression, while TGF-βR1 positively correlates with

circ_0026552 expression. Silencing circ_0026552 increased
proliferation, migration and invasion of HTR-8/SVneo cells,

which was reversed with circ_0026552 overexpression.
Circ_0026552 sponges miR-331-3p to upregulate

TGF-βR1 expression.

RNase R enrichment for circRNAs not completed
on microarray samples. Use of microarray is not
as thorough as sequencing techniques, although
the study validates these results with qRT-PCR.
Small number (n = 3 PE, n = 4 control) tissues

used for microarray.

Jiang B, et al. [71] 2021 Maternal blood GDM vs. uncomplicated

Plasma exosomal circRNA_0039480 and circRNA_0026497
were increased in GDM. circRNA_0039480 was elevated in

GDM vs. normal glucose tolerance control throughout
trimesters and positively correlated with OGTT during the
second trimester. The combination of circRNA_0039480 and
circRNA_0026497 suggested as a useful biomarker for GDM

in the first trimester
(AUC = 0.754, p < 0.001).

RNase R enrichment for circRNAs not completed
on microarray samples. Use of microarray is not
as thorough as sequencing techniques, although
the study validates these results with qRT-PCR.

Small number (n = 3) samples used for microarray.

Gao Y, et al. [72] 2021 Human placenta Recurrent pregnancy loss (RPL)
vs. uncomplicated

MiR–143–3p targeted S100A11 and was negatively regulated
by circFOXP1. miR–143–3p competitively bound circFOXP1.
circFOXP1 regulated HTR-8/SVneo cell functions through

the miR–143–3p/S100A11 axis.

Wu H, et al. [73] 2022 Maternal blood GDM vs. uncomplicated

Circ_102682 was decreased in GDM blood samples.
circRNA_102682 was significantly correlated with

triglycerides, APOA1, APOB, 1-h blood glucose in the serum
of GDM patients.

She W, et al. [74] 2021 Maternal plasma GDM vs. uncomplicated

CircVEGFC regulates glucose metabolism—higher incidence
of GDM in patients with high circVEGFC levels. Elevated
circVEGFC levels in GDM plasma. High circVEGFC level

group showed higher incidence rates of fetal malformation
and hypertension.

Correlation established but further mechanistic
studies required to establish whether this is

causative.

Zou H, et al. [75] 2022 Human placenta PE vs. uncomplicated

Circ_0037078 is upregulated in PE placentae. Knockdown of
circ_0037078 increases trophoblast cell proliferation,

migration, invasion and angiogenesis. Circ_0037078 also
sponges miR-576-5p and increases IL1RAP expression.
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Mao Q, et al. [76] 2021 Human placenta PE vs. uncomplicated

Circ_0032962 and PBX3 levels were decreased in PE
placentae and miR-326 was elevated. Circ_0032962

knockdown suppressed cell proliferation ability, migration,
invasion, and EMT in HTR-8/SVneo cells.

Wang L, et al. [77] 2021 Maternal blood PE vs. uncomplicated

Circ_0051326 and HLA-G protein and mRNA were
decreased in PE samples. There was a positive correlation

between the expression of serum circ_0051326 with
HLA-G mRNA.

Shu C, et al. [78] 2021 Human placenta PE vs. uncomplicated

Silencing circ_0008726 promoted cell migration and
EMT, while circ_0008726 overexpression suppressed these
processes. Circ_0008726 sponged miR-345-3p to regulate
RYBP expression. Circ_0008726 was negatively correlated

with miR-345-3p and positively correlated with RYBP
expression levels in PE placentae. Transfection of miR-345-3p

mimic or RYBP knockdown counteracted the effects of
circ_0008726 overexpression on cell migration and EMT.

Zhang Y, et al. [79] 2021 Human placenta PE vs. uncomplicated

Increases in m6A-modified circRNAs are prevalent in PE
placentae, with the main methylation changes occurring in

the 3′ UTR and near the start codon. In PE, circPAPPA2
levels are decreased while m6A modification is increased.

METTL14 increases circPAPPA2 m6A methylation and
IGF2BP3 maintains circPAPPA2 stability.

Wang W, et al. [80] 2021 Human placenta PE vs. uncomplicated

In PE placentae, circHIPK3 and KCMF1 were
downregulated and miR-346 was upregulated. CircHIPK3

overexpression promotes trophoblast cell proliferation,
migration and invasion, as well as decreasing cell cycle

arrest and apoptosis. CircHIPK3 also targets miR-346 and
regulates KCMF1 expression.

