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Abstract: The recent development of mRNA vaccines against the SARS-CoV-2 infection has turned 

the spotlight on the potential of nucleic acids as innovative prophylactic agents and as diagnostic 

and therapeutic tools. Until now, their use has been severely limited by their reduced half-life in the 

biological environment and the difficulties related to their transport to target cells. These limiting 

aspects can now be overcome by resorting to chemical modifications in the drug and using appro-

priate nanocarriers, respectively. Oligonucleotides can interact with complementary sequences of 

nucleic acid targets, forming stable complexes and determining their loss of function. An alternative 

strategy uses nucleic acid aptamers that, like the antibodies, bind to specific proteins to modulate 

their activity. In this review, the authors will examine the recent literature on nucleic acids-based 

strategies in the COVID-19 era, focusing the attention on their applications for the prophylaxis of 

COVID-19, but also on antisense- and aptamer-based strategies directed to the diagnosis and ther-

apy of the coronavirus pandemic. 

Keywords: DNA; RNA; oligonucleotides; nucleic acid analogs; COVID-19; antisense; mRNA vaccines; 

antigene; nanomedicine 

 

1. Introduction 

The COVID-19 (coronavirus disease 19) pandemic, caused by severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2), is causing enormous difficulties around the 

globe from both a sanitary and socioeconomic perspective [1–10]. Currently, the world is 

waiting for effective benefits following the mass vaccination campaign conducted in some 

parts of the globe using the developed anti-COVID-19 vaccines. However, despite the 

mass immunization campaign [11,12] and the efforts of pharmaceutical companies and 

the scientific community to devise effective therapies via new drug development [13,14], 

drug repurposing [15,16], herbal medicine [17–21] and other recently proposed ap-

proaches [22–26], SARS-CoV-2 and other human coronaviruses [27,28] remain a major 

global issue due to their mutations, leaving our future unclear. The recent development 

of DNA- and mRNA-carrying vaccines [29–32] able to elicit antibody production against 

the SARS-CoV-2 infection has recently recalled enormous attention to the potential uses 

of nucleic acids and their analogs as innovative biomedical tools. The oligonucleotide bi-

otechnological use has been severely limited by their reduced half-life in the biological 
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environment and the difficulties related to their delivery to target cells. Thus, some potent 

nucleic acid analogs (NAA) [33–43] are currently being utilized in anti-COVID-19 strate-

gies because they allow one to overcome some of these limiting aspects by resorting to 

chemical modifications in the oligonucleotide and by using appropriate nanocarriers 

[44,45]. Like natural nucleic acids, NAAs can interact with complementary sequences of 

nucleic acid targets, forming stable complexes [46,47] and determining their loss of func-

tion [48]. For example, the binding of a peptide nucleic acid (PNA), locked nucleic acid 

(LNA), morpholino (PMO), or another synthetic analog [49] to the complementary nucleic 

acid target may determine (i) the inhibition of mRNA translation to the corresponding 

protein (antisense strategy), (ii) the blocking of gene transcription via specific binding 

with gene promoters (antigene strategy), and (iii) numerous biomolecular events ex-

ploited in several diagnostic applications [49]. An alternative strategy uses nucleic acids 

aptamers that, like the antibodies, bind to specific proteins to modulate their activity [50–

58]. In this regard, i-motif [59,60] and G-quadruplex forming oligonucleotides [61–63] are 

particularly relevant as their specific role as aptamers was explored in vitro and, in some 

cases, find applications in biomedical strategies [64–69]. Drug discovery campaigns 

against COVID-19 are targeting not only viral proteins (such as Mpro main protease [70,71]) 

but also the viral RNA genome [72], with particular attention paid to highly conserved 

and expression-relevant tracts [73] (Figure 1). 

This review will examine the recent literature on nucleic acid-based technologies in the 

COVID-19 era. We will focus on the main prophylactic, therapeutic and diagnostic DNA- and 

RNA-based tools currently under examination or in use in the fight against SARS-CoV-2. 

