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Abstract: Protein phosphorylation is one of the most critical post-translational modifications of
proteins in eukaryotes, which is essential for a variety of biological processes. Plenty of attempts
have been made to improve the performance of computational predictors for phosphorylation site
prediction. However, most of them are based on extra domain knowledge or feature selection. In this
article, we present a novel deep learning-based predictor, named TransPhos, which is constructed
using a transformer encoder and densely connected convolutional neural network blocks, for pre-
dicting phosphorylation sites. Data experiments are conducted on the datasets of PPA (version 3.0)
and Phospho. ELM. The experimental results show that our TransPhos performs better than several
deep learning models, including Convolutional Neural Networks (CNN), Long-term and short-term
memory networks (LSTM), Recurrent neural networks (RNN) and Fully connected neural networks
(FCNN), and some state-of-the-art deep learning-based prediction tools, including GPS2.1, NetPhos,
PPRED, Musite, PhosphoSVM, SKIPHOS, and DeepPhos. Our model achieves a good performance on
the training datasets of Serine (S), Threonine (T), and Tyrosine (Y), with AUC values of 0.8579, 0.8335,
and 0.6953 using 10-fold cross-validation tests, respectively, and demonstrates that the presented
TransPhos tool considerably outperforms competing predictors in general protein phosphorylation
site prediction.

Keywords: phosphorylation site prediction; transformer; post-translational modifications

1. Introduction

Post-translational modifications (PTMs) are biochemical processes of proteins that
take place post-translationally and are key mechanisms for regulating cellular function
through covalent and general enzymatic modifications. PTMs are critical in regulating many
biochemical reactions, such as protein synthesis, protein stability, and regulation of enzyme
activity [1]. Protein phosphorylation is an important mechanism that regulates the activity
of biological enzymes and is a very frequent type of PTMs [2]. Protein phosphorylation
has important functions, especially in both prokaryotes and eukaryotes [3], which regulate
many cellular processes, such as cell cycle regulation [4,5], protein–protein interaction [6],
signal recognition [7], and DNA recovery [8]. More than a quarter of cellular proteins in
eukaryotes are phosphorylated and modified, and more than half of them are responsible
for various human diseases, especially near-reproductive diseases [9] and cancer [10]. It
was found in recent research that protein phosphorylation is vital to understanding the
signal regulation mechanism in cells and helping to develop new approaches to treat
diseases caused by signal irregularity, such as cancer [11,12].

The prediction of phosphorylation sites is vital to the molecular mechanisms of biolog-
ical processes associated with phosphorylation, which is of great help to disease-related
research and drug design [13–15]. Experimental detection of protein phosphorylation

Int. J. Mol. Sci. 2022, 23, 4263. https://doi.org/10.3390/ijms23084263 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23084263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2741-433X
https://orcid.org/0000-0002-7652-4375
https://orcid.org/0000-0001-5696-3090
https://doi.org/10.3390/ijms23084263
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23084263?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 4263 2 of 17

sites is constantly advancing, with the earliest use of Edman degradation, followed by the
development of mass spectrometry, which nowadays, in combination with Edman degra-
dation, has become an effective tool for phosphoamine acid residue mapping in protein
sequencing. Several traditional experimental methods have been adopted to identify phos-
phorylation sites, such as high-throughput mass spectrometry [16] and low-throughput
32P labeling [17,18].

Despite the unusually rapid development of proteomic technologies, comprehensive
and exhaustive analysis of phosphorylated proteins remains difficult. Phosphorylation of
proteins is an instable and dynamic process in the body, and there is a low abundance of
phosphorylated proteins within the cell. The phosphate groups of phosphorylated proteins
are easily lost during the isolation process and are difficult to protonate because of their
electronegativity. Computational biology approaches have therefore become necessary
and popular to handle the difficulties of experimental approaches for phosphorylation
site prediction.

Until now, more than 50 calculation methods for predicting phosphorylation sites
have been proposed, a large number of which are based on machine learning approaches,
such as Bayesian decision theory [19], support vector machines [20,21], random forests [22],
and logistic regression [10]. For instance, Gao et al. [23] proposed a novel method called
Musite by using local amino acid sequence frequencies, k-nearest neighbor features, and
protein disorder scores to improve the prediction accuracy. Dou et al. [21] proposed an
algorithm called PhosphoSVM, which combines several protein sequence properties with
support vector machines to forecast phosphorylation sites.

These calculation methodologies and tools have facilitated the comprehension of phos-
phorylation and effectively improved performance. Most of them use multiple sequence-
based features for multi-stage classification, such as physicochemical properties, protein
disorder, and other areas of knowledge. In general, the use of extra tools may abstract
redundancy features abstract, which is useful for the final prediction [22,24]. It needs to
select some effective features. These selected features are applied to the machine learn-
ing algorithm for discriminative classification. So, end-to-end deep learning has made
important breakthroughs in many fields, such as the transformer model in the field of
machine translation [25]. The residual network effectively solves the problem of gradient
disappearance in the training process of deep learning [26]. This makes it possible to train
a deep learning classification model, which is used to predict protein phosphorylation
sites. In a previous study, Luo et al. [27] proposed a tool named DeepPhos to predict
phosphorylation sites.

