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Abstract: Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with limited thera-
peutic options and short overall survival. iCCA is characterized by a strong desmoplastic reaction in
the surrounding ecosystem that likely affects tumoral progression. Overexpression of the Notch path-
way is implicated in iCCA development and progression. Our aim was to investigate the effectiveness
of Crenigacestat, a selective inhibitor of NOTCH1 signaling, against the cross-talk between cancer
cells and the surrounding ecosystem in an in vivo HuCCT1-xenograft model. In the present study, a
transcriptomic analysis approach, validated by Western blotting and qRT-PCR on iCCA tumor masses
treated with Crenigacestat, was used to study the molecular pathways responsive to drug treatment.
Our results indicate that Crenigacestat significantly inhibited NOTCH1 and HES1, whereas tumor
progression was not affected. In addition, the drug triggered a strong immune response and blocked
neovascularization in the tumor ecosystem of the HuCCT1-xenograft model without affecting the
occurrence of fibrotic reactions. Therefore, although these data need further investigation, our obser-
vations confirm that Crenigacestat selectively targets NOTCH1 and that the desmoplastic response in
iCCA likely plays a key role in both drug effectiveness and tumor progression.

Keywords: intrahepatic cholangiocarcinoma; NOTCH1; HuCCT1-xenograft mouse model; gene
expression; microenvironment

1. Introduction

Intrahepatic cholangiocarcinoma (iCCA) has now become the second most common
primary liver malignancy after hepatocellular carcinoma (HCC) [1], generating a renewed
interest in this disease among the scientific community. The global incidence and mortality
rates of iCCA are the highest in East Asia, but there is also an increase in western countries,
including Italy [2,3]. The prognosis is extremely dismal because the majority of iCCA
patients present with advanced-stage disease, and 75% of patients die within 1 year of
diagnosis, with the 5-year survival rate being below 5% [4]. Surgical resection following
neoadjuvant chemoradiation is the only treatment with curative intent for achieving long-
term survival outcomes, but it is limited to only 20–30% of cases with early-stage disease [1].
For patients with advanced-stage or unresectable tumors, combined administration of
chemotherapeutic agents such as Gemcitabine and Cisplatin is the first-line systemic ther-
apy. However, this current standard-of-care chemotherapy regimen shows only partial
benefit as it induces little improvement in progression-free survival [5]. Current treatment
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options have limited efficiency since adaptation mechanisms mediated by the tumor mi-
croenvironment (TME) contribute to drug resistance. In particular, solid tumor cancer
cells typically interact with surrounding components, promoting cell proliferation and
survival [6] and regulating the response to chemotherapy. Numerous studies have shown
that iCCA is characterized by a prominent desmoplastic stroma with a dense extracellular
matrix (ECM), mainly enriched by cancer-associated fibroblasts (CAFs). The abundant
tumor immune microenvironment is populated by T lymphocytes, B lymphocytes, NK cells,
natural killer T cells and tumor-associated macrophages or TAM, endothelial cells (EC)
and their secretomes, exosomes, and other soluble factors responsible for driving tumor
angiogenesis, growth, and metastasis [7–10]. CAFs, identified by a strong α-smooth muscle
actin (α-SMA) expression, communicate extensively with the CCA cells and immune cells,
enhancing the malignant phenotype [8]. In addition, CAFs produce angiogenic factors to
induce tube formation and recruit infiltrating immune cells, promoting tumor cell growth,
angiogenesis, matrix turnover, and suppression of the adaptive immune response [6].
Overall, the mutual interaction between tumor cells and their microenvironment involves
the activation of multiple pathways promoting iCCA pathogenesis [11]. Among these,
the NOTCH canonical signaling pathway is known to be a key player in direct cell–cell
communication among tumor cells and each of the components of the microenvironment.
In the last years, a significant body of literature has supported the role of NOTCH in
cancer [12–15]. Overall, NOTCH signaling is activated directly by the engagement of
one of the four transmembrane isotypes of the NOTCH receptor (NOTCH 1–4) with one
of the five ligands, Jagged-1, -2 and Delta-like-1, -3, -4, which are also transmembrane
proteins of the cell surface. Following the interaction, gamma-secretase, a multi-subunit
protease complex, intervenes, releasing the active fragment “NOTCH Intra Cellular Do-
main” (NICD) from the cytoplasmic membrane. NICD moves to the nucleus and, by
binding to a transcriptional complex, induces the transcription of target genes, such as
those belonging to the Hairy/enhancer of the split (HES) family [13,14]. NOTCH has been
identified as having the potential to induce CCA when transgenically overexpressed [16].
In addition, some investigations reported aberrant NOTCH1 in iCCA tissue, contributing
to tumor growth [17–19]. Recently, we demonstrated that Crenigacestat, a new gamma
secretase inhibitor (GSI), was able to reduce the growth of tumors expressing high levels of
CD90 [20] and reduced NOTCH-dependent angiogenesis in a patient-derived xenograft
(PDX) mice model of iCCA [19]. Particularly, Crenigacestat was able to selectively inhibit
NOTCH1 in vitro and in the PDX model, reducing tumor progression by blocking new
vessel formation in the surrounding desmoplastic reaction tissue. However, the cross-talk
between iCCA cells and the surrounding ecosystem is likely responsible for the sensitivity
to treatment as well as the tumor development.