Li J, et al. [81] 2022 Human placenta PE vs. uncomplicated
CircPAPPA positively regulates trophoblast cell

proliferation, migration and invasion, and causes apoptosis
and cell cycle arrest, through the miR-3127-5p/HOXA7 axis.

Wang W, et al. [82] 2022 Human placenta PE vs. uncomplicated

Circ_0017068 was downregulated in PE placental samples.
Circ_0017068 overexpression promoted HTR-8/SVneo cell
proliferation, cycle progression, and suppressed apoptosis
while silencing of circ_0017068 exhibited opposite effects.

Circ_0017068 targeted miR-330-5p to regulate XIAP
expression, and through this regulated proliferation, cycle

progression, and apoptosis.

Zhang Y, et al. [83] 2021 Human placenta and
maternal plasma PE vs. uncomplicated

PE predictive power was greatest when plasma sFLT1 and
circBRAP levels were combined with uterine pulsatility

index. CircBRAP was increased in PE placentae and may
regulate miR-106b to decrease TEV-1 cell proliferation,

invasion and apoptosis.
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Yuan Y, et al. [84] 2022 Human placenta PE vs. uncomplicated

2432 circRNAs were differentially expressed between PE
and control tissues.

hsa_circRNA_0001687/hsa-miR-532-3p/MMP14/AXL,
hsa_circ_0001513/hsa-miR-188-5p/HMGCS1 and

hsa_circ_0001513/hsa_circ_0001329/hsa-miR-
760/MAP1LC3B axes may contribute to

PE pathogenesis.

The paper uses publicly available datasets instead
of completing their own sequencing. As such,

data quality cannot be ascertained. No luciferase
assays to validate the potential axes listed.

Wang H, et al. [85] 2022 Pig ovaries Atretic vs. healthy follicles

CircSCL41A1 was elevated in healthy follicles compared
with atretic follicles. miR-9820-5p competitively binds

circSLC41A1 to regulate SRSF1. A
circSLC41A1-miR-9820-5p-SRSF1 axis regulates follicular

granulosa cell apoptosis.
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In animals, research conducted in murine models has described circRNA profiles in
oocytes and pre-implantation embryos [35] and in both implantation and inter-implantation
sites in the endometrium [41]. The sizable differences in the profiles between these cells
and tissues indicate that circRNAs play a role in the reproductive process. Interestingly, one
study was completed in both in vitro cell lines and in vivo rat experiments to demonstrate
the effect of circSFXN1 (sideroflexin 1) in PE pathology [53]. sFLT1-expressing adenovirus
injections into rats induced a PE-like phenotype, which was abated by treatments with
si-circSFXN1. This clearly demonstrates the pathological potential for aberrant circRNA
expression. Another study examined atretic follicles in porcine ovaries, determining that a
circSLC41A1-miR-9820-5p-SRSF1 axis regulates follicular granulosa cell apoptosis [85].

In humans, circRNAs have been profiled in granulosa cells in ovarian follicles [40],
placenta [38,39,42,44–47,51–55,57–59,66–68,70,72,75,76,78–84], a multitude of different fetal
tissues [36] and maternal blood [37,43,45,49,50,52,71,73,74,77,83], as well as exosomes iso-
lated from umbilical cord blood [48,69]. Interestingly, one study confirmed that pregnancy-
specific circRNAs were able to be detected in first-trimester platelets [49]. Many of these
studies demonstrate differential circRNA expression profiles for disease states compared
with an uncomplicated pregnancy, particularly comparisons in circRNA expression be-
tween PE, or gestational diabetes mellitus (GDM) and an uncomplicated pregnancy control.
Some studies then went on to suggest particular circRNAs with biomarker potential for
the pregnancy complication. Better studies followed this assertion by then performing
functional studies to elucidate mechanisms of action for circRNAs of interest, utilising cell
lines with circRNA overexpression or knockdown (data are presented in Table 1).