 

(a) 
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(b) 

Figure 1. (a) The 28-kDa highly conserved FSE (frameshift stimulation element, PDB ID: 6XRZ 

https://www.rcsb.org/3d-view/6XRZ/1 accessed on 4 February 2022) of the SARS-CoV-2 genome is 

an example of a potential candidate for targeting by small molecules and oligonucleotides as it is 

required for the balanced expression of SARS-CoV-2 proteins [73]. (b) An example of quadruple 

helical DNA (a monomeric parallel-stranded quadruplex in human VEGF promoter; PDB ID: 2M27 

https://www.rcsb.org/3d-view/2M27/0 accessed on 1 April 2022; left) with a schematic representa-

tion of a G4 quartet (middle); and a complex between a nucleic acid aptamer (RNA-aptamer K1; 

purple) with its protein target (Tetracycline repressor protein; PDB ID: 6SY4 

https://www.rcsb.org/3d-sequence/6SY4?assemblyId=1 accessed on 1 April 2022; right). 

2. DNA and RNA-Containing Vaccines in the Fight against COVID-19 

Antiviral vaccines can generally be classified into three categories: (live-attenuated 

or inactivated) virus-based, protein-based, and nucleic acid-based [74]. The first two ap-

proaches have been the conventional methods that rely on unharmful forms of the virus 

or proteins directly delivered as immunogens to induce the immune response in the host. 

On the other hand, nucleic acid-based vaccines are delivered via nucleic acid vectors to 

host cells, where DNA or RNA genes will be expressed in the host to produce correspond-

ing antigens that activate the adaptive and humoral immune response [74]. All three strat-

egies have been explored for COVID-19, but currently (as of 4 February 2022), only gene 

vaccines are available in Western countries, even though the protein-based NVX-CoV2373 

vaccine developed by the American Novavax should become available soon [75,76], and 

the inactivated whole virus vaccine VLA2001 from the French Valneva could be approved 

in the upcoming months [76]. One of the advantages of nucleic-acid-based vaccines is the 

easiness and relatively high rapidity of their manufacturing [74]. They can immediately 

be synthesized when the immunogen sequence is made available, and the process can be 

easily scalable. With respect to DNA-based vaccines, an mRNA vaccine expresses the an-

tigen protein directly via translation from the mRNA after its transfection [74]. These vac-

cines are believed to possess higher biosafety than DNA-based vaccines because the 

mRNA is less likely integrated into the genome than a DNA-based vaccine, as the trans-

lation of the antigens in the case of mRNA vaccines takes place in the cytoplasm and not 

in the nucleus, where the DNA vaccines start to work [77]. However, several studies sug-

gest that the risk of genomic integration, even if diminished compared to DNA vaccines, 

also remains for those based on mRNA, considering that eukaryotic cells may exert, to 

some extent, a reverse transcription activity [78–80] that could produce DNA theoretically 

starting from the vaccine-delivered mRNAs [81,82]. An advantage of nucleic acid-based 

vaccines over protein-based vaccines is that they may lead to antigens better mimicking 

the viral protein structure, including the post-translational modifications. In fact, while 

protein-based vaccines are often produced from bacteria, mRNA vaccines are translated 
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by the host translation machinery. Nonetheless, the novel NVX-CoV2373 vaccine was de-

veloped using insect cells that can perform most of the desired post-translational modifi-

cations. As for the storage and transportation, DNA and mRNA vaccines must be stored 

and transported at low or ultra-low temperatures [83], whereas inactivated virus- and 

protein-based vaccines [84] require less stringent conditions. However, innovative lipid 

nanoparticle technologies are significantly improving the stability characteristics of 

mRNA vaccines that may require less stringent conditions [83]. 

From a molecular perspective, one of the most reliable strategies to fight SARS-CoV-

2 consists of the administration of the nucleic information (DNA or RNA) that the host 

cellular machinery uses for the production of SARS-CoV-2 spike (S) protein, which has 

been generally used as the antigen of DNA vaccines used against COVID-19 (Table 1). 

Once produced in human cells, S protein may provoke the immune system to respond 

with cellular and humoral defenses, retaining the information in memory immune cells. 

In this way, the organism is prepared to counteract virus infection in the case of subse-

quent exposure to SARS-CoV-2. Generally, these prophylactic agents are administered in 

a two-dose immunization scheme, with both injections being administered intramuscu-

larly, often within a three-week interval. Interestingly, the nucleic acid-based vaccination 

is currently the most exploited anti-COVID-19 prophylaxis in the Western world, and here 

below, we will give some details on the currently most in-vogue vaccines belonging to 

this category of vaccines. 

