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Abstract: The mammalian hematopoietic system is remarkably efficient in meeting an organism’s
vital needs, yet is highly sensitive and exquisitely regulated. Much of the organismal control over
hematopoiesis comes from the regulation of hematopoietic stem cells (HSCs) by specific microenvi-
ronments called niches in bone marrow (BM), where HSCs reside. The experimental studies of the
last two decades using the most sophisticated and advanced techniques have provided important
data on the identity of the niche cells controlling HSCs functions and some mechanisms underlying
niche-HSC interactions. In this review we discuss various aspects of organization and functioning
of the HSC cell niche in bone marrow. In particular, we review the anatomy of BM niches, various
cell types composing the niche, niches for more differentiated cells, metabolism of HSCs in relation
to the niche, niche aging, leukemic transformation of the niche, and the current state of HSC niche
modeling in vitro.
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1. Introduction

The hematopoietic system, with its ability to produce an estimated half a trillion
new cells per day in humans [1], is arguably the most “prolific” system in a body. Yet
this formidable number is generated thanks to only a wmqll tiny quantity—about one
million [2], extremely rare HSCs residing in BM [3]. HSCs produce all mature blood and
immune cells of the body, with the exception of a few special cell subpopulations such as
tissue-resident macrophages and innate-like B and T lymphocytes [4–6].

The hematopoietic system, in addition to its utmost efficiency in mature cell produc-
tion, is also highly adaptable yet very tightly regulated. HSCs are extremely quiescent cells
that enter cell cycle quite rarely [7,8]. While in the state of quiescence, HSCs, however,
remain on high alert, and in situations of dire organismal need such as major blood loss or
microbial invasion, may enter the cell cycle to replenish exhausted progenitors and boost
production of effector cells [9,10].

Due to quiescence of the majority of HSCs, homeostatic hematopoiesis is mostly
performed through expansion of more differentiated progeny cells that are biased or
committed to certain hematopoietic lineages [11,12]. As these cells have limited self-renewal
ability and are not long-lived [13], the normal hematopoiesis appears as a succession of
a large number of different clones [14]. HSCs themselves have an extensive self-renewal
potential that is substantially higher than that of the immediate progeny but is not limitless
as it declines with hematological stresses or age [15,16].

The purest and seemingly homogeneous HSC samples that can be obtained by cell
sorting are nevertheless fairly heterogeneous, as evidenced by recent results employing
lineage tracing and single cell RNA sequencing approaches. These sophisticated techniques
revealed the existence in vivo of HSCs biased towards certain lineages, as well as non-
classical differentiation routes bypassing multipotent progenitors and directly generating
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lineage-restricted progenitors [16,17]. In particular, these results indicate the existence of
megakaryocyte-biased HSCs and the megakaryocyte differentiation pathway bypassing
the stage of common myeloid precursors [18,19]. Thus, although the view of hematopoiesis
as a hierarchically organized ensemble of developmentally related cell populations remains
valid, the current models of hematopoiesis [20] allow for a substantially higher flexibility
in cell fate decisions, as was previously considered possible [21].

2. Anatomy of the BM Niche

In 1978, Schofield, analyzing outcomes of hematopoietic transplantation experiments,
proposed the concept of niche as a defined anatomical location that is required for HSCs
in vivo to exist and fulfill their functions [22]. He further postulated that the niche has an
instructive role in vital decisions of HCSs and their self-renewal is only possible within the
niche, whereas HSCs leaving the niche embark on their differentiation journey. The general
validity of Schofield’s concept was later confirmed first in Drosophila by identification of
stem cell niches in gonads [23], and later in other cell systems.

HSCs during the adult mammalian life reside in BM, which thus serves as a macro-
niche for HSCs. Bone cavities contain trabecula, a type of spongy bone tissue that is actively
remodeled and in long bones is located in the epiphysis and metaphysis. The BM itself
is located between the trabeculae and consists of a loose stroma permeated with vessels,
stromal cells and various hematopoietic cells. The periosteal and feeding arteries supplying
the BM pass into the bone marrow cavity of the long bones through the nutrient channel,
giving rise to smaller arterioles [24,25]. The arterioles then connect to the vascular sinusoids,
peculiar fenestrated capillaries with a wide lumen, which in turn connect to a longitudinal
central venous sinus flowing into veins exiting through the nutrient channel. The arterioles
are in close contact with sympathetic nerve fibers [26] and are also covered by perivascular
mesenchymal cells and non-myelinating Schwann cells.

Although BM can be considered a macro-niche for HSCs in mammalians, this notion
is lacking the necessary cellular detalization, and the need for detailed characterization of
cellular and molecular mechanisms controlling HSC function spawned a race for identifica-
tion of bona fide HSC niches in BM. Osteoblast located in the endosteal region were the
first proposed candidate for the cellular component of the HSC niche as reported by two
groups in 2003 [27,28]. In the study published next year, selective elimination of osteoblasts
resulted in the decrease of HSC numbers with simultaneous activation of extramedullary
hematopoiesis in the spleen and liver [29]. These works were, however, indirect and did not
provide solid proof of physical contacts or close association between osteoblasts and HSCs.
Subsequently, the attention of research teams was attracted to other cellular components of
BM as potential components of the niche.

Major technical improvements, in particular identification of SLAM receptors as
appropriate HSCs markers [30], development of mouse strains with HSCs or potential
niche components marked by fluorescent proteins, and intravital microscopy—significantly
advanced understanding of HSC niches in BM. However, despite intensive ongoing efforts,
the nature of the hematopoietic niche remains controversial.

HSCs in the BM were shown to be located in hypoxia regions, with the lowest O2 levels
in deeper peri-sinusoidal regions, while the endosteal regions are less hypoxic [31]. Some
studies indicate that HSCs are located proximal to arterioles in the endosteal area [32,33],
whereas other reports demonstrate that HSCs are located in the vicinity of sinusoids [34].
Yet another work demonstrated the most quiescent long-term repopulating subset of HSCs
to reside close to both sinusoidal blood vessels and the endosteal surface [35]. A careful
study revealed later that the frequency of apparent association HSCs with candidate niches
correlated with the abundance of those niches in the BM. Importantly, the distribution
of HSCs relative to these niches was not different from distribution of computationally
generated dots randomly placed throughout the BM volume [36]. This work demonstrates
therefore the absence of a preferential association of adult HSCs with anatomical locations
in BM proposed as specific HSC niches. These unexpected findings suggest that misinter-
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pretation of data on HSC-niche co-localization might be a source of discrepancies between
the results obtained by different groups and demonstrate that appropriate controls are of
primary importance for correct analysis of such extremely complex biological processes
as hematopoiesis.

The discordant concepts placing HSC locations near arterioles or sinusoids may possi-
bly be reconciled by studies suggesting that myeloid-biased HSCs may be localized near
megakaryocytes in the vicinity of sinusoids, whereas lymphoid-biased HSCs seem to be
located near arterioles [37,38]. If this concept is correct, it still remains to be elucidated
whether the unbiased HSCs have a preference to specific anatomical locations in BM. It
is also unclear whether the already pre-formed lineage-biased HSCs prefer the above-
mentioned alternative locations, or if, vice versa, these locations induce lineage preference
in the initially unbiased HSCs.

In general, the above studies demonstrate that there are a large number of functionally
and anatomically similar locations in BM that HSCs may associate with, which implies
that HSC niches are abundant and not a limiting factor in vivo. In accordance with this,
transplantation of large quantities of HSCs into non-conditional hosts leads to their long-
term engraftment while not replacing the recipient’s HSCs [39].

A general overview of BM niche anatomy is provided in Figure 1.

Figure 1. Cellular and selected molecular components of the HSC niche in BM. The reader is referred
to the Section 3 for more detailed information on properties and roles of specific niche cell types.