4.1. circRNAs in Preeclampsia

In placentae from women with PE, circ_0001438 [57], circ_0001687 [84], circ_0001855 [43],
circ_0004904 [61], circ_0008726 [78], circ_0011460 [66], circ_0026552 [70], circ_0036877 [45],
circ_0037078 [75], circ_0085296 [55], circ_0111277 [67], circ_101222 [37], circ_3286 [44], cir-
cBRAP [83], circLRRK1 [59], circSFXN1 [53], circTNRC18 [46] and circZDHHC20 [54] were
elevated compared with uncomplicated pregnancy controls. A subset of these (circ_0001438,
circ_0004904, circ_0008726, circ_0011460, circ_0026552, circ_0037078, circ_0085296, circ_0111277,
circ_3286, circBRAP, circLRRK1, circSFXN1, circTNRC18 and circZDHHC20) when over-
expressed in vitro resulted in decreased cell proliferation, migration, invasion or angio-
genesis, or a combination of these effects. In contrast, circ_0001513 [84], circ_0007121 [68],
circ_0017068 [82], circ_0032962 [76], circ_0051326 [77], circHIPK3 [80], circPAPPA [81],
circ_PAPPA2 [79] and circUBAP2 [56] were decreased in PE placentae. A subset of these
(circ_0007121, circ_0017068, circ_0032962, circHIPK3, circPAPPA and circUBAP2) when
expressed in vitro promoted cell proliferation, migration, invasion or angiogenesis, or a
combination of these effects. Many circRNAs studied were suggested to perform these
functions through miRNA sponging but, as previously mentioned, the physiological impact
of lowly expressed circRNAs sponging highly abundant miRNAs is debatable.

4.2. circRNAs in Gestational Diabetes Mellitus

Studies on placental circRNA expression in GDM focused mainly on profiling dif-
ferences between GDM and uncomplicated pregnancies. In one study, first and early
second-trimester maternal blood samples were collected to compare circRNA differential
expression. These measures were then used to determine possible circRNA predictors for
GDM development [50]. Other studies showed that circ_0008285 [60], circ_0026497 [71],
circ_0039480 [71], circ-PNPT1 [63] and circVEGFC [74] were elevated in maternal plasma
and whole blood from women with GDM. In vitro experiments using high glucose media
for HTR-8/SVneo cell culture promoted proliferation and migration, which was reversed
with circ_0008285 knockdown. Similarly, high glucose-induced arrest of cell viability and
migration was reversed upon circ-PNPT1 knockdown. High levels of circVEGFC occurred
with higher incidence rates of fetal malformation and hypertension. circ_0074673 [69] was
upregulated in exosomes isolated from umbilical cord blood of GDM cases.
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In contrast, other studies showed that circ_0001173 [60], circ_0005243 [52] and
circ_102682 [73] were downregulated in placentae and maternal plasma from women with
GDM. In vitro knockdown of circ_0005243 in HTR-8/SVneo trophoblast cells suppressed
cell proliferation and migration, while circ_0001173 levels were positively correlated with
glycated haemoglobin.

4.3. circRNAs in Other Pregnancy Complications

Other pregnancy complications have also been briefly studied with respect to cir-
cRNAs. One study reported almost 600 differentially expressed circRNAs in placentae
from women with recurrent spontaneous abortion (RSA) compared with uncomplicated
pregnancy [39]. Another study observed that circ_0050703 was downregulated in the pla-
cental villous tissue of patients with unexplained RSA (URSA), and circ_0050703 silencing
in vivo reduced the number of successfully implanted embryos [64]. A circFOXP1/miR-
143-3p/S100A11 axis was suggested in the RSA placentae [72]. Furthermore, circ-SETD2
was implicated in placental growth, with elevated circ-SETD2 in placentae of patients
with fetal macrosomia [51]. In vivo overexpression experiments in HTR-8/SVneo cells
showed increased cell proliferation and invasion. A circ_0074371/miR-582-3p/LRP6 axis
was suggested in the context of fetal growth restriction [65]. Finally, granulosa cells from
non-pregnant advanced age (≥38 years) compared with young age (≤30 years) women
determined different circRNAs expression profiles depending on maternal age [40]. Whilst
the number of studies into circRNAs in pregnancy is low, clearly circRNAs play many roles
in pregnancy health, waiting to be discovered.

4.4. Limitations of circRNA Research

Research surrounding circRNAs in pregnancy is certainly still in its infancy. Several
studies (Table 1) reported only the results of their profiling without any qPCR validation in
independent samples. Whilst these data could be useful to other researchers, many of these
profiling techniques have now been superseded with novel technologies. Methods such
as RPAD [86], along with the use of Li+ ions in reaction buffers [87], in RNA-sequencing
(RNA-seq) are proving much more reliable than the outdated circRNA arrays. circRNA
detection through RNA-seq can be accurate assuming that one of these above methods is
employed to prepare the samples.