In this study, a novel two-stage deep learning model, named TransPhos, is proposed to
improve both the accuracy and Matthews correlation coefficient (MCC) of general protein
phosphorylation prediction. In TransPhos, three encoders with the same structure and
different window sizes based on the attention mechanism are designed. Instead of using
any amino acid coding, we use the embedded layer to automatically learn an amino acid
coding representation and then use multiple stacked encode layers to learn the vector
representation of each amino acid. Each encode layer has the same structure as the encoder
proposed by Vaswani et al. [25], but some parameters are modified.

Two densely connected convolution neural network (DC-CNN) blocks that have the
same window size are developed as the encoder. DC-CNN blocks with different window
sizes and convolutional kernels can automatically learn the sequence features of protein
phosphorylation sites. These features are concatenated into an intra-block connectivity layer
(Inter-BCL) to further integrate the acquired information and finally provide predictions
using the softmax function. To estimate the capabilities of TransPhos, we extracted many
validated phosphorylation samples from two databases [28–30]. To verify the generalization
of our model, the dataset Phospho. ELM was used as a training set and verification set, and
the dataset from the PPA database was selected to test the performance. The experimental
results demonstrated that TransPhos is superior to the existing general phosphorylation
prediction methods in terms of AUC and MCC; compared with deep learning models,
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including CNN, LSTM, RNN, and FCNN; and some state-of-the-art deep learning-based
prediction tools, including GPS2.1, NetPhos, PPRED, Musite, PhosphoSVM, SKIPHOS,
and DeepPhos.

2. Results

TransPhos is a deep learning model that was developed to predict general phosphory-
lation sites. In this section, our model is compared with traditional deep learning models
and other predictors. The results of the comparison with traditional deep learning models
are described in Section 2.1, and the results of the comparison with other predictors are
described in Section 2.2. It should be specified that the results on the training set were
derived from 10-fold cross-validation. We performed significance F-tests on the prediction
results of all models to demonstrate that our model predictions were significantly different
from the other predictors, as described in Section 2.3.

2.1. Comparison with Different Deep Learning Models

We first compared TransPhos with several other deep learning models on the vali-
dation and test sets, including CNN, LSTM, RNN, and FCNN. The ROC curve is a very
good tool to visualize the classification results, and the ROC curves on the S sites, when
compared with the deep learning model on the training set, are shown in Figure 1. The
ROC curves on the T sites and Y sites are shown in Figures A1 and A2. Overall, our model
achieved the highest Area Under Curve (AUC) values and exhibited a good performance.
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Figure 1. ROC curves containing 95% confidence intervals for different deep learning models on the
S sites of the training dataset P.ELM, 10-fold cross validation was used. Area Under Curve (AUC) is
defined as the area under the ROC curve to measure the performance of the model. (a) ROC curve
of the TransPhos model; (b) ROC curve of the Convolution neural network (CNN) model. (c) ROC
curve of the Long and short term memory network (LSTM) model. (d) ROC curve of the Recurrent
Neural Networks (RNN) model. (e) ROC curve of the Fully connected neural networks (FCNN)
model. (f) Performance comparison on the S sites of the P.ELM dataset.
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Table 1 shows the details of the training set, where we used 10-fold cross-validation
to select the optimal hyperparameters to avoid overfitting and to obtain enough feature
information from the only available data. On the S sites, our model obtained the highest
AUC value of 85.79%, which was 4.23, 1.79, 3.13, and 2.9% higher than CNN, LSTM, RNN,
and FCNN, respectively. Besides the AUC values, we also calculated Accuracy (Acc),
Sensitivity (Sn), Specificity (Sp), Precision (Pre), F1 Score (F1), and Matthews correlation
coefficient (MCC) to measure the capabilities of our model. The calculation of these
evaluation matrices is presented in Section 4.5. On the S sites, our model obtained the
highest AUC values and the other metrics Acc, Sn, Pre, F1, and MCC were 78.18, 80.56,
76.83, 78.65%, and 0.564, respectively, which showed good performance. The Sp metric
was only 1.36% lower than the best model FCNN. On the T sites, our model only showed
the highest AUC and Sn metrics of 83.35 and 76.54%, respectively. The other metrics were
slightly lower than the best model LSTM at this site. For the Y sites, our model showed the
highest AUC value, F1 score, and MCC value. We used the PPA dataset as an independent
test set to measure the performance of our model, and Table 2 shows the detailed results of
the tests. The performance of our model was also very good on the T sites, with the highest
AUC values and Acc and MCC, while the other metrics Sn, Sp, Pre, and F1 scores were 1.25,
3.21, 0.49, and 0.28% worse than the best results, respectively.

Table 1. Performance comparison of various deep learning models on the training dataset P.ELM,
ten-fold cross validation was used.