The aim of the study was to investigate in further detail the effectiveness of Crenigace-
stat on the stroma/tumor interaction in iCCA tumoral progression following HuCCT1-
xenograft implantation.

2. Results
2.1. Crenigacestat Treatment in the HuCCT1-Xenograft Mouse Model

In our recent study [19], we provided evidence that Crenigacestat treatment reduced
iCCA tumor progression, targeting NOTCH in a PDX model. In this current study, Creni-
gacestat, used at 8 mg/kg, significantly inhibited the NOTCH1 pathway, as demonstrated
by Western blotting analysis on tissue extracts. Densitometric analysis showed a significant
inhibition of the NOTCH1 intracellular domain (N1ICD) (p < 0.001) and HES1 (p < 0.05)
in Crenigacestat-treated HuCCT1-xenograft mice (Figure 1A). Surprisingly, the drug did
not exert any effect on tumor growth nor on tumor weight as compared to the vehicle
(Figure 1B–D); nevertheless, it inhibited the NOTCH1 pathway. These results indicate that
GSI interferes with NOTCH activation, as expected, and that in a HuCCT1-xenograft model,
Crenigacestat inhibits NOTCH1 signaling but does not display any effect on tumor growth.
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Figure 1. Crenigacestat does not reduce iCCA tumor progression but inhibits Notch1 pathway in
the iCCA HuCCT1-xenograft model. (A) Western blotting shows significant inhibition of N1ICD
(*** p < 0.001) and HES1 (* p < 0.05) expression in treated HuCCT1-xenograft tissues related to GAPDH
expression for each respective tissue. The semi-quantitative evaluation by densitometry analysis of
protein bands is shown in the graphs, comparing the average value of the levels of N1ICD and HES1
among all the mice treated with Crenigacestat normalized with respect to vehicle. (B) Crenigacestat,
compared with vehicle, has no effect on tumor progression (C,D), nor does it reduce the weight of
the iCCA masses in the HuCCT1-xenograft model. Explanted tumor masses of HuCCT1-xenograft
mice n = 8 for vehicle treatment, n = 6 for Crenigacestat treatment.

2.2. Gene Expression Analysis of the HuCCT1-Xenograft Mouse Model

In order to evaluate the gene profile modulated by Crenigacestat treatment in the
HuCCT1-xenograft mouse model, we performed transcriptomic analysis, comparing the ex-
pression profiles of tissues from HuCCT1-xenograft mice treated with Crenigacestat or with
the vehicle. We identified 596 differentially expressed genes, 286 upregulated and 310 down-
regulated after treatment with Crenigacestat (Fold-change ± 1.5, p-value 0.05) (Figure 2A,
Supplementary Table S1). Unsupervised hierarchical clustering analysis and principal com-
ponent analysis showed distinct gene expression patterns between Crenigacestat-treated
and untreated mice (Figure 2B,C).
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ease 
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10 Cancer, cell cycle, gene expression 23 17 

Figure 2. Global gene expression profile in HuCCT1-xenograft model treated and untreated with
Crenigacestat reveals molecular changes. (A) PCA clearly shows the separation between treated
and untreated mice. (B) The separation between treated and untreated mice is further confirmed by
the analysis of unsupervised hierarchical clustering. Each row represents a gene, and each column
represents a sample. A color code represents the relative intensity of the expression signal, where red
and green indicate high and low expression, respectively, according to the scale shown on the top.
(C) Scatterplot of all assayed probes shows the distribution of differentially expressed genes based on
the expression data of treated and untreated mice, applying a cut-off p-value threshold lower than
0.005 and a fold change of 1.5. The X-axis represents the averaged log2 signal of untreated samples,
and the Y-axis represents the averaged log2 signal of treated samples.

2.3. Crenigacestat Affects the Notch Pathway in the HuCCT1-Xenograft Mice Model

Then, we investigated interactions between Crenigacestat-modulated genes in the
HuCCT1-xenograft mice model by ingenuity pathway analysis (IPA). A total of 24 signifi-
cant molecular networks were identified; one of the top-ranked networks selected by this
analysis consists of 24 DEGs, whose top function includes cancer, cell morphology, and
tissue development (Table 1).