3. Cell Components of the Niche
3.1. Mesenchymal Stem/Stromal Cells

Mesenchymal stem/stromal cells (MSCs) are a group of cells with multipotent capa-
bilities which play an important role in tissue repair. These cells are characterized by a
set of positive (CD73, CD90, CD105) and negative (CD14, CD19, CD34, CD45, HLA-DR)
markers, the ability to differentiate into other cell types, such as osteoblasts, chondrocytes,
adipocytes, and the secretion of various growth factors, cytokines and chemokines [40,41].
Substances secreted by MSCs play a key role in immunomodulation, as well as cell mi-
gration, proliferation, and differentiation. MSCs in BM are a rare population of cells
(~0.001–0.01% of the total number of nuclear cells in BM aspirates), located perivascularly,
directly on blood vessel surfaces along with sympathetic nerves [42], and play a prominent
role in HSCs support [43–45]. Using different marker characteristics of MSCs (nestin (Nes),



Int. J. Mol. Sci. 2022, 23, 4462 4 of 30

SCF (Stem Cell Factor), CXCL12, NG2, leptin receptor (LEPR)) and genetically modified
mouse models, it was possible to distinguish different MSC subpopulations [27,46,47].
According to Kunisaki et al., MSCs in the periarterial and perisinusoidal niches differ in
phenotypes and transcriptional profiles: Nes-GFPbright and NG2+ MSCs were observed in
the periarterial niche, while Nes-GFPdim cells, LEPR+ and CXCL12high MSCs are located in
the perisinusoidal niche [32].

The regulatory role of BM MSCs towards HSCs was demonstrated by experiments
with genetically modified mice. In particular, deletion of CXCL12 or SCF from all MSCs
led to the depletion of the HSC population [28]. The MSCs populations in the periarterial
and perisinusoidal niches have different effects on the preservation of HSC functionality:
deletion of CXCL12 in the endosteal/periarterial niche NG2+ MSCs negatively affects
the HSC population and leads to a redistribution of the remaining HSCs in BM away
from arterioles, while deletion of CXCL12 in sinusoidal LEPR+ cells have no effect on
HSC population. Results of Asada et al., however, indicate the importance of LEPR+

perisinusoidal cells rather than periarteriolar niche NG2+ cells as the main source of SCF
needed to maintain HSC in the bone marrow [33]. The role of periarteriolar stromal cells in
the resting state of HSCs was confirmed by a significant change in the distance between
HSCs and arterioles after recovery from myelosuppression, polyinosin:polycytidylic acid
(pIpC) treatment, or in Pml knockout mice, all of which led to excessive proliferation of
HSCs, HSCs population exhaustion, and migration from arterioles [32].

It is interesting to note that the widely represented in the perisinusoidal niche MSC
population with high expression of CXCL12, SCF, and LEPR (CAR cells) has a high ex-
pression of adipogenic and osteogenic factors, such as PPARy, Runx, and the ability to
differentiate into osteoblasts and adipocytes [48,49]. Short-term ablation of CAR cells in
mice led to a decrease in the HSC population in the niche [50], which was associated with
reduced production of CXCL12 and SCF.

Nes+ MSCs are in close proximity to Schwann cells and the sympathetic nervous
system involved in mobilization of HSCs. Removal of MSCs caused depletion of the HSC
population in BM and increased their numbers in the spleen [45,51]. Co-cultivation of
MSCs with HSCs increased survival and expansion of the latter [52].

MSCs secrete CXCL12 and a number of other factors such as SCF, VCAM-1, Angiopoietin-1,
IL-6, IL-11, TPO (thrombopoietin), Flt-3 ligand, G-CSF, GM-CSF, M-CSF, and BMP4, which
affect the HSC population and hematopoiesis in general [46,53,54]. The importance of
SCF from MSC was confirmed by experiments on LepR-Cre mice [46]. The interaction
of HSC and MSC is very multifaceted and is associated with the transmission of Wnt
and Notch signals, the balance between which ensures self-renewal and maintenance of
HSC. A member of another signaling pathway, BMP4, affects HSC during embryonic
development, whereas high concentrations of this protein support the proliferation of HSCs
from umbilical cord blood [55,56]. Conditional inactivation of the BMP4 receptor leads
to an increase in HSC population in BM [27]. BMP4 can act directly on HSCs or through
mediators like Shh (Sonic hedgehog). Shh in turn induces cytokine-dependent proliferation
of HSCs [57]. Nes+ MSCs are involved in niche regulation via the beta-adrenergic receptor,
which binds norepinephrine or adrenaline and affects physiological traffic of HSCs by
modulating CXCL12 and SCF levels [58]. Of note, human CD45−CD105+CD146+ MSCs
were able to create ectopic BM niche after subcutaneous or subrenal transplantation [59,60].

3.2. Endothelium

The endothelium in the niche is in direct contact with HSCs [30,47] and is represented
by arteriolar and sinusoidal endothelial cells (ECs) [61]. These two cell groups differ in
their functions: both groups produce SCF necessary for the survival of HSCs, although
the sinusoidal ECs (SECs) synthesize only a small part of this factor [47,62]. At the same
time, SECs produce large quantities of CXCL12 and E-selectin [63]. Arteriolar ECs (AECs),
together with reticular cells, synthesize the extracellular matrix protein Del-1, which,
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through interactions with β3 integrin on HSCs, stimulates their proliferation and expansion,
as well as differentiation towards myeloid lineage [64,65].

HSC self-renewal is stimulated by Notch ligands, which are synthesized by ECs [66].
In particular, Jagged-1 is an EC-produced Notch ligand that contributes to the maintenance
of HSCs, since conditional deletion of Jagged-1 in ECs results in exhaustion of the HSC pool
and severe decline of hematopoiesis [67]. Moreover, Jagged-1 participates in regeneration
of hematopoiesis following myeloablation [66].

It should be noted that SECs are required for regeneratory hematopoiesis since lethal
irradiation of BM produces their severe degeneration, while the regeneration of SECs is de-
pendent on VEGFR2. Blocking SECs regeneration by neutralizing VE-cadherin or VEGFR2
antibodies prevents hematopoietic reconstitution as well [66,68]. A small subpopulation
of Apln+ ECs also plays an important role in restoring the integrity of the niche [69]. The
absence of these cells or deletion of the SCF and Vegfr2 genes disturbs vascular regeneration
and maintenance of the HSC population following BM irradiation and HSC transplantation.
This cell subset thus plays important role in the restoration of the vascular network [69].

While regeneration of SECs is critical for the restoration of HSC functions, SCF secreted
by AECs also contributes to the regeneration of the HSC pool after irradiation [62,68]. EGF
and some other factors secreted by Tie2+ ECs increase the survival and recovery of the
HSC population after irradiation [70]. The importance of ECs is also demonstrated by the
finding that erythromyeloid precursors can differentiate, if required, into ECs necessary
for the restoration of the blood vessel network [71]. Co-cultivation of ECs with CD34+

hematopoietic progenitors contribute to an expansion of the latter [72]. Co-transplantation
of endothelial progenitor cells with HSCs promotes endothelial cell recovery, as well as
hematological and immune reconstitution [73].

Importantly, the Klf6 transcription factor expressed in ECs was shown to modulate
HSC lodgment and expansion of HSCs in zebrafish via chemokine Ccl25b. Moreover, its
mammalian ortholog Ccl21 was able to expand hematopoietic progenitors in the ex vivo
system [74]. Of note, the loss of the vascular-endothelial-expressed Notch ligand DLL4
distorts bone marrow hematopoiesis towards significant transcriptional reprogramming
and myeloid priming of HSC [75].

3.3. Osteoblasts

This cell type was the first one proposed to be a part of the hematopoietic niches [27–29].
In particular, long-term HSCs were found to be in contact with N-cadherin-positive (N-
cad+) osteoblastic precursors lining the inner bone surface and supporting HSCs through,
presumably, the BMP signaling pathway [27]. Ablation of N-cad+ osteoblasts caused
irreversible changes in the function of HSC during homeostasis and regeneration [29]. N-
cad+ osteoblasts were also suggested to control HSC state and functions via non-canonical
Wnt signaling [76,77]. Despite this evidence, a number of subsequent studies downplayed
a possible role of endosteal cells in the maintenance of HSCs. In particular, conditional
deletion of important HSCs regulators CXCL12 or SCF in osteoblasts did not significantly
affect HSCs [47,78].