Table 1. Some of the most used nucleic acid-based vaccines in Western countries. 

Vaccine Name Carried Nucleic Acid Developer Confirmed Efficacy 

ChAdOx1-S/AZD1222 DNA AstraZeneca + University of Oxford 63.1%, based on a median follow-up of 80 days 

Ad26.CoV2.S DNA Janssen Pharmaceuticals Johnson & Johnson 66.0%, 28 days post-vaccination  

BNT162/Comirnaty RNA Pfizer/BioNTech + Fosun Pharma  
95.0%, measured starting from seven days after the 

second dose 

mRNA-1273 RNA 
Moderna + National Institute of Allergy and 

Infectious Diseases (NIAID) 

94.1%, measured starting from two weeks after the 

second dose 

2.1. DNA-Carrying COVID-19 Vaccines 

They are often classified as “virally vectored vaccines” or “adenovirus vector vaccines” 

being based on vaccine vectors, but they should be more correctly denominated as adenovirus 

vector-based DNA vaccines to underline the nature of their cargo [76]. The most widely uti-

lized in Western countries, i.e., the ChAdOx1-S/AZD1222-Spike [85] vaccine developed by the 

University of Oxford in collaboration with AstraZeneca (Cambridge, UK) pharmaceutical 

company (Table 1), used a Chimpanzee non-replicating viral vector that contains synthetic 

DNA encoding the S protein of SARS-CoV-2. Thus, the ChAdOx1-S/AZD1222 expresses the S 

protein gene, which instructs the human cells to produce the protein, allowing the body to 

generate an effective immune response. Clinical trials showed efficacy in participants who re-

ceived two doses of the vaccine irrespective of the interval between the doses of about 63.1%, 

based on a median follow-up of 80 days or higher when this interval was longer [86]. The 

vaccine was manufactured by SK Bioscience Co. Ltd. (Pangyo-ro, Korea), under the name 

ChAdOx1-S, and the Serum Institute of India (Pune, India) named COVISHIELD [87]. Even 

though it is less common than the ChAdOx1-S/AZD1222, the Ad26.CoV2.S vaccine developed 

by Janssen Pharmaceuticals Johnson & Johnson (Beerse, Belgium) is worth mentioning. 

Ad26.CoV2.S is a non-replicating viral vector vaccine consisting of a human adenovirus vec-

tor, with a DNA genome, into which has been inserted the gene that encodes the S protein of 

SARS-CoV-2. The efficacy was 66.0% in phase-3 clinical trials (Table 1) [88]. 

2.2. RNA-Carrying COVID-19 Vaccines (mRNA Vaccines) 

The most currently used vaccine type in Europe and North America, these vaccines 

exploit mRNAs to instruct human cells to produce the S protein [74]. Since mRNA vac-

cines do not need to reach the cell nucleus like the DNA-based ones, they are of higher 
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practical significance. Although RNA is known to be a relatively unstable nucleic acid, 

novel vaccine nanotechnologies were developed to improve both mRNA stability and S 

protein translation efficiency, with consequent enhanced immune responses by the host 

cell. More in detail, lipid-nanoparticle encapsulation [89–92] of the vaccine is a strategy 

often used to optimize the delivery of the mRNAs for intradermal or intramuscular ad-

ministration [93]. The leading exponents of this family of anti-COVID-19 prophylactic 

agents are BNT162/Comirnaty and mRNA-1273 (Table 1) [94]. The former is a lipid-nano-

particle encapsulated mRNA-based vaccine developed by BioNTech (Mainz, Germany) 

and Pfizer (New York, NY, USA), partnered with Fosun Pharma (Shangai, China), which 

encodes the RBD (receptor-binding domain) domain of the SARS-CoV-2 S protein. 

BNT162, loaded into a patented lipid-nanoparticle composed of ionizable amino lipid, 

phospholipid, cholesterol, and a PEGylated lipid (at a ratio of 50:10:38.5:1.5 mol/mol,  

Figure 2) [95], uses a modified 4284 nucleotides long mRNA [96] and includes the T4 fi-

brin-derived trimerization domain, which serves to enhance the immune response [88]. 