Interestingly, pathway analysis of this network revealed a clear involvement of the
Notch pathway in the downregulation of JAG1, HES1, APH1A, and Gamma secretase
(Figure 3), indicating that Crenigacestat in vivo significantly reduces the Notch pathway.
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Table 1. The 24 top-ranked networks modulated by Crenigacestat.

ID Top Diseases and Functions Score Focus Molecules

1 Cancer, gastrointestinal disease, organism injury and abnormalities 55 31

2 Cancer, cell morphology, tissue development 38 24

3 Cell morphology, embryonic development, hair and skin development and
function 33 22

4 Metabolic disease, protein degradation, protein synthesis 33 22

5 Carbohydrate metabolism, cardiovascular disease, post-translational
modification 31 21

6 Cell death and survival, lipid metabolism, nervous system development and
function 31 21

7 Cellular development, cellular growth and proliferation, cellular movement 29 20

8 Dermatological diseases and conditions, immunological disease, organismal
injury and abnormalities 25 18

9 Developmental disorder, organism injury and abnormalities, renal and
urological disease 23 17

10 Cancer, cell cycle, gene expression 23 17

11 Embryonic development, hematological system development and function,
lymphoid tissue structure and development 21 16

12 Cancer, dermatological diseases and conditions, organism injury and
abnormalities 21 16

13 Cellular assembly and organization, lipid metabolism, small molecule
biochemistry 21 16

14 Auditory disease, hereditary disorder, neurological disease 21 16

15 Dermatological diseases and conditions, immunological disease, inflammatory
disease 19 15

16 Cell morphology, embryonic development, nervous system development and
function 19 15

17 Cancer, cellular assembly and organization, connective tissue disorders 18 14

18 Cell morphology, organ morphology, organism injury and abnormalities 16 13

19 Drug metabolism, increased levels of AST, lipid metabolism 14 12

20 Cardiovascular disease, cellular compromise, organism injury and abnormalities 14 12

21 Embryonic development, organism development, tissue morphology 13 11

22 Cell cycle, cellular movement, infectious diseases 13 11

23 Connective tissue development and function, connective tissue disorders,
organism injury and abnormalities 8 8

24 Cellular movement, immune cell trafficking, inflammatory response 7 7
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Figure 3. Bioinformatic analysis of networks with ingenuity pathway analysis (IPA). The analysis
reports annotated interactions between genes modulated by Crenigacestat treatment in the HuCCT1-
xenograft mouse model. The top-ranked network showing a high degree of interconnectivity between
genes and the IPA functional category of this network was cancer, cell morphology, and tissue
development. The Figure shows that Crenigacestat downregulated key Notch signaling genes,
confirming the specificity of the treatment. Up- (red) and down- (green) regulated genes are indicated.

2.4. Biological Functions Regulated by Crenigacestat Treatment in the HuCCT1-Xenograft
Mice Model

To identify the Crenigacestat treatment-enriched biological processes in the HuCCT1-
xenograft mice model, we carried out gene ontology (GO) enrichment analysis on DEGs.
Results showed that few biological processes were significantly enriched; the most sig-
nificant of these were mainly associated with the immune response, response to external
stimuli and regulation of vesicle-mediated transport (Figure 4).

In our previous study conducted on the PDX mice model, one of the most significant
upstream regulators predicted by IPA was VEGFA (vascular endothelial growth factor A), which
was inhibited [19], together with DLL4 and CD31. In order to confirm these data in the HuCCT1-
xenograft mice model, we analyzed the expression of this same protein. Semi-quantitative
evaluation of Western blotting corroborated, as shown in Figure 5, that Crenigacestat blocks the
neovascularization, followed by a significant reduction of CD31 (p < 0.05), delta-Like canonical
Notch ligand 4 (DLL4) (p < 0.05), and VEGFA (p < 0.05) proteins.
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Figure 4. Gene ontology functional enrichment analysis of differentially expressed genes modulated
by Crenigacestat. The deregulated genes after Crenigacestat treatment in HuCCT1-xenograft mouse
model showed few enriched biological processes linked mainly to the immune response, response
to external stimuli, and regulation of vesicle-mediated transport. Enriched GO terms are visualized
using (A) a directed acyclic graph (DAG) graphic representation with color coding reflecting their
degree of enrichment and (B) a table with the corresponding p-value and FDR q-value for each term.
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Figure 5. Crenigacestat inhibits angiogenesis in HuCCT1-xenograft model. Western blotting identi-
fied a significant downregulation of CD31 (* p < 0.05), DLL4 (* p < 0.05), and VEGFA (* p < 0.05) protein
expression, involved in angiogenesis, in treated HuCCT1-xenograft tissues normalized to GAPDH
protein expression for each tissue. The graphs show the semi-quantitative evaluation by densitometry
analysis of protein, comparing the average intensity value of the bands of CD31, DLL4, and VEGFA
among all the mice treated with Crenigacestat versus vehicle. Tumor masses of HuCCT1-xenograft
mice n = 8 for vehicle treatment, n = 6 for LY3039478 treatment.
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To prove this hypothesis, we looked for other networks generated by the IPA func-
tional analysis. A network generated by the dataset of Crenigacestat-modulated genes in the
HuCCT1-xenograft mouse model had the following top functions: connective tissue develop-
ment and function, connective tissue disorders, and organism injury and abnormalities.