Methods Residue = S

AUC (%) Acc (%) Sn (%) Sp (%) Pre (%) F1 (%) MCC

TransPhos 85.79 78.18 80.56 75.80 76.83 78.65 0.564
CNN 81.56 74.96 77.12 72.80 73.85 75.45 0.500
LSTM 84.20 76.99 79.61 74.37 75.57 77.54 0.541
RNN 82.66 75.18 75.39 74.97 75.00 75.20 0.504

FCNN 82.89 75.05 72.93 77.16 76.08 74.47 0.501

Methods Residue = T

AUC Acc Sn (%) Sp (%) Pre (%) F1 (%) MCC

TransPhos 83.35 75.59 76.54 74.70 74.12 75.31 0.512
CNN 81.99 75.50 74.82 76.16 74.82 74.82 0.510
LSTM 83.91 76.87 76.09 77.62 76.30 76.19 0.537
RNN 79.89 71.72 76.18 67.50 68.93 72.38 0.438

FCNN 80.00 73.48 73.46 73.50 72.41 72.93 0.469

Methods Residue = Y

AUC Acc Sn (%) Sp (%) Pre (%) F1 (%) MCC

TransPhos 69.53 63.62 61.99 65.11 61.99 69.06 0.449
CNN 67.40 64.43 56.17 72.00 64.80 60.18 0.286
LSTM 68.71 63.73 66.10 61.56 61.21 63.56 0.276
RNN 67.84 62.22 75.79 49.78 58.07 65.76 0.264

FCNN 69.55 64.31 61.02 67.33 63.16 62.07 0.284

Accuracy (Acc), Sensitivity (Sn), Specificity (Sp), Precision (Pre), F1 Score (F1) and Matthews correlation coefficient
(MCC) were calculated to measure the performance of models. Data in bold indicates that the model performs
best for that evaluation metric.

Overall, our model performed best on the S sites and slightly worse on the T and Y
sites, which may be due to the difficulty of training too many parameters in the encoder
part and the poorer performance on smaller datasets. Other models also performed well on
only one of the sites, so it can be assumed that our model performs better.

2.2. Comparison with Existing Phosphorylation Site Prediction Tools

Independent test datasets were collected from the PPA database in this study to
measure the performance of the model. In this subsection, our model is compared with



Int. J. Mol. Sci. 2022, 23, 4263 5 of 17

some other existing prediction tools, and the model parameters of all these predictors were
obtained by 10-fold cross-validation on our training dataset P.ELM with their training
strategies, facilitating a fair comparison. The left half of Table 3 shows the results of the
10-fold cross-validation, and the right half shows the results on the independent test set.
We calculated the Sn, Sp, MCC, and AUC values to measure the model’s performance.
Many well-known prediction tools were compared, including GPS2.1 [31], NetPhos [32],
PPRED [33], Musite [23], PhosphoSVM [21], SKIPHOS [34], and DeepPhos [27]. The results
showed that our model outperformed all other models for the S and T sites. For example,
on the S sites, our model achieved the highest AUC values of 0.787 and 0.670 at GPS2.1,
0.643 at NetPhos, 0.676 at PPRED, 0.726 at Musite, 0.776 at PhosphoSVM, 0.691 at SKIPHOS,
and 0.775 at DeepPhos.

Table 2. Performance comparison of various deep learning models on the training dataset P.ELM,
10-fold cross validation was used.

Methods Residue = S

AUC (%) Acc (%) Sn (%) Sp (%) Pre (%) F1 (%) MCC

TransPhos 78.67 71.53 67.16 75.89 73.59 70.23 0.432
CNN 74.34 68.40 61.14 75.65 71.52 65.93 0.372
LSTM 77.04 70.48 65.01 75.95 72.99 68.77 0.412
RNN 75.53 68.84 61.44 76.24 72.11 66.35 0.381

FCNN 75.30 69.14 60.68 77.61 73.04 66.29 0.388

Methods Residue = T

AUC Acc Sn (%) Sp (%) Pre (%) F1 (%) MCC

TransPhos 67.19 61.77 47.32 76.22 66.56 55.32 0.246
CNN 64.44 59.19 42.03 76.34 63.98 50.74 0.196
LSTM 66.59 60.64 41.85 79.43 67.05 51.54 0.230
RNN 66.03 61.21 48.57 73.84 65.00 55.60 0.232

FCNN 63.94 59.63 45.30 73.96 63.50 52.88 0.201

Methods Residue = Y

AUC Acc Sn (%) Sp (%) Pre (%) F1 (%) MCC

TransPhos 60.09 55.41 38.52 72.30 58.17 46.35 0.115
CNN 59.11 54.59 34.81 74.37 57.60 43.40 0.100
LSTM 59.49 55.56 40.74 70.37 57.89 47.83 0.116
RNN 61.71 59.48 58.96 60.00 59.58 59.27 0.190

FCNN 59.30 56.44 43.26 69.63 58.75 49.83 0.134

Accuracy (Acc), Sensitivity (Sn), Specificity (Sp), Precision (Pre), F1 Score (F1) and Matthews correlation coefficient
(MCC) were calculated to measure the performance of models. Data in bold indicates that the model performs
best for that evaluation metric.

