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Abstract: Sex determination and differentiation is an important biological process for unisexual
flower development. Spinach is a model plant to study the mechanism of sex determination and
differentiation of dioecious plant. Till now, little is known about spinach sex determination and
differentiation mechanism. MicroRNAs are key factors in flower development. Herein, small RNA
sequencing was performed to explore the roles of microRNAs in spinach sex determination and
differentiation. As a result, 92 known and 3402 novel microRNAs were identified in 18 spinach
female and male flower samples. 74 differentially expressed microRNAs were identified between
female and male flowers, including 20 female-biased and 48 male-biased expression microRNAs.
Target prediction identified 22 sex-biased microRNA-target pairs, which may be involved in spinach
sex determination or differentiation. Among the differentially expressed microRNAs between FNS
and M03, 55 microRNAs were found to reside in sex chromosome; one of them, sol-miR2550n, was
functionally studied via genetic transformation. Silencing of sol-miR2550n resulted in abnormal anther
while overexpression of sol-miR2550n induced early flowering, indicating sol-miR2550n was a male-
promoting factor and validating the reliability of our small RNA sequencing data. Conclusively, this
work can supply valuable information for exploring spinach sex determination and differentiation
and provide a new insight in studying unisexual flower development.
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1. Introduction

Sex is a special character of biology. Most animals are unisexual and the mechanism of
sex determination mammalian is already clearer. In plant kingdom, only 6% of angiosperms
are dioecious plants and their sex determining mechanism are not well studied [1]. The
gender origins of dioecious plant are not uniform, which enhances the difficulty to uncover
plant sex determining mechanism. At present, there are two main ideas about the mecha-
nism of sex determination in dioecious plants: one is the two-gene mutation model, and the
other is the single-gene mutation model. For two-gene mutation model, the appearance of
dioecious plants may be due to the mutation of two genes, M gene, which controls stamen
fertility, and F gene, which regulates pistil development [2,3]. For single-gene mutation
model, the emergence of dioecious plants may be caused by the two independent mutations
of the same gene Q: one is loss-of-function mutation resulting in male sterility, and the other
is gain-of-function mutation inducing female sterility [4–6]. From these two models, it can
be seen that the mutation of flower development-related genes is the most important factor
leading to the generation of plant sex. To date, the sex-determining genes or candidates
have been identified in a few angiosperms such as Vitis vinifera [7,8], Diospyros lotus [9],
Populus trichocarpa [10–12], Ficus carica [13], Date palm [14], Fragaria octoploids [15], Actinidia
chinensis [16] and Asparagus officinalls [17]. The function of the sex-determining genes was
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studied only in few plants and the mechanism of sex determination remains largely elusive.
Sex differentiation is an important process along with sex determination. Researches on
sex differentiation may supply clues to uncover sex determination. Many genes related to
sex differentiation have been identified in different plants such as in Silene latifolia [18,19],
Carica papaya [20].

MicroRNAs (miRNAs) are a class of endogenous single-stranded non-coding small
RNA molecules with a length of about 21–24 nt. The initial transcription product pri-
miRNA is spliced into a single strand RNA precursor (pre-miRNA) with hairpin structure,
and then formed the mature miRNA with regulatory function. MiRNAs negatively regulate
their target messenger RNAs (mRNA) through mRNA degradation, translation inhibition
or chromatin modification [21–23]. MiRNAs play important regulatory roles in plant
morphogenesis, nutrient balance, biological and abiotic stress [24–27]. More and more
studies have shown that miRNAs played important roles in plant flower development.
Flowering is an important process in plant growth cycle and miRNAs are involved in flower
formation processes. In Arabidopsis, miR164c regulated two NAC transcription factors CUP-
SHAPED COTYLEDON1 (CUC1) and CUC2 to control the boundary foundation of floral
organs [28]. MiR172 can regulate the formation of sepal and petal primordium via inhibiting
the translation of floral homeotic gene APETALA2 [29,30]. MiR159, miR167 and miR319 can
form a regulation module to influence flower development by targeting transcription factors
MYB33, TCP4 and Auxin Response Factor6/8 [31]. In tomato, sly-miR160a was involved
in flower development via regulating auxin response factor SlARF10A [32]. The flowers
of corn, a hermaphrodite plant, are bisexual in the early development stage but become
unisexual in the late stage as the development of pistil or stamen is blocked. It has been
reported that zma-miR172E was a member of miR172 family and an insertional mutation
in the promoter region of its coding gene resulted in a corn recessive mutant tasseleseed4,
in which carpel developed in tassel with no stamen [33]. The sex determining gene of a
dioecious plant, persimmon (Diospyros lotus) was identified as a miRNA, OGI, targeting a
homeodomain transcription factor MeGI to determine plant sex [9,34]. These studies fully
demonstrate that miRNAs participate in flower development, even in the formation of
unisexual flowers and moreover miRNA can serve as sex determining gene.