On the other hand, mRNA-1273, developed by Moderna (Cambridge, MA, USA) in col-

laboration with the American National Institute of Allergy and Infectious Diseases 

(NIAID, Bethesda, MD, USA), is a vaccine based on a 4004 nucleotides long mRNA [97] 

expressing the full-length prefusion stabilized S protein of SARS-CoV-2. In mRNA-1273, 

the mRNA strand is encapsulated by two proprietary cationic lipidic nanoparticles 

(WO2017070626 and WO2018115527) whose composition was described as SM-102, poly-

ethylene glycol-2000-dimyristoyl glycerol (PEG2000-DMG), cholesterol, and 1,2-dis-

tearoyl-sn-glycero-3-phosphocholine (DSPC, Figure 2) [95]. 



Int. J. Mol. Sci. 2022, 23, 4359 6 of 18 
 

 

 

Figure 2. Chemical representations of some typical components of lipid nanoparticles as well as 

specific components of the Moderna vaccine. DPPC: dipalmitoylphosphatidylcholine; DSPC: dis-

tearoylphosphatidylcholine. 

As for dosages/schedule, routes of administration, and efficacies, two intramuscular 

doses are needed for both mRNA vaccines, 21 days apart (30 μg per dose) for BNT162/Co-

mirnaty and 28 days apart (100 μg per dose) in the case of mRNA-1273. The confirmed 

efficacy of the BNT162/Comirnaty vaccine is 95.0% (measured starting from seven days 

after the second dose), while that of mRNA-1273 is 94.1% (measured starting from two 

weeks after the second dose) (Table 1) [98].  
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2.3. Chemical and Nanotechnological Optimization of mRNA Vaccine Design 

Though exempt from any risks of genomic integration [77], the typical vaccine devel-

opment using viruses or protein-based systems involves time-consuming steps that ap-

pear impractical for responding rapidly to any pandemic caused by newly emerging path-

ogens. As explained above, nucleic acid-based vaccines possess distinctive advantages of 

rapid development and versatility that led to the development of multiple COVID-19 

DNA and mRNA vaccines. Among these, mRNA vaccines seem to have higher protective 

efficacy than DNA vaccines, but special strategies are needed to guarantee their safety, 

stability, and consequent efficacy due to some intrinsic RNA molecular features. In fact, 

RNA is particularly prone to enzymatic degradation by the RNases present in the plasma 

and serum. Moreover, RNA molecules in mRNA vaccines, being exogenous molecules, 

are seen by the human cellular machinery as an immunological mimic of viral infection, 

which provokes an immediate immune response by host cells. Hence, the importance of 

nanotechnologies aimed at maximizing the stability of RNA in mRNA vaccines and lim-

iting the innate immune response in the host [99,100]. 

Endogenously, mRNAs undergo post-transcriptional modifications, such as 5’-cap-

ping [101] and polyadenylation [102,103], needed for mRNA stabilization (protecting 

mRNA from exonuclease activity) and efficient translation (facilitating pre-mRNA splic-

ing and serving as the binding site for the translation initiation complex). 5′-capping in-

cludes the addition of 7-methylguanosine (m7G) at the 5′ end of the first ribonucleotide of 

mRNA molecules via a 5’ to 5’ linkage and the methylation of the 2’-OH of the ribose 

moiety of the same ribonucleotide to form m7GpppNm (Figure 3a). Interestingly, the host 

can discriminate between the self versus the exogenous mRNA thanks to the presence of 

the 5’-cap. The last observation explains why adding an m7GpppNm cap to the 5’-end of 

mRNA vaccines’ RNA strand is a highly desirable mRNA modification [101]. The poly-

adenylation (i.e., the addition of a poly rA tail at the 3′-OH of pre-mRNA) is another factor 

that stabilizes mRNA and promotes protein translation [102,103], as the length of the 

poly(A) tail is closely associated with the translation efficiency. However, the information 

on the nature of the poly(A) signal sequence was reported only in the case of the 

BNT162/Comirnaty vaccine [poly rA tail: A30(GCATATGACT)A70], whereas it remains 

proprietary and undisclosed for the Moderna’s counterpart [96]. 
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Figure 3. Schematic representation of some typical modifications of synthetic mRNAs contained in 

the COVID-19 vaccines: (a) 5′ capping via cap1 structure (m7GpppNm); (b) uridines are replaced 

with pseudouridine or 1-methyl pseudouridine units. 