On the T sites, our model achieved the highest MCC value of 0.246 while the AUC
value was only 0.002 lower than the optimal result. Our model did not perform the best on
the Y sites, with SKIPHOS achieving the highest MCC and AUC values.

2.3. Significance Test of the Results

Regarding the results, most of the indicators of our model, such as ACC and MCC,
performed better than other well-known predictors. However, many indicators were not as
good as other predictor models. The significance F-test was used to demonstrate that our
prediction results were significantly different from other forecasting models [35]. Usually, a
p-value of less than 0.05 in the F-test indicates that the 2 statistical variables are significantly
different [36]. As shown in Figure 2, we plotted the results of the statistical tests as a heat
map, and the values in each box represent the corresponding p-values. The results of the
significance test show that our model was significantly different from the predictions of
most other models.
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Table 3. Performance comparison with other predictors on training and independent datasets.

Residue Methods
10-Fold Cross-Validation Test (P.ELM) Independent Dataset Test (PPA)

Sn Sp MCC AUC Sn Sp MCC AUC

S

GPS 2.1 33.07 93.29 0.201 0.741 22.20 95.26 0.135 0.670
NetPhos 34.14 86.73 0.123 0.702 28.55 87.23 0.081 0.643
PPRED 32.27 91.64 0.169 0.751 21.32 94.00 0.107 0.676
Musite 41.37 93.66 0.249 0.807 28.60 95.21 0.182 0.726

PhosphoSVM 44.43 94.04 0.298 0.841 34.01 95.90 0.237 0.776
SKIPHOS 78.50 74.90 0.521 0.845 46.20 68.60 0.265 0.691
DeepPhos 81.81 75.30 0.572 0.859 66.43 75.89 0.425 0.775
TransPhos 80.56 75.80 0.564 0.858 67.16 75.89 0.432 0.787

T

GPS 2.1 38.10 92.30 0.201 0.695 13.48 94.51 0.067 0.572
NetPhos 34.32 83.65 0.090 0.655 27.02 80.66 0.038 0.554
PPRED 30.31 90.99 0.134 0.726 26.43 83.51 0.052 0.578
Musite 33.84 94.76 0.221 0.785 15.56 95.36 0.098 0.622

PhosphoSVM 37.31 94.99 0.251 0.818 21.79 93.41 0.115 0.665
SKIPHOS 74.40 78.80 0.547 0.844 65.80 58.60 0.197 0.643
DeepPhos 77.63 73.58 0.512 0.826 46.02 76.04 0.231 0.674
TransPhos 76.54 74.70 0.512 0.834 47.32 76.22 0.246 0.672

Y

GPS 2.1 34.49 78.86 0.083 0.611 47.93 60.83 0.043 0.552
NetPhos 34.66 84.45 0.132 0.653 63.91 46.10 0.048 0.554
PPRED 43.04 82.65 0.169 0.702 42.01 65.08 0.064 0.539
Musite 38.42 86.74 0.182 0.720 28.85 81.71 0.064 0.587

PhosphoSVM 41.92 87.34 0.209 0.738 28.55 84.39 0.084 0.595
SKIPHOS 71.10 69.10 0.396 0.700 65.80 58.60 0.197 0.634
DeepPhos 69.01 64.22 0.332 0.714 49.93 66.37 0.165 0.621
TransPhos 61.99 65.11 0.271 0.695 38.52 72.30 0.115 0.601

The left half is the result of 10-fold cross-validation on the training dataset, and the right half is the result on the
independent test set. Sensitivity (Sn), Specificity (Sp), Matthews correlation coefficient (MCC) and Area under
curve (AUC) were calculated to measure the performance of models. Data in bold indicates that the model
performs best for that evaluation metric.
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Figure 2. Heat map of the significance F-test, the value of each square in the graph is the p-value of
the statistical test, and it is generally accepted that a p-value less than 0.05 means that the 2 statistics
are significantly different. Here we use scientific notation, for example 1.6e-14 means 1.6× 10−14.
All statistical tests were performed on the predicted results of the test dataset PPA. In the horizontal
coordinates, the names of some models are abbreviated to show them in full. (a) Significance F-test
of the prediction results between the deep learning models for the S sites. (b) Significance F-test
of the prediction results between the deep learning models for the T sites. (c) Significance F-test
of the prediction results between the deep learning models for the Y sites. (d) Significance F-test
of the prediction results for the S sites between other prediction models. (e) Significance F-test of
the prediction results for the T sites between other prediction models. (f) Significance F-test of the
prediction results for the Y sites between other prediction models.

3. Discussion

In this work, we developed a deep learning model, named TransPhos, based on a
transformer-encoder and CNN architecture, which can automatically learn features from
protein sequences end to end to predict general phosphorylation sites. We performed
10-fold cross-validation on the training set and tested the model performance on an inde-
pendent test set. Overall, our model performed extremely well on S and T sites, and our
AUC values were the highest compared to other tools. Moreover, other major metrics were
also significantly better than other models.