Spinacia oleracea (2n = 12), a dioecious plant, has a pair of homomorphic sex chromo-
somes (XY) and is at the early stage of sex chromosome evolution [35]. Many sex-linked, sex
chromosome-specific and sex-determining-gene-linked molecular markers were developed
in spinach, such as T11A, V20A, 45 s rDNA, SP_0018, SpoX and so on [36–39]. These
molecular markers are helpful for locating the accurate sex-determining region (SDR) and
further identifying sex-determining genes. Qian et al. (2017) [40], Yu et al. (2021) [41] and
Ma et al. (2022) [42] found the SDR locating on the sex chromosome using different method.
Moreover, 166 sex-differentiation-related genes and 12 Y-specific genes were successively
reported in spinach [40,43]. However, the function of these genes was still unclear and it
is still controversial that spinach sex determination is regulated by single-gene mutation
model or two-gene mutation model [43]. Spinach genome was firstly published in 2017 and
constantly updated with the development of high throughput technology, which supply
valuable information for functional genome study [41,42,44–46].

To verify whether miRNA can serve as sex determining gene in spinach, miRNAs
resource should be firstly harvested. In 2017, spinach miRNAs were analyzed via in silico
prediction in vegetative tissues of spinach [47]. Flower development-related genes are
crucial for sex determination and differentiation, so we performed small RNA sequencing
using 18 spinach flower samples at three early female and male flower development stages
to identify some candidate miRNAs for spinach sex determination or differentiation. Virus-
induced gene silencing (VIGS) technology is an efficient way to study gene function in
plant [48]. In addition, this technology has been successfully applied in spinach [49,50].
Moreover, RNA interference technology and overexpression technology have been used to
study miRNA function [51]. Hence, we performed VIGS and overexpression technology to
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analyze the function of sol-miR2550n, one of the candidate miRNAs, and to further validate
the accuracy of our sequencing data.

2. Results
2.1. Small RNA Sequencing

The roles of miRNAs in flower development are not clear in spinach till now. To
characterize miRNAs in spinach, we performed small RNA sequencing using 18 spinach
flower samples and harvested 13,911,586 high quality reads (mean value of 18 samples
data) (Table 1). After filtering, at least 91.37% of high quality reads were selected as small
RNA clean tags, the primary length distribution of which is 24 nt (Figure 1). All small
RNA clean tags were aligned in GeneBank database (Release 209.0), Rfam database (11.0),
spinach genome (http://www.spinachbase.org/, accessed on 23 July 2021) and miRBase
database (Release 21). Finally, 92 known miRNAs and 3402 novel miRNAs were identified
in 18 spinach flower samples (Table 2).

Table 1. Summary of small RNA sequencing.

Sample ID Clean Reads High
Quality

3’Adapter
Null Insert Null 5’Adapter

Contaminants
Smaller

than 18 nt PolyA Clean Tags

SpM10-1 14,183,245
(100%)

13,907,336
(98.0547%)

66,715
(0.4797%)

39,362
(0.2830%) 68,350 (0.4915%) 193,229

(1.3894%)
2113

(0.0152%)
13,537,567
(97.3412%)

SpM10-2 14,464,387
(100%)

14,164,634
(97.9276%)

80,069
(0.5653%)

67,309
(0.4752%) 19,248 (0.1359%) 553,683

(3.9089%)
1861

(0.0131%)
13,442,464
(94.9016%)

SpM10-3 14,506,554
(100%)

14,227,721
(98.0779%)

77,086
(0.5418%)

117,860
(0.8284%) 37,183 (0.2613%) 1,254,040

(8.8141%)
1497

(0.0105%)
12,740,055
(89.5439%)

SpM05-1 15,642,311
(100%)

15,300,380
(97.8141%)

34,255
(0.2239%)

129,458
(0.8461%) 29,207 (0.1909%) 778,380

(5.0873%)
2248

(0.0147%)
14,326,832
(93.6371%)

SpM05-2 15,687,586
(100%)

15,366,874
(97.9556%)

39,542
(0.2573%)