As shown in Figure 6, Crenigacestat treatment acts on some genes of the extracellular
matrix, including several metalloproteases (MMP1, MMP3, MMP10, MMP12, and MMP13).
Particularly, MMP13 was already found to be modulated after Crenigacestat treatment in
the PDX model [19], but contrariwise, an increased expression was observed by quantitative
reverse transcriptase PCR (qRT-PCR) in the HuCCT1-xenograft model.
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Figure 6. Network analysis with ingenuity pathway analysis (IPA) and microarray validation with
real-time PCR. The analysis reports annotated interactions between genes modulated by Crenigacestat
treatment in the HuCCT1-xenograft mouse model. The IPA functional category of this network was
connective tissue development and function, connective tissue disorders, and organism injury and
abnormalities. The Figure shows that even though Crenigacestat affected some metalloprotease
(MMPs) genes, key elements of extracellular matrix such as fibrinogen, some collagens, laminins, and
integrin were not altered by treatment. Up- (red) and down- (green) regulated genes are indicated.
Blank nodes were suggested by IPA as potential targets functionally linked to deregulated genes.
Validation of the MMP13 gene identified a significant (* p < 0.05) up-regulation of MMP13 by
quantitative real-time PCR.

Surprisingly, the IPA functional analysis revealed that fibrinogen, some collagens,
laminins, and integrins had not been altered by treatment. To confirm the relevance of the
IPA network analysis, we quantified, in frozen specimens, the severity of the fibrosis status
in treated and untreated HuCCT1-xenograft mice by Azan-Mallory staining. Consistently,
a panel in Figure 7 shows a moderate presence of fibrous connective tissue, and Figure 8
shows no difference in terms of gene and protein expression of α-SMA, used as a marker
of activated stromal cells, in treated compared to untreated mice. These results indicate
that Crenigacestat does not influence ECM deposition and stromal components in this
animal model.
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To further support the hypothesis that the microenvironment is essential for Crenigace-
stat effectiveness on iCCA progression, we challenged patient-derived organoids (PDOs)
resembling near-physiological architectures because of the contextual presence of Matrigel
as a three-dimensional ECM structure with different concentrations of Crenigacestat. As
reported in Figure 9, drug treatment does not affect the growth of iCCA PDOs (Figure 9).
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Figure 7. Crenigacestat has no effect on fibrosis in the HuCCT1-xenograft model. Tissue sections
were stained using Azan-Mallory’s trichrome staining to highlight collagen fibers. Representative
images of treated and untreated animals reveal collagen in aniline blue, ordinary cytoplasm in orange
G, and nucleus in acid fuchsin in both conditions. Quantitative analysis of blue stained area to the
total area in HuCCT1-xenograft mice treated with vehicle (n = 8) and Crenigacestat (n = 6) shows no
significant differences between the two groups. These results indicate that Crenigacestat is not able to
modulate fibrosis in this model. The images were acquired at 20×magnification. Scale bar represents
50 µm.
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Figure 8. Crenigacestat has no effect on α-SMA expression in the HuCCT1-xenograft model. (A) RNA
and (B) protein expression of murine α-SMA were analyzed in HuCCT1-xenograft tissues in Creni-
gacestat and vehicle-treated mice. Representative images of treated (n = 6) and untreated (n = 8)
animals reveal no differences in tissues in both groups, confirmed by quantitative analysis of positive
staining to the total area in tissues of HuCCT1-xenograft mice. These results indicate that Crenigaces-
tat is not able to modulate fibrosis in this model (*** p < 0.001). The images were acquired at 10× and
20×magnification. Scale bar represents 100 µm and 50 µm, respectively.
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Figure 9. Crenigacestat has no effect on iCCA-PDOs. Phase-contrast images of two wells treated
with DMSO or Crenigacestat (10 µM). Dose–response curves of Crenigacestat after 15 days show no
difference in relative viability. Viability values are expressed as mean ± SEM.