Firstly, we compared our model with several traditional deep learning models, includ-
ing CNN, LSTM, FCNN, and RNN, on the test set. At the S sites, our model performed to
the level system, and all evaluation metrics were the highest except Sp. AUC, Acc, Sn, Pre,
F1, and MCC outperformed the other best models by 1.59%, 1.19%, 0.95%, 0.75%, 1.11%,
and 0.23, respectively. A slight decrease in the performance of our model at the T sites
was observed, but the main performance evaluation metrics, such as AUC, Acc, and MCC,
were better than the other deep learning predictors: 0.6%, 0.56%, and 0.14% higher than the
other best models, respectively. At the Y sites, our model’s performance was inferior to the
other predictors.

Furthermore, we compared TransPhos with other current mainstream prediction mod-
els, including GPS2.1, NetPhos, PPRED, Musite, PhosphoSVM, SKIPHOS, and DeepPhos.
Specifically, at the S sites, our model did not perform the best with other predictors, such as
DeepPhos, as shown by the results of the 10-fold cross-validation. Our model achieved the
best performance on the independent test set. The AUC and MCC values of our model on
the test set were 0.8 and 0.7 percentage points higher than the other best models, respec-
tively. This indicates that our model outperformed the comparison predictors in terms of
the generalization performance. On the T sites, the AUC value of our model was only 0.2%
lower than that of the best model DeepPhos, and the MCC value was 0.15 higher than that
of DeepPhos, which indicates that our prediction results are much closer to the true value,
judging from the results of the significance test. On the Y sites, neither our model nor the
previous better performing model DeepPhos showed the best performance, and SKIPHOS
obtained the highest MCC and AUC values at this site: 0.197 and 0.634, respectively.
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Although our model showed a good performance in predicting the phosphorylation
sites S and T, there are still some limitations that can be further improved. On the Y sites,
since the total positive data of the Y site is much less compared to the S and T sites, and the
encoder part of our model has an excess of parameters to be trained, this can easily cause
model overfitting. To solve this problem, we used various approaches in the model design,
such as regularization, the addition of dropout after the convolution layer [37,38], etc., but
the limitations are still unresolved. Due to the excess of parameters and the limited access
to kinase-specific phosphorylation site data, we conducted partial experiments and our
model also performed poorly in kinase-specific phosphorylation site prediction. Thus,
our model can only be used for general phosphorylation site prediction. In general, deep
learning still performs poorly on small datasets [39,40]. However, in practical applications,
there are far more S and T sites than Y sites, so the poor performance of the model on Y
sites is acceptable [41].

From the results, the difference between our model and its predictors was not signif-
icant, so we performed a significance F-test to check the significance of our results with
other predictor models [42]. Finally, we obtained the p-value of the test results. A p-value of
less than 0.05 is usually considered as a significant difference between the 2 statistics. The
results of our significance test are presented in Figure 2. From the significance test results,
the following models were not significantly different from our model: CNN, FCNN, and
GPS2.1 on the S sites; LSTM and GPS2.1 on the Y sites; and NetPhos and GPS2.1 on the T
sites, respectively. A comparison of the prediction results showed that although several
of the above models were statistically insignificant, our model showed a better prediction
performance than these models at the corresponding loci. It can be concluded that the
overall performance of our model was better than the existing models.

The main contribution of this study is the application of the encoder structure of the
transformer to the phosphorylation prediction task [25]. Most previous studies have used
either independent feature extraction followed by machine learning algorithms to predict
phosphorylation sites [43] or one-hot encoding of protein sequences [27]. Feature extraction
requires specialized domain knowledge and the use of one-hot encoding to effectively
represent the interrelationships between protein sequences is difficult [44]. In this paper, the
amino acid sequences of constituent proteins are first represented by dictionary encoding,
then encoded into vector representation by the embedding layer, and then features are
extracted by the encoder to further represent the effective information between sequences.
After, convolutional neural networks are used to obtain the high-dimensional representation
of phosphorylation sites, and finally classification is performed by the softmax function.

In summary, we present a deep learning architecture, TransPhos, that can be applied
to general phosphorylation site prediction tasks to facilitate further biological research. The
model has some uncertainties as the complete protein sequence is sliced into subsequences
and predictions are then made for that subsequence. However, if a phosphorylation site is
located at both ends of the whole protein sequence, then the sequence needs to be populated
with a large number of identifiers, which can also lead to some unpredictable errors in the
model when predicting such a site, such as prediction scores close to 0.5 and difficulty in
distinguishing between positive and negative samples.

For future works, we will continue to work on phosphorylation site prediction, and
we consider the use of an encoder-decoder architecture to train the whole protein sequence
with the tag directly to achieve better prediction.