Nucleoside modifications and, especially, the incorporation of pseudouridine (Figure 

3b) into mRNA molecules may suppress the immune response by evading the activation 

of TLR-3, -7, and -8. Consequently, in the BNT162/Comirnaty vaccine, uridine residues 

were replaced by 1-methyl pseudouridine modification to reduce the innate immune re-

sponse and enhance the stability of the exogenous mRNA [104]. 

Many liposome-based transfection reagents based on cationic lipids have been for-

mulated to improve the transfection efficiency of mRNAs, which is generally low in the 

case of naked oligoribonucleotides [105]. Generally, the lipid components of mRNA vac-

cines are proprietary and include different cationic polypeptides, positively charged li-

pids, polymers, dendrimers, or micelles [106]. Lipid nanoparticles encapsulate their 

mRNA cargo into the stable lipid bilayer, which is internalized by recipient cells via en-

docytosis. More in detail, after the injection, the mRNA-lipid nanoparticle complexes en-

ter muscle cells via endocytosis pathways, and then the translation of the mRNA leads to 

translates forming a metastable trimeric prefusion spike protein. Blood vessels adjacent to 

the muscles are then believed to recruit infiltrating antigen-presenting cells [107].  

2.4. Nanotechnologies in the Development of Potential COVID-19 Vaccines 

Coronaviruses are nanoscale biostructures against which nanotechnology can be ex-

ploited to realize vaccines and immune engineering applications [108]. Live attenuated 

and inactivated vaccines, viral vectors, and mRNA-lipid nanoparticles [109,110]  

(Figure 4a) constitute examples of nano-biotechnological products so efficient against 

SARS-CoV-2. The use of nanomaterials as carriers of antigens or prophylactic mRNAs and 

DNAs is a recent biotechnological approach that proved successful in COVID-19 vaccine 

design technology. In a nanotechnological vaccine, antigens and nanoparticles mutually 

interact by adsorption, entrapment, and conjugation. As for the materials constituting the 
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nanoparticles, liposomes, nanopolymers, quantum dots, and inorganic nanoparticles are 

conventional vehicles for subunit vaccines and nucleic acids [111]. Several types of lipids 

are also used, including cholesterol and ionizable lipids, which, being cationic, interact 

with the negatively charged RNAs. 

Moreover, the conjugation of lipids to polyethylene glycol chains (Figure 4a, green) 

proved effective in shielding the mRNA cargo from the host immune system, thus pro-

longing a vaccine’s lifetime following intramuscular injection. Protein nanoparticles were 

also proposed in the realization of vaccines against SARS-CoV-2 (Figure 4b) [112]. The 

vaccine strategy, in this case, was based on the display of the S protein receptor-binding 

domain (RBD) on a synthetic virus-like particle platform, SpyCatcher003-mi3, using 

SpyTag/SpyCatcher technology [112]. 

  

(a) (b) 

Figure 4. Structures of nanoparticles used for COVID-19 vaccine candidates: (a) mRNA vaccines 

realized for the COVID-19 pandemic are composed of long strands of RNAs (magenta) that encode 

the SARS-CoV-2 S protein enclosed in lipids (cyan), connected with lipids conjugated to polyeth-

ylene glycol (PEG) chains (green), that deliver the RNA cargo into recipient cells. In the idealized 

illustration by David S. Goodsell, RCSB Protein Data Bank [113], the lipids are arranged in a simpli-

fied model of a circular bilayer surrounding the mRNAs, and the PEG chains are endowed with 

both folded and extended conformations. Note how the real structure may be less regular, as sug-

gested in the literature [110]. (b) An example of protein nanoparticle-based vaccine proposed 

against SARS-CoV-2. It displays the S glycoprotein receptor-binding domain (RBD) on a synthetic 

virus-like particle platform, SpyCatcher003-mi3, and uses SpyTag/SpyCatcher technology [112] 

(https://www.rcsb.org/structure/7B3Y accessed on 4 February 2022). 