Importantly, many of the studies described in this review lacked RNase R enrichment
prior to sequencing. The addition of this exonuclease to a sample results in the digestion of
all linear RNAs present, leaving an enriched population of circRNA transcripts. Not using
this treatment prior to sequencing means that the depth of sequencing for circRNAs will
be limited given that the sample is still composed primarily of linear RNA products. This
likely results in the detection of only the most highly expressed circRNAs, leaving many
transcripts undetected.

Finally, in studies using delivered placentae, authors should be cautious to declare
specific circRNAs as causes of a pregnancy state. Given that these placentae have been
collected after birth, without further mechanistic studies, it is unclear whether circRNAs in
disease states are causal or an effect. However, these few studies provide enticing evidence
to inspire further research into circRNAs in pregnancy and placental growth.

5. The Potential Importance of circRNAs in the Placenta: What We Can Apply from
Our Knowledge of Cancer

The placenta can be considered a ‘controlled cancer’, as there are many parallels that
have been previously drawn between placental development and cancer metastasis [88–90].
Some basic principles of cancer progression include tumour growth and tissue invasiveness
(through epithelial to mesenchymal transition) [91], immune evasion and stimulation
of angiogenesis [92], all of which are essential for successful placentation [93,94]. It is
therefore unsurprising that many of the key molecular pathways are common to both
placental development and cancer (Table 2). Importantly, the extensive research demand
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in the field of cancer has yielded a wealth of information about the molecular biology of
cancers that can also be applied to the study of the placenta due to their many similarities.

Table 2. Key signalling pathways common to placental development and cancer, with references.

Signalling Pathway Placenta Cancer

EGFR [95] [96]

PI3K/Akt [97] [98]

P53 [99] [100]

IGF [101,102] [103,104]

TGF-β [105] [106]

VEGF [107] [108]

mTOR [109,110] [111]

MAPK [112] [113]

Jak/STAT [114] [115]

Wnt/β-catenin [116] [117]

NF-κB [118] [119]

Extensive mRNA profiling has been undertaken in placentae from the first trimester,
second trimester and term [120–123]. Utilising this dataset shows that many of the genes
responsible for circRNA production in cancer are also highly expressed in the placenta [124].
Hence, it is likely that circRNAs are also produced from these genes in the placenta. For
example; the circRNA produced from MYLK has been shown to interfere with VEGFA
signalling in bladder cancer [125]. The importance of the VEGF signalling pathway is
well established in placentation [107], being most important for early angiogenesis and
maintaining vascular health in the mother. Conversely, MYLK expression in the placenta
increases across gestation. It is highly likely that circRNAs from the MYLK gene are also
produced in the placenta and could impact the VEGF signalling pathway. There appear
to be endless examples of genes which are known to produce circRNAs in cancer that are
relevant to, and highly expressed in, placental development. We are currently profiling
several of these circRNAs in the placenta and examining their roles in its development.

Importantly, circRNAs are not only able to affect development through their interac-
tions with other molecules but they can also facilitate genomic instability through translo-
cations. Rapid proliferation and consequent replication stress are common [126], both
in cancer and in the placenta, resulting in possible DNA damage. Evidence has been
provided for R-loop formation in plants, where a circRNA forms an RNA:DNA hybrid
with its cognate DNA locus, stalling transcription and resulting in DNA breaks [127]. This
was also shown to coincide with the recruitment of splicing factors, as well as alternative
splicing. This genomic manipulation by circRNAs is likely to also occur in the eukaryotic
tissues, although this is yet to be confirmed. If this is the case, dysregulation of circRNAs,
particularly in early gestation, could result in genomic alterations that could affect both
placental and fetal development and pregnancy health in general.

circRNAs have been shown to accumulate in a number of different tissues over
time [128,129] and have been suggested to be a marker of tissue ageing. As the placenta is
also known to undergo ageing [130], it is possible that circRNA accumulation in the placenta
could occur. The implications of circRNA accumulation are still not well understood, but
if these circRNAs continue to exert their functions as they accumulate this could lead to
exaggerated circRNA action in the tissue.

6. Conclusions

Understanding the functions of circRNAs, particularly their involvement in placental
development and pregnancy health, is in its infancy. However, these unique molecules
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are evidently the result of careful regulation, with multiple roles in physiological and
pathophysiological conditions. Evidence that circRNAs may be involved in regulating
placental development, and that differential circRNA profiles are found between healthy
and complicated pregnancies, provides an imperative for further research.
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