3. Discussion

New, improved therapeutic strategies for iCCA patients are urgently needed. Persis-
tent activation of Notch signaling has been reported to induce the onset of iCCA [14–19,21].
Additionally, previous studies have reported high expression levels of Notch1 in human
iCCA specimens compared to peritumoral tissue [17,19], highlighting the role of this path-
way in cholangiocarcinogenesis. In line with these observations, in this work, we report the
effect of Crenigacestat on Notch signaling, without any significant reduction of volume and
weight in the treated iCCA, in a HuCCT1-xenograft mouse model. These data are consistent
with our recent study reporting an effect of Crenigacestat on tumors originated by CD90
transfected HuCCT1, but not on wild-type cells [20]. Consequently, we performed gene
expression profiling in explanted iCCA masses, while IPA analysis showed a robust involve-
ment of the NOTCH pathway and downstream targets such as JAG1, HES1, APH1A, and
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γ-secretase, as expected. Consistently with our previous work [19], Crenigacestat blocked
Notch signaling, demonstrating downregulation of the protein expression of NOTCH1
and HES1.

Although this in vivo model offers the opportunity to directly predict drug sensitivity
as compared to the in vitro model, it has some limitations, such as the influence of the
murine microenvironment and the host immune response. Surprisingly, although these
animal models are defective in T-cell-mediated immunity [22], by GO enrichment analysis,
we identified some biological processes significantly associated with the immune response,
response to external stimuli, and regulation of vesicle-mediated transport, suggesting that
Crenigacestat is able to modulate the activity of signaling pathways. Thus, in this model, it
triggered an important immune response and a dynamic cross-talk between tumor cells
and host surrounding tissue.

Like in our previous findings in PDX [22], validation of the HuCCT1-xenograft mouse
model by Western blotting confirmed downregulation of CD31, DLL4, and VEGFA, com-
monly associated with angiogenesis. These results consistently demonstrate the effects of
Crenigacestat on neovascularization.

The tumor stroma is an essential component in the progression of iCCA, as it provides
trophic signals involved in tumor progression through intense extracellular matrix remod-
eling and inflammation [7,23,24]. In support of this hypothesis, IPA functional analysis
generated a network showing that Crenigacestat treatment acts by upregulating several
metalloproteases such as MMP1, MMP3, MMP10, MMP12, and MMP13, probably triggered
by host inflammatory response [25,26]. However, no modulation of the ECM compounds,
such as fibrinogen, some collagens, laminins, and integrins, was noted, suggesting that
specific MMPs in this model have a role in regulating the inflammatory processes. Fur-
thermore, these data are consistent with the lack of Crenigacestat effectiveness on stromal
cell activation responsible for ECM production and deposition, as documented by α-SMA
expression levels in treated and control mice.

ICCA is characterized by a highly desmoplastic tumor microenvironment enriched
by cancer-associated fibroblasts (CAFs) [6,27]. Particularly, once fibroblasts are recruited
via various types of growth factors and cytokines, they assume an activated, specialized
myofibroblast phenotype that is the main source of CAFs [28–30]. These cells interact with
other cell types such as inflammatory cells and endothelial cells, secreting ECM proteins,
and matrix metalloproteases, thus ensuring the remodeling of the surrounding ecosystem.
This favors the formation of new vessels, allowing metastatic spread into the microen-
vironment milieu [31–37]. Consistently with bioinformatics data, ECM deposition was
not affected by Crenigacestat treatment, raising the speculation that the adjoining stroma
serves as a physical barrier cooperating with cancer cells to prevent immune infiltration
and promote immune escape, generating therapy-related resistant phenotypes. In this
scenario, our results were also supported by IPA analysis, by Azan-Mallory staining, and
by further analysis of α-SMA expression, both as RNA and protein levels and PDOs model.
In conclusion, we hypothesize that the surrounding ecosystem plays a fundamental role
in driving both drug responsiveness and tumor progression in iCCA. Moreover, a similar
landscape of the tumor microenvironment is necessary for Crenigacestat effectiveness to
modulate the tumor/host interaction, this being further supported by the demonstrated
lack of drug effects on PDO-derived iCCA.

In a future perspective, the cross-talk between tumor and stromal cells will be the
subject of future investigations in order to open out new directions in cancer therapy.