3. DNA and RNA Targeting in the COVID-19 Era 

3.1. RNA Targeting in the Diagnostics of COVID-19 

Rapid screening of infected individuals from a large population is important in epi-

demiology, especially in controlling the spread of COVID-19 infections [114]. The reverse 

transcription polymerase chain reaction (RT-PCR) assay is the diagnostic standard for 

COVID-19. In contrast, rapid antigen tests based on lateral immunochromatography and 

using different matrices, including direct culture supernatants and dry swabs [115], could 

be used as point-of-care detection of SARS-CoV-2 antigens with several advantages over 

the RT-PCR assays including shorter turn-around times and lower costs [114]. However, 

their sensitivity in detecting the SARS-CoV-2 virus remains lower than RT-PCR (0.68 com-

pared to RT-PCR), especially in low viral loads. Even though RT-PCR tests remain the 

gold standard for population-wide screening of COVID-19 and other epidemics, signifi-

cant limitations prevent the large scale application of this technology, which include the 

significantly higher costs and longer turnaround times due to time-consuming nucleic 
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acid extraction and amplification steps, and the required equipment for testing [114]. An 

RNA targeting strategy was thus ideated based on a direct nucleic acid assay that used a 

graphene field-effect transistor (g-FET) and Y-shaped DNA dual probes [116]. The 

method relied on Y-dual probes modified on g-FET simultaneously targeting nucleocap-

sid (N) and viral replicate polyprotein open reading frame (ORF1ab) genes of the SARS-

CoV-2 RNA genome. Interestingly, the assay was associated with a high recognition ratio 

and a limit of detection one-two order of magnitude lower than other nucleic acid assays 

(0.03 copy μL–1). Another advantage of this RNA-targeting DNA-based assay was the ra-

pidity of the nucleic acid testing (~1 min) compared to the longer times (up to 4 h) required 

by the other nucleic acid tests, along with the ultrasensitivity, easiness in operating fea-

tures as well as capability in pooled testing [116]. 

3.2. COVID-19 Antisense Strategies 

The outbreak of SARS in 2003 (caused by SARS-CoV-1) and the COVID-19 pandemic 

sixteen years later showed the world our vulnerability to coronavirus infections [117]. Given 

that periodic outbreaks of similar pandemics could occur in the future, the scientific com-

munity and pharmaceutical companies should be prepared to fast-track the production of 

vaccines and antiviral oligonucleotides acting as RNA-targeting therapeutics in antisense 

strategies directed against coronaviruses. More specifically, oligonucleotides and NAAs can 

target the SARS-CoV-2 RNA genome and regulatory RNA sequences, disrupt RNA second-

ary structures or host protein/virus RNA complexes, and provoke steric blocks (Table 2). 

The first antisense oligonucleotides reported against SARS-CoV-1, whose genome is closely 

related to SARS-CoV-2, targeted the ORF1a gene and the transcription regulatory RNA se-

quence located in the 5′-UTR region of the positive-sense RNA genome of SARS-CoV-2 

[118]. These antisense oligonucleotides (antisense morpholino oligomers and peptide-con-

jugated antisense morpholino oligomers [P-PMOs], Figure 5) were endowed with high an-

tiviral activity in vitro, revealing the potential capacity of the antisense nucleic acid analogs 

(NAA) for antiviral treatment against SARS-CoV-1 and, potentially, SARS-CoV-2. This 

work acted as a proof of concept for the efficiency of RNA-targeting NAAs as an antiviral 

treatment in the context of human coronavirus infections [118]. 

Table 2. Some of the most used nucleic acid analogs (NAA) and their main anti-SARS-CoV-2 appli-

cations. 

NAA Full Name Properties Reference 

PMO/P-PMO Morpholino/peptide-morpholino 
Targeting RNA genome/regulatory sequences/very 

high nuclease stability 
[118] 

LNA Locked nucleic acid 
Disrupting RNA secondary structure/provoking ste-

ric blocks/very high nuclease stability 
[119,120] 

2’-MOE 2′-Methyl O-esters 

Disrupting interactions between host proteins and 

SARS-CoV-2 RNA/provoking steric blocks/high nu-

clease stability 

[121] 

PS Phosphorothioates 

Disrupting interactions between host proteins and 

SARS-CoV-2 RNA/provoking steric blocks/high nu-

clease stability 

[121] 
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Figure 5. Structures of nucleic acid analog [PMO (morpholino), P-PMO (peptide-morpholino), LNA 

(locked nucleic acid)] moieties and modifications of the nucleic acid backbone [PS (phosphorothio-

ate), 2′-MOE (2′-methyl O-ester)] employed in the antisense strategies against SARS-CoV-2. 