However, recent study revived an interest to endosteal niches [79] by demonstrating
that dormant HSCs that are resistant to myeloablation (reserve HSCs) were found to be in
contact with N-cad+ mesenchymal progenitors in the endosteal region [80]. Furthermore,
ablation of N-cad+ niche cells or inactivation of the SCF gene in them negatively affected
reserve HSC maintenance during homeostasis and regeneration. In a recent in vitro co-
culture study, adherence to osteoblasts favored self-renewal of HSCs [81].

In the context of possible involvement of endosteal cells in HSC support, it should be
mentioned that osteoblasts synthesize many factors affecting HSC, such as TPO, angiopoietin-1
and osteopontin, which prevent an increase in the HSC population [82–84]. It has been
shown that when osteoblasts are activated by parathyroid hormone, they produce high
levels of the Notch ligand Jagged-1, expanding the HSC pool [28]. Osteoblasts were also
reported to affect the state of silent HSCs through the signaling pathways Tie2/angiopoietin-
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1 and TPO/Mpl, contributing to the interaction of HSCs with niche components that
promote quiescence and self-renewal of these cells [53,85].

Interestingly, osteoblasts affect not only HSCs, but also more differentiated descen-
dants. In particular, selective elimination of osteoblasts negatively affects the pool of
early lymphoid precursors, without at the same time affecting the HSCs themselves or the
precursors of the myeloid line [86].

3.4. Megakaryocytes

Megakaryocytes (MKs) reside predominantly in BM and, through production of
platelets, are a prominent regulator of hemostasis and vascular integrity, with key roles
in thrombosis and inflammatory responses. However, MK role is not limited to platelet
production. As a result of sophisticated experimental studies of recent years, MKs also
emerged as key regulators of HSCs in BM. Bruns et al., demonstrated that megakaryocytes
regulate HSC quiescence [87]. They found nearly 30% of HSCs in BM localized close to MKs,
and selective depletion of MKs led to HSC expansion as a result of their quiescence loss.
MKs were shown by this team to abundantly produce chemokine CXCL4, which induced
quiescence in HSCs. Another study also demonstrated association of HSCs with MKs and
reported that MK ablation resulted in HSC expansion [88]. This work, however, implicated
TGFβ1 in maintenance of HSC quiescence by MKs. Importantly, under chemotherapeutic
stress, MK functioned oppositely to support hematopoiesis reconstitution via transient
production of FGF1, which stimulated HSC expansion. A third study corroborated findings
that MK depletion resulted in a loss of HSC quiescence, and implicated TPO, secreted by
megakaryocytes, in maintenance of HSC [89]. The Lectin-like receptor-2 C-type (CLEC-2)
protein was found to stimulate production of TPO by MKs [90]. It should be noted, however,
that the role of BM-produced TPO in HSC maintenance is currently being questioned [91].

In further development of the above studies, MK depletion was found to selectively
expand myeloid-biased vWF1-positive HSCs [37] As a note of caution, a recent study
demonstrated that although HSCs were frequently associated with MKs, their distribution
did not differ from that of randomly placed dots [36]. However, since MKs appear to
control HSC proliferation through secreted proteins, direct contact between MKs and HSCs
may not be necessary.

3.5. Macrophages

Macrophages, like other niche components, have a direct effect on HSCs in BM niches.
In particular, they promote retention of HSCs in their BM niches through Nes+ stromal
cells, as evidenced by macrophage depletion in BM that results in HSC mobilization
into bloodstream [92,93]. Interestingly, VCAM-1+ macrophages in zebrafish have similar
functions and contribute to the homing and retention of HSCs in the vascular niche through
integrin A4 [94].

Another function of macrophages is to suppress the cell cycle entry of quiescent HSCs
through interaction of Duffy antigen/chemokine receptor CD234/DARC on macrophages
with CD82 on HSCs. This interaction activates TGF-β1/Smad signaling, whereas CD82
knockout leads to loss of HSCs due to their proliferation and differentiation [95]. In addition,
a rare population of BM monocytes and macrophages with high expression of α-smooth
muscle actin and cyclooxygenase COX-2 acts to suppress stress-induced exhaustion of
HSCs and progenitors by production of prostaglandin E(2) and activation of CXCL12
expression [96].

It should finally be mentioned, although out of context of HSC niches, that macrophages
play an exclusive and indispensable role in organization of BM erythroblastic islands, a
highly specific niche for erythropoiesis containing a central specialized macrophage sur-
rounded by differentiating erythroblasts [97]. In these structures, macrophages function
to advance maturation of erythroblasts in various ways, including their mitochondrial
clearance through tunnelling nanotubes [98].
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3.6. Adipocytes

The reciprocal relationship between hematopoiesis and adipose tissue within the BM
in humans has long been recognized. This notion is based on the fact that at birth bones con-
tain red marrow essentially devoid of adipocytes and very active in hematopoiesis, while in
adults red BM is replaced by yellow marrow rich in fat tissue and characterized by reduced
hematopoietic activity [99]. The adipocytes, the most abundant stromal component in adult
BM, were thus considered as negative regulators of hematopoiesis. This notion was experi-
mentally supported by data indicating that in mice incapable of producing adipocytes, or
after inhibition of adipogenesis by PPAR-γ receptor antagonist, hematopoiesis restoration
after irradiation was significantly accelerated [100]. One of the relevant mechanisms might
be a positive feedback loop in which adipocytes, via intense secretion of MCP-1, both
stimulate differentiation of MSCs into new adipocytes and negatively affect HSCs [101].

Recent studies, however, have changed our perception of adipocytes as unambigu-
ously negative HSC regulators [102]. First, adipocytes were shown to support in vitro
HSC survival, proliferation, and differentiation for at least 5 weeks in culture. Importantly,
in BM adipocytes production of factors with hematopoietic roles such as CXCL12, IL-8,
CSF3, LIF was on par with that of MSCs [103]. Second, BM adipocytes were shown to
promote regeneration of HSCs and hematopoiesis after irradiation or 5-FU treatment [104].
Adipocytes, as well as their precursors comprising a minor subpopulation of LEPR+ cells,
produced SCF necessary for hematopoietic recovery. SCF from LEPR+ cells but not from
endothelial or osteoblastic cells also activated regeneration, whereas conditional deletion
of SCF in adipocytes inhibited hematopoietic regeneration. Thus, adipocytes formed under
hematopoietic stress produce large amounts of SCF and seem to represent an emergency
response providing HSCs with factors necessary for their survival and expansion [104].
Noteworthily, Wilson et al., have shown that PPARγ knockout mice lacking adipocytes
exhibit severe extramedullary hematopoiesis [105]. This result might be associated with
observed dysregulation of CXCL12/CXCR4 axis and suggests that adipocytes may be
involved in HSC retention or mobilization.

Other reports indicate that some factors produced by adipocytes and thought to play
a role in fat formation (adipokines) may be also involved in regulation of hematopoiesis.
In particular, adiponectin was shown to be produced by components of the niche while
its receptors are expressed by HSCs. Moreover, adiponectin increased proliferation of
HSCs through a p38 MAPK-dependent pathway while maintaining their undifferentiated
state, and adiponectin deficiency in mice caused negative changes in the restoration of
hematopoiesis after chemotherapy [106].

Another adipocyte-secreted adipokine leptin, although alone, had little effect on
survival or proliferation of mouse and human HSCs in vitro [107], synergized efficiently
with SCF to stimulate the proliferation of primitive hematopoietic progenitors in vitro in
colony formation by HSCs and progenitors in cultures [108]. The pleiotropy of leptin is
also manifested in its effect on the differentiation of MSCs into fat cells in vivo [109].

3.7. Lymphoid Cells

Recent experimental evidence indicates that lymphoid cells, similar to other mature
hematopoietic cells, participate in the HSCs niche function. FoxP3-positive regulatory T
(Treg) cells were found to co-localize with HSCs and to play important role in protection of
HSCs from immune attack in the niche. In particular, allogenic HSCs, similar to syngenic
ones, are able to survive in non-irradiated mice after transplantation for at least a month,
whereas depletion of Treg cells results in a rapid loss of allogenic stem cells [110]. BM niche
is thus may be considered as an immunologically privileged site and a protective sanctuary
for HSCs. Importantly, Treg depletion impairs function of both MSCs and HSCs and results
in reduced hematopoiesis-supporting capacity of the niche [111]. Another study identified
a CD150high subpopulation of Treg cells in BM that through CD39 cell surface ectoenzyme
produced elevated levels of extracellular adenosine. Adenosine, in turn, potentiated Tregs,
protected HSCs from oxidative stress and maintained HSCs quiescence. Moreover, co-
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tranplantation of this Treg subpopulation was found to promote a much better engraftment
of HSCs in allogenic hosts compared to other Treg subsets [112]. Paradoxically, adenosine
produced by LEPR+ perivascular MSC seems to work in the opposite direction by activating
immunity and reducing immune privilege of the niche [113].