4. Materials and Methods
4.1. In Vivo Study

Animal experiments were carried out according to the protocol approved by the
Ethics Committee (Prot. N. 254/C.E) at Biogem scarl Medicinal Investigation Research,
MIR in Ariano Irpino, (Avellino, Italy), authorized to use animals in Biogem laboratories
by the Italian Health Authority. The Care and Husbandry of animals are in accordance
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with European Directives n. 2010/63 and with the Italian Regulatory system (D.L. vo no.
26, 4 March 2014). CD-1 nude mice, females, 4–6 weeks old, were used for this study,
subcutaneously injected into the right flank with 5 × 106 HuCCT1 cells (CD90 negative).
When the tumor masses reached the approximate volume of 60–70 mm3, 2–3 weeks after
injection, mice were allocated to one of two experimental groups: one group treated
orally (gavage) with the vehicle and the other treated orally (gavage) with Crenigacestat,
administered 3 times/week for 4 consecutive weeks. All animals were weighed biweekly
during the experimental period and sacrificed when the tumor masses were greater than
15% of body weight (BW) and/or body weight loss (BWL) was 10%. The BWL was
determined as follows: % BWL max = 100 − (mean BWday x/mean BWday 1 × 100),
where BWx is the mean BW on the day of maximal loss during the experiment and BW1 is
the mean BW on the 1st day of the experimental period. In addition, the tumor volume
formula (mm3) = [length (mm) × width (mm)2]/2 was applied, where width and length
are the shortest and longest diameters. At the end of the experiment, the last dose of the
drug or vehicle was administered 6 h before sacrifice, and the tumor masses were collected
and preserved as follows: 1/2 frozen at −80 ◦C, 1/2 fixed in 4% formalin solution.

4.2. Establishment, Culture, and Treatment of Human iCCA-PDOs

The establishment and culture of PDOs from iCCA cancers were performed as pre-
viously described [38]. Briefly, fresh biopsy tissue from human iCCA was minced, con-
ditioned in PBS/EDTA 5 mM for 15 min at room temperature, and digested in a fresh
digestion solution containing 5 mL PBS/EDTA 1 mM in 2× TrypLe (Thermo Fisher Sci-
entific, Waltham, MA, USA) for 1 h at 37 ◦C. Then, the dissociated cells in suspension
were collected, and the remaining tissue was mechanically disrupted with a pipette to
facilitate the release of other cells. All the cell suspension recovered was spun in Advanced
DMEM/F12 (Thermo Fisher Scientific) at 1200 rpm, 5 min, 4 ◦C.

The pellet was resuspended in 120 µL of liquefied growth factor reduced (GFR)
Matrigel (Corning, Glendale, AZ, USA), creating a single droplet at 4 ◦C and seeded in a
24-well tissue culture plate, warmed to 37 ◦C. Plates were incubated at 37 ◦C, 5% CO2 in cell
culture incubator for 20 min to solidify Matrigel droplets and overlaid with complete human
organoids media Advanced DMEM/F12 supplemented with 1× B27 additive (Thermo
Fisher Scientific, Waltham, MA, USA), 1× N2 additive (Thermo Fisher Scientific, Waltham,
MA, USA), 0.01% BSA (Roche, Basel, Switzerland), 2 mM L-Glutamine (Thermo Fisher
Scientific, Waltham, MA, USA), 100 units/mL penicillin/streptomycin (Thermo Fisher
Scientific, Waltham, MA, USA), and 13 cytokines: EGF (PeproTech, London, UK); Noggin
(PeproTech, London, UK); R-Spondin 1 (PeproTech, London, UK); Gastrin (Sigma-Aldrich);
FGF-10 (PeproTech, London, UK); FGF-basic (PeproTech, London, UK); Wnt-3A (R&D
Systems, Minneapolis, USA); Prostaglandin E2 (Tocris Bioscience, Bristol, UK); Y-27632
(Sigma-Aldrich, Milano, Italy); Nicotinamide (Sigma-Aldrich, Milano, Italy); A83-01 (Tocris
Bioscience, Bristol, UK); SB202190 (Sigma-Aldrich, Milano, Italy) HGF (PeproTech London,
UK). Complete media were subsequently refreshed every two days.

4.3. Human iCCA-PDOs Treatment

Cultures were split when organoids became over-confluent. Matrigel was broken
up mechanically with a pipette, and PBS-EDTA 1mM containing 1× TrypLe was then
incubated for 20 min at 37 ◦C. Dissociated single cells were washed with HBSS (Thermo
Fisher Scientific) and pelleted at 1200 rpm, 5 min, 4 ◦C. Briefly, 6 × 104 cells were resus-
pended in GFR matrigel and seeded in standard 96-well cell culture plates with complete
organoid media.