Notably, the SARS-CoV-2 genome can be targeted at any step of its life cycle by anti-

sense oligonucleotides that allow for targeting any of the conserved sequences of both 

positive and negative RNA. Regarding the structure of the SARS-CoV-2 genome, whose 

knowledge is necessary for developing specific antisense oligonucleotides, it consists of a 

single-stranded RNA of ca. 30,000 nucleotides capped at the 5′ end and endowed with a 

3′ poly rA-tail, as well as two short UTR-sequences [118]. SARS-CoV-2 RNA genome en-

codes 14 ORFs, of which ORF1a and ORF1b, at the 5′ end, encode the replicase polyprotein 

comprising ~2/3 of the entire genome. In addition to these nonstructural proteins, the re-

maining genome contains nine small ORFs encoding structural proteins such as nucle-

ocapsid (N), envelope (E), spike (S), membrane (M), and others with accessory roles. 

SARS-CoV-2 RNAs include both subgenomic and genomic entities, with the first RNA 

tracts being translated into structural proteins and others with accessory roles. 

On the other hand, genomic RNA is involved in replicating viral RNA before its in-

corporation into virions. In principle, any sequence of SARS-CoV-2 RNA genome is a po-

tential target of antisense oligonucleotides, but genomic RNAs and replication steps are 

especially recommended for antisense strategies as targeting subgenomic entities is asso-

ciated with lower antiviral efficacies [118]. After infection, SARS-CoV-2 replicates its ge-

nome inside the human cell using enzymes for replication encoded by the coronavirus 

itself. More in detail, the 5′ cap, and 3′ poly rA tail modifications allow direct translation 

of the nonstructural proteins encoded by genes ORF1a and ORF1b. Afterward, the assem-

bly of the replicase-transcriptase complex (RTC) occurs, leading to the replication of the 

RNA genome alongside the discontinuous subgenomic mRNA transcription, mediated by 

short AU-rich transcription regulatory sequences, whose resulting subgenomic RNAs are 

further translated into the structural proteins and the others with various accessory roles. 

Huston et al. [119] applied a novel long amplicon strategy to resolve the secondary RNA 

structure of the coronavirus genome in infected cells, which revealed an elaborate SARS-
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CoV-2 genome architecture that included well-folded RNA regions, some of which were 

unique while others were conserved across beta-coronaviruses. They developed antisense 

oligonucleotides containing LNA (Figure 5) moieties as steric blockers and tested them in 

targeting two putative RNA regions within the SARS-CoV-2 genome [119]. The two oli-

gonucleotides contained three consecutive LNAs at their 5′ and 3′ termini, whereas un-

modified consecutive nucleotides within the strands were limited to three to prevent 

RNase-dependent activation. These NAA-based antisense strategies significantly inhib-

ited the growth of SARS-CoV-2, demonstrating that the two targeted secondary RNA 

structures are critical for the life cycle of the coronavirus and that these LNA-containing 

antisense oligonucleotides disclose potential as anti-COVID-19 therapeutics [119]. 

Further investigations used antisense oligonucleotides carrying 2′-O-methoxyethyl 

(2’-MOE, Figure 5) and phosphorothioate (PS, Figure 5) backbone modifications as steric 

blockers to disrupt interactions between the host RNA binding proteins and SARS-CoV-

2 RNA thanks to their enhanced steric blocking activity [121]. Moreover, RNase H-de-

pendent antisense oligonucleotides, carrying LNA tracts at both ends, were used to target 

the SARS-CoV-2 stem-loop 2 motif (s2m) in the 3′-UTR of the cytosolic positive-sense RNA 

strand [120]. In addition to the terminal LNA tracts, the antisense oligonucleotides carried 

long stretches of unlocked ribonucleotides that ensured RNase H recruitment and, there-

fore, viral RNA cleavage. Interestingly, as RNase H is responsible for the cleavage of the 

targeted RNA in the duplexes formed by RNA and the antisense oligonucleotide, this lat-

ter remains intact and free to bind to other RNAs, while the SARS-CoV-2 RNA is cleaved 

in a sequence-specific manner, which led to inhibition of the replication of SARS-CoV-2 

in infected cells [120]. Overall, these anti-COVID-19 RNA-targeting strategies seem to be 

promising, especially in view of targeting conserved RNA tracts in different variants of 

SARS-CoV-2 and other human coronaviruses. However, these approaches still need fur-

ther research supporting their translation into clinics. 