104,255
(0.6784%) 42,694 (0.2778%) 514,753

(3.3498%)
1978

(0.0129%)
14,663,652
(95.4238%)

SpM05-3 13,426,285
(100%)

13,140,154
(97.8689%)

60,121
(0.4575%)

96,948
(0.7378%) 23,471 (0.1786%) 566,578

(4.3118%)
1664

(0.0127%)
12,391,372
(94.3016%)

SpM03-1 14,134,390
(100%)

13,839,374
(97.9128%)

65,717
(0.4749%)

87,932
(0.6354%) 25,498 (0.1842%) 619,950

(4.4796%)
2138

(0.0154%)
13,038,139
(94.2105%)

SpM03-2 14,974,564
(100%)

14,661,075
(97.9065%)

51,713
(0.3527%)

49,690
(0.3389%) 27,909 (0.1904%) 716,623

(4.8879%)
2337

(0.0159%)
13,812,803
(94.2141%)

SpM03-3 14,763,485
(100%)

14,459,587
(97.9416%)

59,870
(0.4141%)

102,487
(0.7088%) 25,196 (0.1743%) 1,058,011

(7.3170%)
1825

(0.0126%)
13,212,198
(91.3733%)

SpFYS-1 14,686,982
(100%)

14,367,641
(97.8257%)

42,045
(0.2926%)

57,856
(0.4027%) 18,191 (0.1266%) 388,472

(2.7038%)
1739

(0.0121%)
13,859,338
(96.4622%)

SpFYS-2 16,785,272
(100%)

16,407,458
(97.7491%)

84,234
(0.5134%)

85,457
(0.5208%) 28,469 (0.1735%) 790,536

(4.8182%)
1885

(0.0115%)
15,416,877
(93.9626%)

SpFYS-3 13,411,587
(100%)

13,139,123
(97.9684%)

59,803
(0.4552%)

75,025
(0.5710%) 19,904 (0.1515%) 554,722

(4.2219%)
1697

(0.0129%)
12,427,972
(94.5875%)

SpFNB-1 12,270,405
(100%)

12,010,945
(97.8855%)

38,498
(0.3205%)

53,131
(0.4424%) 14,985 (0.1248%) 314,233

(2.6162%)
1141

(0.0095%)
11,588,957
(96.4866%)

SpFNB-2 13,192,504
(100%)

12,938,214
(98.0725%)

26,417
(0.2042%)

54,149
(0.4185%) 21,619 (0.1671%) 550,952

(4.2583%)
1196

(0.0092%)
12,283,881
(94.9426%)

SpFNB-3 12,539,936
(100%)

12,279,735
(97.9250%)

53,903
(0.4390%)

38,428
(0.3129%) 17,344 (0.1412%) 364,801

(2.9708%)
1132

(0.0092%)
11,804,127
(96.1269%)

SpFNS-1 14,777,105
(100%)

14,461,450
(97.8639%)

44,934
(0.3107%)

58,975
(0.4078%) 19,961 (0.1380%) 822,130

(5.6850%)
1283

(0.0089%)
13,514,167
(93.4496%)

SpFNS-2 13,104,189
(100%)

12,831,211
(97.9169%)

26,074
(0.2032%)

66,202
(0.5159%) 19,029 (0.1483%) 426,303

(3.3224%)
1346

(0.0105%)
12,292,257
(95.7997%)

SpFNS-3 13,170,448
(100%)

12,905,639
(97.9894%)

97,757
(0.7575%)

67,113
(0.5200%) 18,541 (0.1437%) 619,765

(4.8023%)
1122

(0.0087%)
12,101,341
(93.7679%)

http://www.spinachbase.org/
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Figure 1. Frequency distribution of small RNA length. FNS, female flower without stigma (0.3 mm
in diameter); FNB, female flower without stigma (0.5 mm in diameter); FYS, mature female flower
with stigma; M03, male flower (0.3 mm in diameter); M05, male flower (0.5 mm in diameter); M10,
male flower (1.0 mm in diameter).

Table 2. Summary of miRNAs identified in each sample.