4. Materials and Methods
4.1. Overview

The overall architecture of TransPhos is described in Figure 3. We constructed our
dataset, and the detailed process of data collection and preprocessing is described in
Section 4.2. In Section 4.3, the structure and training process of our TransPhos model
is described in detail and its performance on an independent test dataset is evaluated.
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In Section 4.4, we describe the training process of our model. Section 4.5 shows the
performance evaluation used in this study.
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Figure 3. The overall framework of TransPhos. The original sequence is converted into a set of
feature vectors with different window sizes through an embedding layer. Here, we set 2 different
window sizes: 51 and 33. The sequence features are further represented by the encoder, and then
the high-dimensional features are extracted through several densely connected convolutional neural
networks (DC-CNN) blocks. After the activation function, the representations obtained by several
DC-CNN blocks are concatenated by intra-block connectivity layer (Inter-BCL) and converted to a
one-dimensional tensor by a flatten layer. After a full connection (FC) layer, the phosphorylation
prediction is finally generated by the SoftMax function.

4.2. Dataset Collection and Pre-Processing
4.2.1. Dataset Collection

The construction of an effective benchmark dataset is crucial for the training and
evaluation of deep learning models. PPA version 3.0 [28,29,45] and Phospho. ELM (P.ELM)
version 9.0 [30] were used in this study. These two data sets were selected for two main rea-
sons. The two datasets were utilized as benchmark datasets, which made comparison with
other models easier. On the other hand, protein phosphorylation occurs in both animals
and plants, the Phospho. ELM dataset includes phosphorylation sites from mammals, and
the PPA dataset contains those from Arabidopsis thaliana (a plant).

A total of 11,254 protein sequences were collected from the P.ELM dataset. Each
sequence contains multiple protein phosphorylation sites, including 6635 serine (S) sites,
3227 threonine (T) sites, and 1392 tyrosine (Y) sites, respectively. The sites in the P.ELM
database were extracted from other studies and phosphorylation proteomic analyses while
the sites in the PPA database were experimentally measured by mass spectrometry. Some
results predicted by computational methods are also available in the PPA database, and
since some predictions have not been experimentally validated, only experimentally vali-
dated phosphorylation sites in PPA were used. In this study, BLASTClust [46] was used to
cluster the protein in both datasets to remove redundant and duplicate protein sequences.
We finally selected 12,810 proteins from the dataset to train the model.

4.2.2. Data Pre-Processing

A complete protein sequence may comprise up to 4000 amino acids. In order to facili-
tate learning of the characteristics near the phosphorylation site, it is cut into subsequences
with a window size of K, so that the amino acids in the middle of each subsequence are
phosphorylation sites. If the length is insufficient, * is filled to ensure each subsequence
has the same length. Other subsequences containing corresponding amino acids are also
cut into subsequences with a length K. The middle of the sequence is the amino acids of
non-phosphorylation sites. Such a setting will lead to an imbalance of positive and negative
samples. We randomly deleted some negative samples to achieve the balance of positive



Int. J. Mol. Sci. 2022, 23, 4263 10 of 17

and negative samples. Table 4 shows the number of sequences and phosphorylation sites
that we used for this study.

Table 4. The numbers of protein sequences and known phosphorylation sites used in this study in
the P.ELM and PPA dataset.

Dataset Residue # of Sequences # of Sites

P.ELM
S 6635 20,964
T 3227 5685
Y 1392 2163

PPA
S 3037 5437
T 1359 1686
Y 617 676

PPA version 3.0 and Phospho. ELM (P.ELM) version 9.0 were used in this study. The amino acid residues are
serine (S) threonine (T) and tyrosine (Y).

4.3. Methods

TransPhos is a novel deep learning architecture that maps local protein sequences into
high-dimensional vectors via a self-attentive mechanism, nonlinear transformations, and
convolutional neural networks. The final classification result of phosphorylation sites is
generated by the softmax function. TransPhos does not directly use a transformer encoder
or a normal multilayer CNN but utilizes several encode layers with different window
sizes and DC-CNN blocks. This allows for the efficient extraction of key protein sequence
features for phosphorylation forecasting.

For a protein represented by an amino acid sequence x, each amino acid y ∈ Dy, where
y represents an amino acid and D is a dictionary encoding function that represents amino
acids as digital. We sliced a sequence into sub-sequences of different window sizes and
the position in the middle of the sequence is the phosphorylation site. For a protein sub-
sequence x, the input of TransPhos with the total X Encoder is the set of vector Ex ∈ RLx×I

for Encoder x (x = 1, 2, . . . , X), with Lx and I being the corresponding local window size
of phosphorylation sites and the size of the amino acid symbol vector, respectively. Here,
I was set to 16. The input vector representation was obtained through an embedding
layer by the dictionary code. In this study, we carefully studied various configurations of
the model inputs with different window sizes and finally adopted a model configuration
with a better performance with X = 2 and window sizes of 31 and 51, which is slightly
different from the predictors that had previously been proposed for phosphorylation
sites [19,24,27,47] for Encoder 1 and 2, respectively. Therefore, the Encoder’s input shape
was 33× 16 and 51× 16, respectively.

