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The performance of 647 features with the number of component ranging from 1 to 10.
mRMR features list.

The Spearman’s correlation coefficient of the mRMR features list.

Forward feature list.

Spearman’s correlation coefficient of the forward features list.

Performance of Wang’s features with the number of components ranging from 1 to 10.
Original dataset consists of 85 splicing factors.

Conversion of 85 experimentally tested splicing factors into a 700-dimensional feature

matrix by feature encoding.

Table S9:

Construction of a 647-dimensional feature matrix from the 700-dimension feature matrix

by removing the features that are almost 0 in all samples.
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Figure S1: Curves of five metrics produced by the mRMR features. Three metrics R?, Pearson’s
coefficient and Spearman’s coefficient show a similar uptrend, and RMSE and NRMSE display a
similar downtrend.
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Figure S2: Curves of five metrics produced by using the forward feature searching strategy. Three
metrics R?, Pearson’s coefficient and Spearman’s coefficient show a similar trend, and RMSE and
NRMSFE display a similar trend.
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Figure S3: Fitting graph produced by 93 features, showing the best feature subset (93 features)
with good performance.
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Figure S4: SHAP plot based on 5-fold cross-validation. We calculated the shap_values for every
model and its corresponding 17 validation RBPs, merged 5 shap_values into one explainer, and
visualized this explainer using SHAP bar plot.
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Figure S5: SHAP plot based on 5-fold cross-validation. We calculated the shap_values for every
model and its corresponding 17 validation RBPs, merged 5 shap_values into one explainer, and
visualized this explainer using SHAP beeswarm plot