Sample Tags Total
Known miRNA Novel miRNA

miRNA Number Tags Number Ratio a miRNA Number Tags Number Ratio b

SpM10-1 13537567 164 655285 4.84% 2434 66103 0.49%
SpM10-2 13442464 179 704922 5.24% 2503 81406 0.61%
SpM10-3 12740055 178 913251 7.17% 2216 78922 0.62%
SpM05-1 14326832 183 694889 4.85% 2416 61441 0.43%
SpM05-2 14663652 166 1005695 6.86% 2338 61939 0.42%
SpM05-3 12391372 173 677457 5.47% 2384 58427 0.47%
SpM03-1 13038139 157 449864 3.45% 2581 95857 0.74%
SpM03-2 13812803 219 662634 4.80% 2563 105093 0.76%
SpM03-3 13212198 194 734663 5.56% 2386 121533 0.92%
SpFYS-1 13859338 173 347553 2.51% 2772 74358 0.54%
SpFYS-2 15416877 200 358872 2.33% 2790 104483 0.68%
SpFYS-3 12427972 163 360486 2.90% 2499 69776 0.56%
SpFNB-1 11588957 140 733948 6.33% 1980 48237 0.42%
SpFNB-2 12283881 155 656934 5.35% 1768 42769 0.35%
SpFNB-3 11804127 131 768099 6.51% 1796 45868 0.39%
SpFNS-1 13514167 163 1010772 7.48% 1857 74367 0.55%
SpFNS-2 12292257 144 977760 7.95% 2107 59193 0.48%
SpFNS-3 12101341 156 687684 5.68% 2032 40874 0.34%

Total c 92 3402

Note: a, the ratio of known miRNA Tags number to Tags total; b, the ratio of novel miRNA Tags number to Tags
total; c, the total number of known or novel miRNAs identified in all samples.

2.2. Sex-Biased miRNAs of Spinach

According to the expression of miRNA, differentially expressed miRNAs (DE miR-
NAs) were analyzed among female and male flower samples. There were 431 DE miRNAs
between FNS and M03, 451 DE miRNAs between FNB and M05, and 781 DE miRNAs
between FYS and M10 (Figure 2a). Sex-biased genes, which exhibit significantly higher
expression in one sex than in the other sex, always act downstream of sex-determining gene.
Hence, identification of the sex-biased genes is helpful to uncover the sex-determination
mechanism. Herein, 74 DE miRNAs (7 were known and 67 were novel) were identified
between female and male flowers at three early developmental stages (Figure 2a; Table S1);
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and of them, 20 miRNAs displayed female-biased expression and 48 miRNAs displayed
male-biased expression (Figure 2b). Moreover, there were 9 female-specific expression miR-
NAs and 17 male-specific expression miRNAs (Figure 2b). These sex-biased and sex-specific
expression miRNAs may be involved in spinach sex determination or differentiation.
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2.3. Target Genes of miRNAs

Target genes of miRNAs were analyzed according to our previous transcriptome
data [52]. Totally, 20,460 genes were predicted as targets of 2855 miRNAs and 49,591 target
sites were found in these target genes for miRNAs binding (Table 3). It can be seen that
one miRNA can regulate more than one gene and one gene can be controlled by more
than one miRNA. MiRNA and its target always display antagonistic expression profile.
As previously reported [52], 1946 male-biased genes and 961 female-biased genes were
found between female and male flowers at three early developmental stages. Herein, we
found ten male-biased genes were targeted by five female-biased miRNAs and six female-
biased genes were targeted by ten male-biased miRNAs, composing 22 miRNA-target
pairs (Figure 3, Table S2). The 22 miRNA-target pairs may be involved in spinach sex
determination or differentiation.

Table 3. Statistics of target gene prediction of all miRNAs.

Sample Name miRNA Number Target Gene Number Target Site Number

SpM10-1 1726 7161 14391
SpM10-2 1796 7619 15036
SpM10-3 1598 7832 15006
SpM05-1 1746 8359 15876
SpM05-2 1679 6518 13201
SpM05-3 1720 7744 15111
SpM03-1 1822 6874 13919
SpM03-2 1893 9451 18542
SpM03-3 1712 9045 17370
SpFYS-1 1952 6646 14188
SpFYS-2 1976 7817 16164
SpFYS-3 1744 6518 13423
SpFNB-1 1430 5401 10784
SpFNB-2 1323 5355 10423
SpFNB-3 1294 5091 9762
SpFNS-1 1361 6579 11874
SpFNS-2 1523 5300 10930
SpFNS-3 1481 6481 12669

Total 2855 20460 49591
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2.4. MiRNAs Residing in Sex Chromosome