After 3 days post seeding, exhausted media were replaced by complete organoids
media with DMSO or Crenigacestat at dilution series concentrations (0.15–10 µM). The drug-
containing medium was changed every 2 days until the end of treatment. After 15 days of
treatment, cell viability was assayed using CellTiter-Glo (Promega, Tokyo, Japan).
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4.4. Protein Extraction and Western Blot Analysis

Total tissue proteins were extracted with tissue homogenizer using T-PER Tissue Pro-
tein Extraction Reagent containing 1:100 Halt Protease and Phosphatase Inhibitor Cocktail
EDTA-free (Thermo Fisher Scientific). Proteins concentrations were quantified with Brad-
ford Reagent (Bio-Rad, Hercules, CA, USA) using a BSA standard curve (0.0–40 µg/mL).
The proteins were then mixed with Laemmli buffer and 10% β-mercaptoethanol (BME),
denatured at 95 ◦C for 5 min, and loaded onto 4–20% polyacrylamide gradient gels and run
on SDS-PAGE. After gel electrophoresis, the proteins were transferred onto nitrocellulose
membranes (Trans-Blot Turbo Mini 0.2 µm Nitrocellulose Transfer Packs, Bio-Rad) using the
Trans-Blot Turbo Transfer System (Bio-Rad). The blotted membranes were pre-incubated
in 5% non-fat milk (Bio-Rad, Hercules, CA, USA) in Tris-buffered saline supplemented
with 0.05% Tween-20 (TBS-T) for 1 h at room temperature and then incubated overnight
at +4 ◦C with the following primary antibodies: human primary anti-Notch cleaved 1
(1:1000, Cell Signaling Technology, Pero, Italy); purified human anti-HES1 (1:1000, Cell
Signaling Technology, Danvers, MA, USA); anti-CD31 (1:1000, Abcam, Cambridge, MA,
USA), anti-DLL4 (1:1000, Abcam, Cambridge, MA, USA), anti-VEGFA (1:1000, Abcam,
Cambridge, UK) and antiglyceraldehyde-3-phosphate dehydrogenase (GAPDH). After
three washings with TBS-T, membranes were stained with the corresponding horseradish
peroxidase-conjugated secondary antibodies diluted 1:5000 in TBS-T for 1 h at room temper-
ature and subsequently washed once more with TBS-T. The chemiluminescence signal from
proteins was revealed using Clarity Max Western ECL Substrate (Bio-Rad) and captured
with the ChemiDoc MP instrument (Bio-Rad Laboratories) using Image Lab 5.2.1. The
density mean values of the bands were calculated using Image J software. In the case of
VEGFA, two outliers of the vehicle group were excluded from statistical data analysis.

4.5. RNA Extraction and cDNA Synthesis

Total RNA was extracted from the HuCCT1-xenograft model iCCA tissues using
TRIzol® reagent (Thermo Fisher Scientific) in combination with the TissueLyser homoge-
nizer (Qiagen, Hilden, Germany), following the manufacturer’s instructions. To exclude
DNA contamination, an additional column-based purification (RNeasy Mini Kit, QIAGEN)
was used, including DNase digestion step. Total RNA concentrations and quality were
determined with the Nano-Drop 2000/2000c (Thermo Fisher Scientific) and the Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Specifically, RNA with
260/280 nm ratios ≥1.8 and RIN ≥8 was used for the transcriptomic analysis. One µg total
RNA was reverse transcribed to cDNA using iScript cDNA Synthesis Supermix (Biorad,
Hercules, CA, USA), according to the relative datasheet.

4.6. Gene Expression Analysis

Gene expression microarray was performed as already described [19], using the
Affymetrix technology. Briefly, transcriptomic analysis was performed on RNA extracted
from single fragments of each frozen tissue sample. The HTA2.0 Plus Reagents KIT was
used to perform RNA retrotranscription, labeling, and hybridization. The operative instruc-
tions are those reported in the manual “GeneChipTM WT PLUS Reagent Kit Manual- Target
Preparation for GeneChipTM Whole Transcript (WT) Expression Arrays” (Affymetrix).
Hybridized arrays were automatically washed and stained by the GeneChipTM Fluidics
Station 450 (Affymetrix) using the reagents indicated in the user manual. Then, chips
were automatically acquired by the Affymetrix Complete GeneChip® Instrument System
Scanner, which generated both digital images (-DAT files) and raw intensity data (.CEL
files). Quality control (QC) of the raw data was performed for evaluating samples quality,
hybridization signal, and samples correlation. Further analyses on the samples were per-
formed only if the raw data passed this initial QC. Internal controls were evaluated for data
validation. The gene expression data are available under accession number GSE150024
at the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/ (accessed on 1
December 2021)).

http://www.ncbi.nlm.nih.gov/geo/
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4.7. Quantitative Real-Time PCR

Gene expression of MMP13, GAPDH, and ACTA2 was assessed using validated hu-
man primers: MMP13 Human PrimePCR™SYBR® Green, Assay ID: qHsaCIP0026824 (Bio-
rad); Hs_GAPDH_1_SG QuantiTect Primer Assay ID: QT00079247 (Qiagen) and primer
sequences for ACTA2: forward, 5′-GGAATGGGACAAAAAGACAGCTA-3′; reverse, 5′-
CGGGTACTTCAGGGTCAGGAT-3′. Comparative real-time PCR was performed in triplicate,
including no-template controls. Real-time analysis was performed on a CFX96 System (Biorad,
Hercules, CA, USA), and the 2−∆∆Ct method was used to assess the relative expression.