3.3. Aptamers and G-Quadruplex Structures for the Detection of SARS-CoV-2 

While most anti-COVID-19 strategies were designed to target essential proteins 

within the SARS-CoV-2 genome, targeting RNA structural elements is also of crucial im-

portance especially using the class of oligonucleotide aptamers [122]. This family is com-

posed of oligonucleotides of different nature that, similarly to antibodies, recognize spe-

cific three-dimensional structures acting as “chemical antibodies” [123]. Thanks to oligo-

nucleotide aptamers’ high affinity and specificity for their targets, they offer unique chem-

ical and biological characteristics rendering them particularly suitable for novel biomedi-

cal applications, including in vitro diagnosis, biomarkers discovery, in vivo imaging, and 

therapy [123]. The highly conserved RNA structure within the s2m motif of SARS-CoV-2 

was targeted by high-affinity L-DNA aptamers [124] to evaluate their therapeutic and di-

agnostic potential. Optimized L-DNA aptamers were found to bind selectively to s2m 

with affinities in the nanomolar range and proved capable of discriminating between the 

monomeric s2m stem-loop and the homodimer duplex. The L-DNA mode of recognition 

is highly structure-specific, allowing to differentiate s2m RNAs from different but closely 

related human coronaviruses, such as SARS-CoV-1 and SARS-CoV-2, differing by only 

two ribonucleotides. In addition, L-DNA aptamers induce significant conformational 

changes in s2m RNA structure upon their molecular recognition, with a potential role in 

disrupting or preventing protein–s2m binding [124]. 

G-quadruplex (G4) DNA or RNA is a non-canonical secondary structure resulting 

from assembling one, two, or four guanine-rich nucleic acids strands into a quadruple 

helix structure stabilized by coordination with suitable monovalent cations [125]. G4 

structure and function are determined by factors such as the number and polarity of nu-

cleotide strands, the type of metal ions, as well as the structural properties of their binding 

targets [125]. Targeting of the G4-folded SARS-CoV-2 RNA genome by specific aptamers 

appears to be a promising alternative method for SARS-CoV-2 detection [126]. In addition 

to their importance as aptamer targets, G4-forming oligonucleotides can also be used to 
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realize G4 aptamer-based biosensors to detect SARS-CoV-2 surface proteins. Indeed, G4-

based biosensors represent a valuable alternative to antibody-based detection of SARS-

CoV-2 and other pathogens [126]. 

The use of aptamers for targeting SARS-CoV-2 RNA genomic tracts in COVID-19 

therapy and diagnostic approaches based on the recognition of virus proteins are 

promising strategies thanks to the intrinsic specificity guaranteed by the aptamer 

technology. Nevertheless, the utility of these approaches is still to be evaluated in 

prospective clinical and diagnostic studies. 

4. Conclusions 

The outbreak of the COVID-19 pandemic showed our vulnerability to coronavirus 

infections, and given that other pandemics could attack humanity after the current crisis, 

the scientific community, together with pharmaceutical companies, should be prepared 

to fast-track the production not only of vaccines, but also of nucleic acid-based antisense 

tools and aptamers acting as RNA-targeting therapeutics against coronaviruses. Overall, 

the herein summarized applications of nucleic acids, and especially RNAs and NAAs, in 

the context of the fight against SARS-CoV-2 demonstrate the feasibility of using nucleic 

acids for mass immunization when the urgency of counteracting the virus spread does 

not allow waiting for the development of long-established live attenuated and inactivated 

virus- and protein-based vaccines. Additionally, the above literature reports show the im-

portance of targeting SARS-CoV-2 RNA using antisense oligonucleotides and aptamers, 

which has important implications in diagnosing and treating the infectious disease caused 

by SARS-CoV-2. Remarkably, the high affinity and selectivity of oligonucleotide antisense 

devices and aptamers, coupled with the intrinsic nuclease resistance of NAA that can be 

easily introduced in their structures, enable novel opportunities for generating new tools 

and probes for interrogating RNA function in SARS-CoV-2 and related coronaviruses. 
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