Less evidence exists concerning the potential role of B lymphocytes in the niche.
However, neurotransmitter acetylcholine abundantly produced by B cells has recently been
shown to limit hematopoiesis in vivo [114].

3.8. Nerve Fibers

The sympathetic nervous system (SNS) has been shown to innervate BM, wrapping
around arterioles and contacting peri-arterial Nes-GFP+stromal cells [32,115] A study
by Méndez-Ferrer et al., demonstrated that the SNS innervation plays a key role in the
circadian mobilization of HSCs form BM [116]. It acts through β3 adrenergic receptors
and downregulates CXCL12 levels during daytime, which activates HSC egress from BM.
Moreover, a similar mechanism functions during chronic variable stress, which induces
sympathetic nerve fibers to release more noradrenaline. This in turn leads to decreased
CXCL12 levels, resulting in activation of HSCs and enhanced production of neutrophils
and inflammatory monocytes [117].

Importantly, the autonomic cholinergic nervous system acts in the opposite direction,
repressing the sympathetic noradrenergic system at night and thus reducing egress of
HSCs [118]. In addition, cholinergic system through increased CXCL12 production acts to
maintain HSC quiescence in the endosteal niche under proliferative stress [119].

3.9. Single Cell Analysis of Niche Heterogeneity

The studies described in previous chapters demonstrated the vast diversity of BM
niche cells. The explosive development of new massive parallel methods of single cell anal-
ysis has added a new dimension to our understanding of niche complexity. The majority of
the relevant data has so far been obtained using single cell RNA sequencing (scRNAseq)
of fluorescently sorted BM cell populations, followed by comprehensive bioinformatics
analysis. The work by Wolock et al. [120] studying transcriptomes of CD45−, Ter119−,
CD31− BM cells used SPRING visualization algorithm [121] to reveal 7 stromal cell subsets,
with MSCs sitting at the top of hierarchy and branching into adipo- and osteo/chondro-
lineages. Another report by Baryawno et al. [122] analyzed substantially more cells of
a broader Lin−, CD45− BM population and employed t-distributed stochastic neighbor
embedding (t-SNE) algorithm for visualization [123]. This study discovered 17 distinct
subsets of non-hematopoietic cells in BM, including LEPR+ MSCs, endothelial sinusoidal
and arteriolar cells, five fibroblast subsets, as well as several osteolineage and chondrocyte
subsets. The changes in BM cells associated with emerging acute myeloid leukemia (AML)
were also identified.

Tikhonova et al. [75] employed a different approach to isolate starting cell popula-
tions using transgenic mice with fluorescently marked endothelial (VE-cad+), perivascular
(LEPR+) or osteo-lineage (Col1a1+) populations, whose transcriptomes were analyzed
separately, revealing 2, 4, and 3 distinct subsets, respectively. In addition, cellular sources
of haematopoietic cytokines, chemokines, and membrane-bound ligands were identified in
this study. Moreover, scRNAseq analysis of 5-FU chemotherapy effects revealed drastic
elevation of adipogenesis-related pathways and downregulation of osteolineage signaling
during stress hematopoiesis. Zhang et al. [124] aimed to focus their analysis on BM mes-
enchymal cells using transgenic mice with these cells specifically marked by fluorescent
protein. They identified 22 cell subsets; however, only 9 groups were of mesenchymal
lineage. Authors observed a novel adipogenic lineage population expressing adipocyte
markers but not containing lipid droplets. These cells form a ubiquitous 3D network in
BM, maintaining marrow vasculature and suppressing bone formation.

Baccin et al. [125] used an advanced approach combining scRNAseq analysis of
sorted cell subsets with spatial transcriptomics of fixed, laser capture microdissected, small
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(200–300 cells) samples. This work identified two new subsets of CAR cells expressing
osteogenic or adipogenic gene subsets (Osteo-CAR cells or Adipo-CAR cells, respectively).

Importantly, re-analysis of results of five mentioned scRNAseq studies using the Seu-
rat pipeline [126] for comparing all datasets demonstrated a general yet relatively limited
similarity of results obtained by different groups [127], with the highest similarity observed
for Baryawno et al. [122] and Tikhonova et al. [75] data. This, most likely, is a result of
differences in cell subsets analyzed, as well as in cell sample digestion and processing proto-
cols. Of note, the sc transcriptome study by Addo et al. [128] exploiting similar approaches
observed a very high heterogeneity of expression phenotypes and thus was unable to
identify distinct stromal cell subsets using bulk RNA abundance patterns only. However,
14 non-overlapping cell populations were identified based on the clustering of transcripts
encoding secreted factors participating in stromal-hematopoietic cell communication. The
reasons for this divergence from other groups’ results remain unknown.

Finally, an important study by Severe et al. [129] needs to be mentioned. Authors used
a single-cell mass cytometry, a cytometry method based on the use of transition element-
labeled antibodies combined with single cell mass spectrometry. This approach allows
one to analyze significantly more parameters at once than is possible with conventional
fluorescent cytometry. Severe et al., were able to identify 28 distinct subsets of stromal cells
in BM under steady-state conditions, although only half of them expressed hematopoiesis-
relevant cytokines. Importantly, radiation conditioning resulted in a loss of most of stromal
cell subpopulations including LEPR+ and Nes+ niche cells. However, CD73-positive cell
subset was retained following irradiation, and ablation of CD73 resulted in defects of
homing of transplanted HSCs and decreased hematopoiesis. Thus, the CD73+ stromal
subset is likely to promote HSPC engraftment and acute hematopoietic recovery following
radiation conditioning.

Table 1 presents a brief summary of various cell types contributing to the BM niches,
whereas Table 2 reviews key regulators controlling HSCs.

Table 1. Key cell types participating in regulation of HSCs activity in BM niches.

Cells Markers Function Main Molecules

Mesenchymal stem cells

CD73+, CD90+, CD105+,
CD14−, CD19−, CD34−,
CD45−, HLA−DR−,
Terl119−, CD31−, CD51+,
PDGFRa+, Sca1−

Support and regulation of
HSC quiescence, proliferation,
differentiation
HSC mobilization

CXCL12, SCF, angiopoietin-1,
VCAM-1, osteopontin

Endothelial cells CD45−, CD31+, CD144+,
Terl119−

Support of HSC proliferation
and expansion
Hematopoietic regeneration
after irradiation

CXCL12, SCF, Notch ligands,
E-selectin, Del-1, pleiotrophin

Osteoblasts CD45−, Terl19−, CD31−,
CD51+, PDGFRa−, Sca1− Support of HSC quiescence Osteopontin, N-cadherin,

TPO, angiopoietin-1

Megakaryocytes CD41+, CXCR4, Mpl
Support of HSC quiescence
HSC expansion after
irradiation

CXCL4, TGF-β,
thrombopoietin, FGF1

Macrophages CD68+, CD169+ HSC retention in niche
Support of HSC quiescence VCAM-1, DARC, TGF-β

Adipocytes ADIPOQ, FABP4, Leptin

Support of HSC survival,
proliferation and
differentiation
Hematopoietic regeneration
after irradiation

MCP-1, CXCL12, SCF, IL-8,
LIF, CSF3, adiponectin, leptin
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Table 1. Cont.

Cells Markers Function Main Molecules

Treg lymphocytes FOXP3
Protection of HSC from
immune attack
Support of HSC quiescence

IL-10, CDC39, adenosine

Sympathetic nerve fibers Tyrosine hydroxylase HSCs mobilization Noradrenaline

Parasympathetic nerve fibers Choline acetyltransferase HSC retention in niche,
homing Acetylcholine

Table 2. Key molecules participating in HSC regulation by BM niches.