4.8. Histological Staining and Scoring

For immunohistochemistry, frozen tissues sections were pre-fixed with 1:1 acetone–
chloroform solution. α-SMA staining with antibody diluted 1:100 (Sigma-Aldrich) was
performed with an automated autostainer (cat. K5007, Dako, Glostrup, Denmark). The
sections were then observed using the Eclipse Ti2 microscope (Nikon Inc., Melville, NY,
USA) and analyzed with Image J analysis software.

For Masson’s trichrome staining, all iCCA cryosections were fixed in 10% neutral
buffered formalin for 30 min at room temperature, washed twice in distilled water for
5 min, and stained with Mallory trichrome acc. McFarlane kit (DIAPATH) following
the manufacturer’s instructions. Briefly, Mallory’s trichrome staining protocol uses the
three stains to reveal connective tissue, with a particular affinity for collagen, reticulum,
cartilage, bones, and amyloid. After hydration, each section was covered with Acid
Fuchsin 1% reagent for 1 min at room temperature. Sections were then quickly rinsed in
distilled water and covered with Phosphomolybdic Acid 2% for 3 min at room temperature.
After removing the reagent, the sections were covered with Mallory mixture for 30 s at
room temperature, subsequently quickly rinsed in distilled water, dehydrated for a few
seconds in ethyl alcohol 95◦, absolute ethyl alcohol, and clarified with isoparaffin-based
solvent (DIAPATH). Finally, the sections were mounted in balsam. The results of the
histopathological samples were obtained the day after, and the images were acquired with
the Eclipse Ti2 microscope (Nikon Inc., Melville, NY, USA) using an ×20 objective lens.
The degree of fibrosis was classified as mild, moderate, or severe.

4.9. Statistical Analysis

For microarray analysis, the raw data were background-corrected and normalized
with the robust multialignment algorithm (RMA) using the Affymetrix Expression Console.
Differentially expressed genes (DEGs) between Crenigacestat-treated and vehicle-treated
samples were identified with the Affymetrix Transcriptome Analysis Console 4.0 using
the Limma eBayes method. DEGs were selected by applying a fold-change of ± 1.5 and
p-value ≤ 0.05 (with or without FDR correction). Hierarchical clustering was generated
using Alt Analyze 2.1.3 software [39]. Gene ontology analysis for biological processes was
performed using GOrilla (Gene Ontology enRIchment anaLysis and visuaLizAtion tool)
(http://cbl-gorilla.cs.technion.ac.il/ access on 15 December 2021) software [40].

In addition, Ingenuity Pathway Analysis (IPA) software (Qiagen, Germantown, MD,
USA) was applied to identify the molecular networks and upstream transcriptional regula-
tors modulated by DEGs, comparing Crenigacestat-treated and vehicle-treated samples.

Biological and technical triplicate results were analyzed with the appropriate statis-
tical tests (unpaired t-test or ANOVA) in order to establish statistical significance and
reproducibility. A p-value≤ 0.05 was considered statistically significant. The values are pre-
sented as mean ± standard deviation (SD) or standard error of the mean (SEM). GraphPad
Prism 5.0 software (La Jolla, CA, USA) was used for all statistical analyses.

5. Conclusions

This study demonstrates that in a HuCCT1-xenograft mouse model, Crenigacestat
specifically targets the expression of N1ICD and HES1. Beyond that, Crenigacestat is
able to reduce the expression of CD31, DLL4, and VEGFA by blocking angiogenesis,

http://cbl-gorilla.cs.technion.ac.il/
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whereas it does not affect fibrosis and does not down-regulate MMP13 likely because of its
commitment to modulating the inflammatory response (Figure 10). These data highlight
that the effect of Crenigacestat on the Notch signaling pathway depends on the cross-talk
between tumor and stromal cells. HuCCT1-xenograft mice do not mimic the complexity of
the microenvironmental conditions responsible for human iCCA tumor progression and
treatment evasion. This underlines the importance of personalizing therapies in patients
with cancer, and in particular those with iCCA, taking into account the desmoplastic
reaction as a modulator of drug responsiveness and tumor progression.
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