The Transphos model has two main stages. The first stage is X Encoders with several
encoding layers. The encoder structure used in this paper was originally proposed by [25]
in a machine translation task. In this study, the encoder parameters were fine-tuned to be
applied to the phosphorylation prediction task.

Encoder: The encoder contains four structurally identical encode layers, each with two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a fully
connected feed-forward network. The internal structure of the encoder is shown in Figure 4a.

The first sub-layer is an attention mechanism identical to the transformer’s encoder.
The attentional function is described as:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
·V (1)

where the matrices Quire (Q), Key (K), Value (V) are the inputs to the attention function,
which contains a set of queries and keys of dimension

√
dk, and values of dimension dv.

The output of the attention function is obtained by computing the dot product of the query
with all keys, dividing each key by

√
dk, and applying the softmax function and then

multiplying it by values.
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In practice, instead of using individual attention functions, we ran them in parallel,
a design known as the multi-head attention mechanism [25], which is very helpful in
improving the training speed. We calculated the output of the multi-head from the attention
function as:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)·WO

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (2)

where W is the parameter matrix WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dV and

WO ∈ Rhdv×dmodel .
In this task, we applied h = 4 parallel attention. For each layer, we set dk = dv = dmodel/h = 4.

Since the number of all amino acid species was only 20, a shorter vector was used to
represent them in this task. This design is advantageous to speed up the training, and
to a certain extent to avoid rapid overfitting of the model on small data sets, which is
especially important when training the Y site. Figure 5 illustrates the internal structure of
the attention mechanism.
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convolutional neural network block is the so-called DC-CNN block. Conv1D means one-
dimensional convolution. The output sequence of the encoder is converted into a group of sequence 
feature maps by the densely connected convolution operation. Intra-BCLs between two 
convolutional layers in each DC-CNN block are used to connect the previous and current feature 
maps [27]. 

The first sub-layer is an attention mechanism identical to the transformer’s encoder. 
The attentional function is described as: Attention(𝑄, 𝐾, 𝑉) = softmax · 𝑉  (1) 

Figure 4. (a) The internal construction of an encoder. The encoder is connected by N coding layers
with the same structure, where N is set to 4. Each encode layer is composed of two sub-layers. The
first sub-layer is a multi-head attention mechanism [25] and here it has four heads. The second
sub-layer is a feed-forward neural network. A residual connection [26] is used to connect the two
sub-layers, followed by a layer normalization [48]. (b)The internal structure of the densely connected
convolutional neural network block is the so-called DC-CNN block. Conv1D means one-dimensional
convolution. The output sequence of the encoder is converted into a group of sequence feature maps
by the densely connected convolution operation. Intra-BCLs between two convolutional layers in
each DC-CNN block are used to connect the previous and current feature maps [27].
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The encoder architecture of the transformer was used, hence the attention mechanism
here is self-attentive, with the query, key, and value located in the same place. The input
of the next encoder layer is sourced from the output of the previous encoder layer so
that all the information of the previous encoder layer can be identified by the previous
encoder layer.

The first sub-layer is a fully connected feedforward network. It is defined as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

The output of the attention layer and the output of the feedforward neural network are
connected with residual connections, and there is layer normalization [48] directly between
the two sub-layers.

After obtaining the output of the encoder, the second stage is X densely connected con-
volutional neural networks, the so-called DC-CNN blocks. We adopted several DC-CNN
blocks with different window sizes and each DC-CNN block had the same structure. The
internal construction of the DC-CNN block is shown in Figure 4b.

The input vector of the DC-CNN block is the output vector of the encoder, and
the DC-CNN blocks perform a series of convolution operations to finally obtain a high-
dimensional representation of the feature map. Each convolutional layer performs a
one-dimensional convolutional operation along the length of the protein sequence, and
after obtaining the corresponding output, an activation function is used to activate the
neurons and implement the nonlinear transformation. Here, we used the ReLU activation
function, which is very effective in convolutional neural networks. The feature maps
obtained from the first convolutional layer are defined as:

hk
1 = ak

(
WkEk + bk

1

)
(4)

where Wk represents the weight matrix with a size of I × Sk × D, I is the length of the
vector representing individual amino acids in the protein sequence, and Sk is the length
of the convolution kernel. Here, S was set to 7, 13 and k was set to 1, 2. The number of
convolutional layers is denoted by D, and we set it to 64. bk

1 is the bias item. The dropout
function was used after each convolution to randomly remove some neurons to reduce the
risk of overfitting.