Molecule Receptors on HSC Surface Producing Cells Regulatory Function

CXCL12 CXCR4 MSCs, ECs, ADs
HSC maintenance
HSC homing and niche
retention

SCF KIT MSCs, ECs, ADs

HSC survival
HSC maintenance and
proliferation
HSC homing

TGF-β TGFBR1 MKs HSC quiescence

Osteopontin CD44 OBs, MSCs Suppression of HSC
proliferation and expansion

Angiopoietin 1 TIE2 OBs, MSCs HSC maintenance
HSC quiescence

VCAM-1 VLA4 MSCs, Mφ HSC homing

G-CSF/CSF3 CSF3R MSCs Myeloid differentiation
HSC mobilization

M-CSF/CSF1 CSF1R MSCs Myeloid differentiation

TPO MPL MKs, OBs
HSC maintenance and
proliferation
HSC quiescence

IGF-1 IGF1R OBs HSC maintenance

Pleiotrophin RPTPZ1 ECs, MSCs HSC maintenance

Jagged-1 NOTCH MSCs, ECs, OBs
HSC maintenance and
self-renewal
HSC expansion

EGF EGFR ECs HSCs survival and
maintenance

DARC CD82 Mφ HSC quiescence

CXCL4 CXCR3B MKs HSC quiescence

HSCs—hematopoietic stem cells, MSCs—mesenchymal stem/stromal cells, ECs—endothelial cells, ADs—
adipocytes, MKs—megakaryocytes, OBs—osteoblasts, Mφ—macrophages.

4. Niches of Committed Cells

The question arising after reviewing the specialized niches for HSCs in BM is where
the potential niches for more differentiated cells are located. Ding et al., showed that while
HSCs are maintained by a perivascular niche combining Lepr–cre- or Prx1–cre-expressing
stromal cells and endothelium, early lymphoid precursors are located in the endosteal
niche created by osteoblasts that support the proliferation and differentiation of lymphoid
precursors in vitro [78]. Committed B-lineage progenitor cells are maintained by a different
perivascular niche containing Prx1–cre-expressing stromal cells but no endothelial cells [78].
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The removal of osteoblasts from the culture negatively affects the population of lymphoid
precursors [29,86]. Moreover, the removal of G protein alpha from osteoblasts reduces the
population of B lymphoid precursors [130].

The spatial distribution of hematopoietic progenitor cells is confirmed by the work
of Comazzetto et al., showing that SCF from LEPR+ cells is generally required for HSCs
and more differentiated progenitors [131]. Deletion of SCF from LEPR+ cells led to the
depletion of common lymphoid and common myeloid progenitors as well as a number of
more differentiated progenitors. At the same time, deletion of SCF from endothelial cells
only negatively affected the HSC population, indicating that SCF produced by endothelial
cells selectively supports HSCs.

A number of authors note that proliferating HSCs, precursors, and more differentiated
cells are located in the sinusoid region [30,132]. Pinho et al., used a different cell labeling
method to study the spatial distribution of cells in the niche [37] and showed that platelet-
and myeloid-biased HSCs expressing von Willebrand factor (vWF) and CD150 are located
near megakaryocytes, and the depletion of the latter expands the population of vWF+

HSCs, but reduces the ability to self-renew. At the same time, vWF lymphoid-biased
HSCs in arteriolar niches are dependent on NG2+ cells. According to Winkler, multipotent
precursors are located on the endosteal surface, whereas lymphoid precursors migrate from
this region [133]. Balzano et al., demonstrated that HSCs and pro-B cells are often located
in the same perisinusoidal niche next to LEPR+ cells [134].

5. Metabolic State of HSCs and Niche

Functional, transcriptomic, and proteomic studies demonstrated the importance of
metabolic processes in biology of HSCs [135]. Most of the time HSCs are quiescent, which
protects them against proliferative and genotoxic stress effects harmful to HSCs, while
allowing them to maintain their self-renewal potential [136,137]. It is well documented
that reactive oxygen species (ROS) cause damage to biomolecules, primarily DNA [138],
representing a particular danger for HSCs that give rise to enormous numbers of progeny
cells. Several studies established that HSCs in the BM are located in regions of severe
hypoxia, with the lowest O2 levels in deeper peri-sinusoidal regions, while the endosteal
regions are less hypoxic due to arteriole perfusion [31,139].

Quiescent HSCs in BM under these hypoxia conditions adapt their metabolism to
switch to glycolysis [140] as energy source, with resulting decrease in oxidative phosphory-
lation (OxPhos) and production of ROS in mitochondria [136,141]. This switch is mediated
by pyruvate dehydrogenase kinase (Pdk)-dependent mechanism [142]. In addition, the lev-
els of transcription factors Meis1 and Hif-1α are highly elevated in long-term HSCs, while
Meis1 positively regulates HSC glycolytic metabolism through transcriptional activation
of Hif-1alpha [140]. The notion that hypoxia is necessary to maintain the functions of the
HSCs is confirmed by the increasing expansion of colony-forming cells (CFCs) [143,144] or
the restoration of quiescence in hypoxia ex vivo [145,146].

It should be noted, however, that ROS is an important mediator of intracellular
signaling. In relation to HSCs biology, decrease in ROS below critical levels by inactivation
of AKT1 and AKT2 kinases inhibits differentiation of HSCs [147]. In addition to AKT1
and AKT2, ROS levels in HSCs are regulated by ATM [148] and the Foxo transcription
factor family [149,150]. The transition of HSCs to active state, including proliferation and
differentiation into progenitor cells, is initiated by an increase in the concentration of ROS
due to the activation of OxPhos [147,151], switching from glycolysis to the Krebs cycle to
meet the rapidly growing energy needs of HSCs [135,141]. Apparently, this switch occurs
through CD36-mediated uptake of free fatty acids [152] and involves histone demethylase
Fbxl10 [153]. In addition, Maryanovich et al. [154] showed that loss of mitochondrial carrier
homolog 2 (MTCH2) leads to an increase in OxPhos in mitochondria. This is accompanied
by an increase in mitochondrial size and accumulation of ROS and ATP and, as a result,
activation of HSC and an exit from the quiescent state.
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The role of mitochondria is further emphasized by the finding that mitofusin 2 (Mfn2),
a protein involved in mitochondrial fusion, is necessary for maintenance of lymphoid-
biased but not myeloid-biased HSCs, the effect most likely mediated through intracellular
accumulation of Ca2+ and NFAT signaling [155]. In addition, lowering the mitochondrial
potential in HSCs favors their self-renewal at the expense of differentiation [156].

An interesting study demonstrates a critical function of p38MAPK family isoform
p38α in transition from quiescence to proliferation [157]. After hematological stress, p38α
is rapidly phosphorylated, which leads to elevated expression of IMPDH2 in HSPCs
and activation of purine metabolism, whereas deletion of p38α results in suppression of
recovery and delayed HSC proliferation.

Another important metabolic pathway, namely fatty acid oxidation (FAO), has also a
prominent role in HSC biology. Ito et al., showed that the PML–PPAR-δ–FAO signaling
controls the asymmetric division of HSCs, and its inhibition leads to symmetric divisions
and loss of HSC maintenance [158]. Activation of PPAR-δ–FAO pathway leading to expan-
sion of HSCs occurs through enhanced Parkin recruitment in mitochondria and induction
of mitophagy [159]. Interestingly, depletion of PTPMT1, a PTEN-like mitochondrial phos-
phatase, affected mitochondrial metabolism and enhanced activation of mitochondrial
uncoupling protein 2 by fatty acids, which was accompanied by block in differentiation
and approximately 40-fold expansion of primitive HSC population [160].

Autophagy has also been implicated in the HSC maintenance. In particular, au-
tophagy has a vital function in protecting HSCs from metabolic stress, and transcription
factor Foxo3a is important for rapid induction of autophagy in HSCs upon starvation [161].
HSCs with suppressed autophagy accumulate mitochondria and acquire an activated
metabolic state, which leads to accelerated myeloid differentiation and loss of regenerative
potential, features characteristic for aged hematopoietic system. Thus, autophagy sup-
presses metabolism of HSCs to maintain their quiescence and stemness [162]. It should be
noted, however, that excessive autophagy and mitophagy may be deleterious. For example,
deletion of the mitochondrial membrane protein Atad3a (ATPase family, AAA domain
containing 3A) causes hyperactivation of mitophagy, which in turn causes differentiation
block with concomitant expansion of HSC pool [163].

Another work emphasizing important role of mitochondria in the HSC maintenance
and function demonstrated that inactivation of histone deacetylase Sirtuin 7 (Sirt7) provokes
cycling of HSCs and their decreased regenerative capacity [164]. These effects were due
to suppression of mitochondrial unfolded protein response (UPRmt) in HSCs mediated
by activation of nuclear respiratory factor 1 (Nrf1), a master regulator of mitochondria.
Vice versa, upregulation of Sirt7 improved the functionality of aged HSCs. It has also been
reported that UPRmt is activated in HSCs when they exit quiescent state [165].

Other studies demonstrated important role in HSCs biology of AMP and mTOR path-
ways, which sense and coordinate nutrient level, energy status and cell growth. Thus,
deletion of LKB1, a well-known regulator of AMPK, was shown to reduce mitochondrial
membrane potential and ATP levels, induce HSC exit from quiescence and increased prolif-
eration resulting in rapid depletion of HSC and all hematopoietic subpopulations [166,167].
Conditional deletion of TSC1 caused activation of the mTOR signaling pathway in HSCs
and provoked their entry into cell cycle, leading to the depletion of the HSC pool and, as a
result, dramatically reduced hematopoiesis and self-renewal of HSCs [168].

There is a relative paucity of data regarding the metabolic state of various components
of BM niches. MSCs, similar to HSCs, exist in regions of deep hypoxia in BM niches
and, therefore, use glycolysis for their energy needs [169]. In the state of normoxia, the
proliferative properties of MSCs increase, but aging also increases [170], therefore hypoxia
might serve as a way to prevent proliferation and aging of MSCs, maintaining self-renewing
MSC population of BM.

Finally, in the context of mitochondria role in HSC function, it would be important to
discuss the issue of mitochondrial transfer between cells in BM. According to numerous
reports, MSCs, a vital component of HSC niches, are able to donate their mitochondria
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to various cell types in vitro, either through direct contact or via secretion of extracellular
vesicles (reviewed in [171]). This process modulates properties of recipient cells and,
frequently, results in restoring their functions. Moreover, MSCs may sense mitochondria
released from injured cells and enhance their own mitochondrial biogenesis to combat cell
injury [172]. It is thus possible that a similar functional restoration of HSCs containing
damaged or exhausted mitochrondria by niche MSCs may occur in vivo. Of note, a reverse
process of mitochondrial donation by healthy hematopoietic progenitor cells to damaged
irradiated stromal cells during bone marrow transplantation has been reported [173].

6. Aging of the Niche

Age-related changes in the human body negatively affect hematopoiesis, leading
to shifts in blood cell clonal composition, DNA damage and eventual development of
hematological disorders [174–176]. The aging of the hematopoietic system involves two
major components: the cell-intrinsic aging of the HSCs themselves, and age-related changes
in the components of the BM niche that have a direct impact on the HSCs and hematopoiesis.

Aging affects HSCs in two ways: on the one hand, HSC functional capacity declines
with accumulation of genetic, epigenetic, metabolic and homeostatic defects, on the other
hand, the HSC pool expands, with a skewed differentiation towards the myeloid lineage
at the expense of the lymphoid one [176–178]. Age-related changes are also associated
with DNA and telomere damage; for aged HSCs, an increased level of DNA mutations
was observed [179]. Telomere shortening leads to functional depletion of HSCs due to
constitutive activation and asymmetric differentiation into megakaryocytes [180]. Accu-
mulation of mutations in epigenetic regulator genes in HSCs with age leads to clonal
hematopoiesis, enhanced inflammation and increased risk of cardiovascular diseases and
malignancies [181,182]. The aging of HSCs is manifested at the organelle level as well.
Various defects in the mitochondrial respiratory chain or mitochondrial biogenesis lead to
disturbance of HSC quiescence and their dysfunction [164,168,183]. Among other promi-
nent hallmarks of HSC aging are deregulation of autophagy [162,184] and modifications in
epigenome [185,186]. Importantly, HSCs lose polarity with aging as a result of enhanced
activity of the small RhoGTPase Cdc42 [187]. It should be noted that the biologically
youngest HSC subset in the aged mice that retains cellular polarity, quiescence, and con-
served regenerative potential was shown to be located in perisinusoidal niches [188].

HSCs do not age alone in BM; age-related changes occur in the BM niche components
as well. In a number of adult stem cells, aging is accompanied by a continuous somatic
DNA mutagenesis occurring at a rate of about 40 novel mutations per year [189]; the same
is likely to occur in MSCs as well. The aging of MSCs is accompanied by an increase in
ROS levels and DNA damage [190–192]. The lack of telomerase negatively impairs the
ability of MSCs to differentiate [193]. Moreover, telomere dysfunction in Tert knockout
mice enhanced myelopoiesis during aging at the expense of B lymphoid lineage, impaired
MSC function and reduced their capacity to maintain functional HSCs, in particular their
ability to support the engraftment of wild-type HSCs in KO animals [194].

The secretory ability and immunomodulatory properties of MSCs significantly weaken
during aging in culture [195]. In line with in vitro data, Gnani et al., showed that MSCs
isolated from aged donors displayed senescent phenotype, accumulation of DNA damage
and increased secretion of multiple pro-inflammatory factors with concomitant reduction in
immunomodulatory properties [196]. Factors secreted by aged MSCs activated expression
of proinflammatory genes in young HSCs and reduced their clonogenic potential.

The vascular component also undergoes major alterations in the advanced age. Al-
though the vascular volume remains fairly constant, a decrease in the number of ECs
occurs [188]. With age, degeneration of arteries and arterioles occurs [197], they become
disorganized, which impairs their ability to maintain HSC quiescence and affects function
of the latter [188,198]. At the same, sinusoidal network undergoes little degradation [198].
Netrin-1 expressed by endothelial and periarteriolar stromal cells of the BM niche was
recently reported to support HSC quiescence and self-renewal, while decline of its produc-
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tion with ageing negatively affects HSC maintenance [199]. It is worth noting that other
genes in ECs have also been implicated in the aging of the niche. In particular, expression
of mTOR and heme oxygenase-1 in BM ECs declines during aging, which impairs support
of hematopoiesis [200,201].

Substantial alterations occur in the endosteal compartment with aging. The ability
of MSCs to differentiate into osteoblasts decreases with aging, which is associated with
decreased secretion of osteopontin, which, in turn, negatively affects the population of
HSCs [83]. In aged mice, the bone matrix is reduced, and the number of mature osteoblasts
diminished [202]. A decrease in the number of osteocytes in the niche leads to a shift in
the differentiation of HSC towards myelopoiesis [203], which is further stimulated by the
influx of plasma cells during aging [204].

The adipose component also changes with aging. Shift in MSCs during aging towards
differentiation into adipose tissue results in niche remodeling associated with pathological
accumulation of adipocytes, which disrupts hematopoietic regeneration [205]. It is assumed
that accumulation of adipocytes in the niche can affect the immunomodulatory activity of
MSCs, increasing or weakening the inflammatory state and contributing to a decrease in
the population of HSCs [205–207].

In the aging BM, a decrease in sympathetic adrenergic nerve density and innervation
was reported, with resulting increase in HSCs proliferation, loss of Cdc42 polarity, myeloid
shift in differentiation and decrease in HCS transplantation potential [197]. However, a
more recent study, on the contrary, reported an increase in sympathetic innervation with
age, which promoted myeloid differentiation and increased HSC frequency [208].

One of the important negative changes in aging is development of the inflammatory
process (inflammaging) in the niche [209]. Activation of signals associated with aging,
such as NF-kB, β-catenin/WNT, elicits a pro-inflammatory shift in MSCs that provokes the
expression and secretion of senescence-associated pro-inflammatory cytokines, chemokines
and ligands, such as S100A8/A9, IL6, IL-1ß and others, into the niche [210]. Such a
proinflammatory environment in the niche favors DNA damage, malignant transformation
and the appearance of mutations in HSCs, which may lead to oncogenesis [196,211–213].