We adopted the Intra-BCLs to enforce the extraction of phosphorylated features in
the DC-CNN block, connecting all previous convolutional layers with subsequent con-
volutional layers. Therefore, the output feature vectors of the ith convolutional layer in
DC-CNN block k can be calculated as follows:

hk
i = ak(Wk

i [E
k, hk

1, . . . , hk
i−1] + bk

i ) , i = 2, 3 (5)

where Wk
i ∈ RD×Sk×D′ with D′ refers to the number of convolutional kernels in all convo-

lutional layers in every DC-CNN block, and hk
i−1 represents the feature vectors generated

by the (i − 1)th convolutional layer.
After the sequence representation of the protein phosphorylation sites generated by the

encoder and DC-CNN blocks is obtained, the next step uses the inter-BCL for concatenation
along the first dimension as follows:

h f = [αk(h1
C),αk(h2

C)] (6)

where h1
C and h2

C are the feature maps generated from the first and second DC-CNN blocks,
respectively. Next, this feature map is transformed into a one-dimensional tensor by a
flattened layer. A fully connected layer is connected, and the final prediction is performed
by the softmax function:

P (y = 1|x) =
1

1 + e− fcWc
(7)
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P (y = 0|x) = 1− 1
1 + e− fcWc

(8)

where Wc ∈ R fc×q , q refers to the number of categories to be predicted, which was set as 2.
The predicted result is between 0 and 1.

4.4. Training of the TransPhos Model

Our model was trained on a computer with an NVIDIA GeForce RTX 3090 GPU.
Moreover, the standard cross-entropy was used to minimize the training error:

Lossc = −
1
N

N

∑
j=1

yilnP ( yi = 1|xj) + (1− yi)lnP ( yi = 0|xj) (9)

where N represents the number of training samples, xj refers to the jth input sequence, and
yj refers to the label of the jth input sequence. We adopted L2 regularization to relieve the
overfitting. Therefore, the objective function of TransPhos is defined as:

minW Lossc + λ ∑ (||W||2) 2 (10)

where W is the L2 norm of the weight matrix and λ is the regularization coefficient. Finally,
we adopted the Adam optimizer and the learning rate was set to 0.0002 and the decay was
set to 0.00001.

TransPhos can be applied to general phosphorylation site prediction. We explored
different hyperparameters and tried to simplify the model design so that it could learn
more information between amino acid sequences compared to the reference model. Since
many protomer structural parameters easily caused model overfitting when trained on a
small dataset, our model performed poorly in kinase phosphorylation site prediction tasks
with small amounts of data, so the application of our model to kinase phosphorylation site
prediction is not recommended.

4.5. Performance Evaluation

The evaluation metrics of protein p-sites can be classified into five methods using
different attributes: specificity (SP), sensitivity (SN), accuracy (ACC), the area under the
ROC curve (AUC), and the Matthews coefficients of correlation (MCC). These metrics
are evaluated with a confusion matrix that compares the actual target values with those
predicted by a model. The number of rows and columns in this matrix depends on the
number of classes. From the confusion matrix, we identified four values: true positive (TP)
indicates the number of positive samples that were correctly classified by the model. False
positive (FP) indicates the number of negative samples incorrectly classified by the model.
True negative (TN) indicates the number of negative samples correctly classified by the
model. False negative (FN) indicates the number of positive samples incorrectly classified
by the model.

The ACC metric is defined in Equation (11) as the ratio of the number of all correctly
predicted samples to the total number of samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

The SN or recall is the proportion of true positive prediction to all positive cases: (12)

SN = Recall =
TP

TP + FN
(12)

The SP is defined in Equation (13). It calculates the proportion of samples that were
predicted to be true to all negative samples:

Specificity =
TN

TN + FP
(13)
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The precision metric is defined in Equation (14). It calculates the proportion of true
positive samples to all cases that were predicted as positive:

Precision =
TP

TP + FP
(14)

The F1-score is defined in Equation (15). This metric facilitates the process. It can be
used to compare the performance of methods with a single number:

F1 =
2× Precision× Recall

Precision + Recall
(15)

Two SN and SP measures were used to plot the ROC curve. AUC can evaluate the
predictive performance of the model. Furthermore, we also calculated the Mathews’ corre-
lation coefficient between the predicted and true values. A higher correlation represents a
better prediction result:

MCC =
TP× TN − FP× FN√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)
(16)

5. Conclusions

A general phosphorylation site prediction approach, TransPhos, was constructed using
a transformer encoder architecture and DC-CNN blocks. TransPhos achieved AUC values
of 0.8579, 0.8335, and 0.6953 for S, T, and Y phosphorylation sites, respectively, on P.ELM
with a 10-fold cross-validation. The model was tested on an independent test dataset, and
the AUC values were 0.7867, 0.6719, and 0.6009 for S, T, and Y sites, respectively. Besides
AUC values, the predictive performance of our method was found to be significantly better
than other deep learning models and existing methods. The results of the significance
test also prove that our prediction results were significantly different from other models.
The experimental results on the independent dataset showed that our model has a better
overall performance in the general phosphorylation site prediction task, especially in the
prediction of the S/T sites, which is significantly better than other existing tools and the
conventional deep learning model.
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Figure A1. ROC curves containing 95% confidence intervals for different deep learning models on 
the T sites of the training dataset P.ELM, 10-fold cross validation was used. (a) ROC curve of the 
TransPhos model; (b) ROC curve of the CNN model. (c) ROC curve of the LSTM model. (d) ROC 
curve of the RNN model. (e) ROC curve of the FCNN model. (f) Performance comparison on the T 
sites of the P.ELM dataset. 
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