Finally, a number of interesting aging-related experiments were performed to eluci-
date the heterochronic interactions of HSCs with the hematopoietic niche. Transplantation
of aged HSCs into young mice did not result in their conversion to a younger state and
functionality, although a rejuvenation of HSC transcriptome, but not methylome, was
observed [214,215]. Similarly, aged microenvironment had little pro-aging effect on trans-
planted young HSCs [214], although young HSC pool expansion biased towards myeloid
differentiation was reported [216,217]. These data indicate that HSCs largely maintain their
chronological age in the heterochronic environment.

Table 3 summarizes changes in HSC-niche system that occur during aging.

Table 3. Phenotypic and functional aging-related alterations in HSCs and BM niche cells.

Cell Types Changes with Ageing

HSCs
↑myeloid differentiation; ↓lymphoid differentiation; ↓regenerative potential;
↓HSC polarity; ↓autophagy; ↑deregulated mitochondrial activity;
↑epigenetic and genomic alterations

MSCs
↓CFU-F clonogenicity; ↓Nes–GFP+ and NG2+ cells; ↓CXCR4→↑ROS
production ↑DNA damage→↓ HSCs support; ↑IL6 expression, ↑TGF-β
expression→aged HSCs phenotype

ECs
↓ECs number, vascular remodeling→ loss of HSC quiescence; ↓key
signaling pathways in ECs (mTOR, Jag1/Notch, CXCL12, SCF); ↓HO-1
expression→aged HSC phenotype
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Table 3. Cont.

Cell Types Changes with Ageing

OBs ↓ OBs number→↓OPN secretion→ aged HSC phenotype; ↓osteogenic
progenitor population

MKs ↑MKs number

Mφ ↑Mφ number; ↑IL-1 secretion→↑HSC myeloid differentiation

ADs ↑ADs number→↓HSCs and progenitors numbers→↓repopulation capacity

Nerve fibers ↓nerve density; ↑β2-adrenergic stimulation ↑→IL6 secretion by MSCs
→↑HSC myeloid differentiation

↓—decrease, ↑—increase,→—leads to, HSCs—hematopoietic stem cells, MSCs—mesenchymal stem/stromal
cells, ECs—endothelial cells, ADs—adipocytes, MKs—megakaryocytes, OBs—osteoblasts, Mφ—macrophages.

7. Niche Transformation in Leukemia

Numerous data indicate that during leukemia, malignant cells, in addition to pertur-
bation of normal hematopoiesis, are able to substantially modify the BM niche components,
and the hematopoietic microenvironment undergoes changes that facilitate disease progres-
sion. In particular, during chronic lymphocytic leukemia BM MSCs change their properties
to give rise to drastically fewer fibroblast colony-forming units (CFU-Fs), proliferate slowly
and behave as senescent cells [218]. Senescence was also observed for MSCs from AML
BM [219]. Moreover, MSC senescence is reported for an in vitro leukemia niche model [220].

One of the leukemia hallmarks is enhanced angiogenesis, which is activated by proan-
giogenic factors secreted by tumor cells. This “superangiogenesis” allows rapidly prolifer-
ating malignant cells to spread throughout the body and is also an indicator of leukemia
progress [221]. The key angiogenesis factor VEGF activates protection of leukemic cells from
apoptosis by Hsp90-medited induction of anti-apoptotic factors BCL2 and MCL1 [222,223].
In co-cultures of endothelial cells with AML, an increase in secretion of IL-3, IL-6, G-CSF
and GM-CS cytokines was observed, which stimulated AML growth and suppressed
apoptosis [224].

In connection to the rapid proliferation of leukemic cells in BM, adipocytes acquire
small size due to lipolysis [225]. As a result, a large amount of free fatty acids is formed,
which are necessary to maintain the existence of malignant cells [226]. Transition from
larger to small adipocytes during AML [227] was mediated by growth differentiation
factor-15 (GDF15) secreted by leukemic cells, which enhanced expression of thermogenic
and lipolytic genes stimulating lipolysis [228]. Notably, disruption of the adipocyte niche
in leukemia BM negatively affects endogenous myelo-erythropoiesis [229]. Among other
niche components, AML was shown to affect sympathetic nervous system in BM. The
resulting neuropathy affects the Nes+ MSCs that support quiescent HSCs in the niche,
inducing MSC differentiation into precursors primed for osteoblastic differentiation [230].

The BM microenvironment plays a substantial role in leukemia progression. Leukemia
clones at first propagate locally in BM and then spread to other regions in bones. In
particular, leukemia cells home to BM vasculature expressing CXCL12 and E-selectin [231].
CXCL12 deletion from vascular endothelial, but not perivascular, cells impeded T-cell acute
lymphoblastic leukemia (T-ALL) [232]. Similar effects were reported for deletion of the
CXCR4 (CXCL12 receptor) in T-ALL cells.

In the context of leukemia pathology, it would be important to mention that normal
HSCs placed in the leukemia niche in vitro activate the cell cycle and start to intensely prolif-
erate [220]. One of the major mechanisms responsible for this effect is the exosome-mediated
intercellular communication between malignant and normal cells [233,234]. Leukemic cells
capture and endocytose MSC-produced exosomes containing fibroblast growth factor
2 (FGF2), which protects against tyrosine kinase inhibitors [235]. Moreover, leukemic
exosomes are able to stimulate the production of IL-8 by BM MSCs, which in turn sup-
ports the spread of leukemia [236]. The ability of leukemic cells to remodel the normal
niches manifests in the fact that exosomes from these cells are able to enter and signifi-
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cantly modify the surrounding cells. By virtue of their RNA and protein load, exosomes
modulate the secreting profiles of niche cells, accelerating leukemic growth and advanc-
ing leukemia progress [237–239]. Yet another mechanism was observed in the study by
Marlein et al. [240], where production of superoxide by NADPH oxidase-2 in AML stimu-
lated transfer of mitochondria from BM MSCs to AML cells through tunneling nanotubes.

It should be noted that the pathological remodeling of the niche by leukemia cells is
not the only way of how the BM microenvironment may promote hematological disorders.
Since the niche is thought to strictly control proliferation of HSCs and progenitors, genetic
lesions of niche cells may have a disturbing effect on hematopoiesis. Thus, mice deficient in
retinoic acid receptor gamma (RARγ) develop myeloproliferative syndrome with abnormal
myeloid specification and proliferation, which is elicited solely by the defects in microenvi-
ronment [241]. Inactivation of Mind bomb-1, which participates in endocytosis of ligands
of Notch receptor, results in myeloproliferative disease with accumulation of immature
granulocytes that was due to abnormally functioning non-hematopietic BM cells [242].
Moreover, activating β-catenin mutation in osteoblasts results in upregulation of Notch
ligand Jagged 1, which leads to leukemogenesis [243].

Finally, it would be important to discuss the significance of leukemic niche studies for
development of new therapeutic strategies. Although the current anti-leukemia therapies
target exclusively the malignant cells proper, the accumulating evidence for active and vital
synergism between leukemic niche and leukemia cells suggests that this synergism might be
a novel and promising therapeutic target. This field is still at its beginning, however, and it
should be mentioned that the initial attempts to target vascular niche using anti-angiogenic
drugs have been largely unsuccessful [244]. At the same time, targeting niche-leukemia
interaction seems to hold more promise. In particular, blocking interaction of CXCR4 with
its ligand CXCL12 by plerixafor demonstrated efficacy in several combination trials in
AML [245–247]. Currently, a number of other substances blocking the CXCL12-CXCR4 axis,
such as BL 8040, CX-01 and ulocuplumab, are in early phase trials [248–250].

Inhibition of E-selectin in vascular niche by uproleselan resulted in a promising
outcome in a phase 1/2 clinical trial of relapsed/refractory AML [251]. Among the most
promising targets is also an E-selectin ligand CD44, in particular its CD44v6 isoform
expressed in AML SCs but not in normal HSCs. For detailed information on translational
research in the field of leukemia-niche interactions, the reader is referred to recent excellent
reviews [245,252,253].

8. Niche Modeling

HSC transplantation is one of the most powerful tools for the treatment of blood
diseases, resulting in the restoration of functioning hematopoiesis in the body. However,
HSC transplantation is limited by the availability of suitable HLA-matched donors and
risks associated with GVHD development, insufficient graft quantity or its rejection [254].
These problems could be solved by developing an ex vivo system for expansion of donor
HSCs in the quantities required for successful transplantation.

The developers of these ex vivo HSC expansion systems are facing a formidable
problem of mimicking the complexity of the hematopoietic niche combined with a correct
blend of external signals. To create a dynamic niche model, a combination of cells, growth
factors/cytokine and sufficiently elastic biomaterials providing a 3D structure is being
used [255,256]. The key supporting elements in making niche lookalikes are arguably the
3D scaffolds [257]. The ex vivo system should be functionally, if not structurally, similar
to BM in order to ensure long-term HSC well-being and expansion. For the creation of
3D scaffolds, synthetic, natural and biomaterials are used that may provide a suitable
framework for attachment, survival and free movement of cells.

The problem of biocompatibility sets certain restrictions on the choice of materials
for 3D structures [258]. Hydrogels are among the most biocompatible materials and
are being widely used to prepare scaffolds imitating BM structures [256,259–261]. Thus,
Ravichandran et al., developed a model of BM adipose tissue by combining gelatin and
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a composite methacryloyl hydrogel/polycaprolactone scaffold with human BM MSCs
subjected to mechanical stimulation [262]. Scaffolds from polydimethylsiloxane used as BM
mimics allowed for the successful cultivation of HSCs, which, in the 3D culture, activated
pathways maintaining cell pluripotency and promoting their expansion [263]. Studies by
Ventura Ferreira et al., using co-cultures of cord blood CD34+ cells and MSCs on various 3D
biomaterial scaffolds revealed that the fibrin-based scaffold provided best culture conditions
and maximally contributed to the expansion of CD34+ cells [264]. The use of biocompatible
zwitterion hydrogels made it possible to improve the properties of the scaffolds and achieve
a multifold increase in the frequency of hematopoietic progenitor cells capable of long-term
hematopoietic reconstitution in immunocompromised mice [265]. Other types of scaffolds
are also being used to recreate the niche, and their low biocompatibility is improved
by coating nanofibers with fibronectin [266,267], collagen [268] or by prior cultivation
of MSCs [268]. A ceramic scaffold pre-populated with MSCs and osteoblasts, which
secreted ECM and cytokines necessary for the maintenance of hematopoietic progenitors,
successfully promoted the expansion of the latter [269].

Born et al., created a system imitating BM using the stromal vascular fraction (SVF)
from human adipose tissue seeded on 3D osteoblastic niches formed by MSCs, in which
SVF cells assembled into vascularized structures containing both endothelial and perivas-
cular cells, and which provided a better support for HSCs than the non-vascularized 3D
niches [270]. An artificial niche created from silk fibroin reproduced platelet biogene-
sis [271]. The use of natural materials—collagen and fibrin—in the design of the scaffold
made it possible to support the proliferation and expansion of HSCs [259,264].

Another strategy for creation of biomimetic 3D scaffolds is the use of decellularized
animal and human tissue. This enables one to simulate the architecture of the niche for cell
cultivation as close to the natural environment as possible while eliciting a smaller host
immune response during transplantation [272,273]. Properly performed decellularization
of the tissue diminishes an unfavorable immune response [274,275]. Bianco et al., created
a novel decellularized BM scaffold using a cell removal method that preserves the native
3D-structure of BM with its blood vessels and niches, thus supporting adhesion and
proliferation of both stromal cells and HSCs [276]. Hashimoto et al., employed high
hydrostatic pressure for bone decellularization, which allowed HSC recruitment after
subcutaneous transplantation [277]. Lai et al., used yet another option for co-cultivation
of HSCs and MSCs, namely, the decellularized bone-like matrix containing osteogenically
differentiated MSCs encapsulated in collagen microspheres [278].

One of the options for modeling the BM niche is the cultivation of HSCs, MSCs and
ECs in 3D multicellular spheroids using a magnetic levitation system [279]. This study
demonstrated, in general agreement with previous data, that exposure of spheroids to
hypoxia is beneficial for HSCs, resulting in enhanced cell proliferation and increased
expression of CD34 and some other markers. Spheroid culture (hematosphere) from
mononuclear blood cells demonstrated the possibility of maintaining and expansion of
Lin−CD34+CD38− hematopoietic progenitors [280]. The creation of vascularized miniature
bone/BM organoids in mice using umbilical cord blood and cord blood fibroblasts allowed
for successful engraftment and maintenance of HSCs [281].

A highly promising way to create and monitor the niche as a constantly changing
microenvironment is the organ-on-a-chip technology based on microfluidics. With the help
of porous membranes or scaffolds and a system of microchannels, a suitable environment
is created in which MSCs are seeded to prepare an appropriate niche for HSCs. Kefallinou
et al., created such an organ-on-a-chip system using two chambers separated by a porous
membrane, in one of which MSCs were cultivated [282]. In another application of organ-
on-a-chip technology, a zirconium oxide scaffold coated with hydroxyapatite was used
to co-cultivate MSCs and hematopoietic progenitors in the microfluidic chip [283]. This
system created a microenvironment similar to BM that supported maintenance of CD34+

CD38− progenitors. Glaser et al., presented a microfluidic 3D model of BM combining
two perivascular and endosteal compartments and a perfusable vascular network, which
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successfully maintained CD34+ cells and allowed for their differentiation and egress of
neutrophils [284]. For a detailed study of multiple myeloma, a microfluidic system imitating
BM stromal and sinusoidal endothelium components, as well as sinusoidal circulation,
made it possible to study CXCL12-mediated egress of myeloma cells from BM stroma [285].
The use of microfluidic technology for niche modeling will undoubtedly undergo further
development. For example, the application of the method of maskless photolithography
to create more sophisticated microfluidic devices that can be adapted for specific research
needs holds significant promise in further progress of organ-on-a-chip systems [286].

As a final note, it would be important to mention the 3D printing technology, a
potentially very powerful approach considered one of the major avenues for creation of
artificial tissues and organs, despite tremendous technical and methodological hurdles that
are lying ahead [287,288]. In the field of stem cell biology, this technology might eventually
allow one to re-create sophisticated nature-like stem cell niches using biomaterials and
various cell types [289]. Although this field is still in its infancy and no major breakthroughs
have been yet reported, some steps towards achieving the above goal have already been
made [290,291].

9. Concluding Remarks

The hematopoietic system is arguably unique among the body’s systems in the nu-
meric cellular output and variety of cell types it generates. The sheer number of cells
it produces daily presents a significant potential danger of malignant transformation or
inability to correctly meet the various needs of organisms. Given this, it is no wonder that
hematopoiesis is subjected to a very strict control, while HSCs are kept on a short leash and
their behavior is tightly regulated by multiple neighbor cells that constitute the niche for
HSCs. Unraveling the enigmas of different molecular and cellular mechanisms underlying
HSC-niche interactions can thus be considered the Holy Grail of hematopoietic research.
The most sophisticated techniques such as genetic lineage tracing and single cell transcrip-
tome analysis are being increasingly used to understand the astonishing complexity of
hematopoietic regulation by the BM microenvironment. Experiments performed until now
have already yielded quite a few important discoveries in this field that are changing our
paradigms. However, the unified and commonly accepted view of how HSCs interact with
the BM microenvironment to fulfill their vital functions is still lacking. Although at least
some of the major HSCs regulators produced by niche cells have been identified, we are as
yet very far from obtaining an integral picture of how all numerous actors of the HSC-niche
ecosystem work together to help HSCs to make correct decisions concerning their survival,
division and differentiation in response to organism’s needs.

Future research will undoubtedly focus of these issues, and one may hope that it
will not only advance our understanding of the complexities of HSC regulation by the
niche, but also provide vital clues as to the identity of molecules and interactions that
are required to maintain and multiply HSCs for clinical applications, as well as combat
hematopoietic diseases.
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