In the published spinach genome data, chr4 is the sex chromosome where the sex-
determining genes reside [43]. Blasting with spinach genome [44], we found 307 miRNAs
(16 known and 291 novel) residing in Chr1, 275 miRNAs (6 known and 269 novel) residing
in Chr2, 415 miRNAs (12 known and 403 novel) residing in Chr3, 496 miRNAs (8 known
and 488 novel) residing in Chr4 (sex chromosome), 282 miRNAs (17 known and 265
novel) residing in Chr5, 240 miRNAs (2 known and 238 novel) residing in Chr6, and 1479
miRNAs (31 known and 1448 novel) residing in scaffolds (Figure 4). Among 496 miRNAs
residing in sex chromosome, there were 55 DE miRNAs between FNS and M03, 56 DE
miRNAs between FNB and M05, and 114 DE miRNAs between FYS and M10. However,
no intersection was existed among these three data sets, i.e., no DE miRNA was identified
between female and male flowers at three developmental stages. Considering that sex
determination and differentiation occurs at the earlier flower development stage in spinach,
so we further analyzed DE miRNAs between FNS and M03, the earliest stage of the three
flower developmental stages. As a result, 14 differential expression genes were found as
targets of ten DE miRNAs between FNS and M03 (Table 4).
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Table 4. DE miRNAs with targets between FNS and M03.

miRNA ID Target Annotation

novel-m2307-5p Isoform014322 ENTH/ANTH/VHS superfamily protein isoform 1
novel-m2430-5p Isoform009669 protein IQ-DOMAIN 14
novel-m2524-5p Isoform010547 F-box and leucine-rich repeat protein 2/20
novel-m2550-5p Isoform007857 defensin Ec-AMP-D2-like
novel-m2554-3p Isoform007343 probable prefoldin subunit 2
novel-m2572-3p Spo15344 plant mobile domain family protein
novel-m2617-3p Isoform008852 uncharacterized LOC104898421

novel-m2619-3p Spo05571 Polygalacturonase (PG) (3.2.1.15) (Pectinase)
(Precursor)

novel-m2641-5p Isoform002028 7-hydroxymethyl chlorophyll a reductase,
chloroplastic

Isoform002329 ABC transporter A family member 7-like

Isoform007233 cysteine-rich and transmembrane domain-containing
protein A

Isoform014680 transcription factor bHLH90

novel-m2763-3p Isoform000331 probable xyloglucan endotransglucosylase/hydrolase
protein 5

Isoform011756 uncharacterized LOC104897309

2.5. Functional Analysis of Sol-miR172 and Sol-miR2550n

To uncover the potential function of these miRNAs residing in sex chromosome, we
performed plant transformation experiments for the first time. sol-miR172 (miR172-y) is
a DE miRNA between FNS and M03 and showed higher expression level in M03 stage;
its homolog in Arabidopsis has been reported to regulate flower development [29], so we
selected sol-miR172 as a positive control. sol-miR2550n (novel-m2550-5p) resided in sex
chromosome and displayed higher expression level in M03 stage than in FNS stage (Table
S3), so we selected it as a sex-determining candidate. Virus-induced-gene-silencing and
heterologous-overexpression were performed for functional analysis of sol-miR172 and
sol-miR2550n in spinach. Silencing of sol-miR172 or sol-miR2550n in spinach resulted in
abnormal male flower (anther abortion) (Figure 5a,c,f). Overexpression of sol-miR172 or
sol-miR2550n in Arabidopsis induced early flowering (Figure 5b,d,e,g,h). The phenotype
of overexpression sol-miR172 in Arabidopsis was consistent with Aukerman and Sakai’s
report [53]. These results verified the accuracy of the small RNA sequencing and analysis.
Moreover, this work will supply abundant valuable information to explore the mechanism
of spinach sex determination and differentiation.
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Figure 5. Phenotypes of silencing and overexpression of sol-miR2550n and sol-miR172. (a) an-
ther phenotype of wildtype (WT), sol-miR2550n- or sol-miR172-silencing spinach male plant, scale
bar = 0.5 mm; (b) phenotype of wildtype, sol-miR2550n- or sol-miR172-overexpressed Arabidopsis
plant; (c) relative expression level of sol-miR2550n in wildtype and sol-miR2550n-silencing spinach
plant; (d) relative expression level of sol-miR2550n in wildtype and sol-miR2550n-overexpressed
Arabidopsis plant; (e) statistics of flowering time of sol-miR2550n-overexpressed Arabidopsis plants,
n ≥ 20; (f) relative expression level of sol-miR172 in wildtype and sol-miR172-silencingspianch plant;
(g) relative expression level of sol-miR172 in wildtype and sol-miR172-overexpressed Arabidopsis plant;
(h) statistics of flowering time of sol-miR172-overexpressed Arabidopsis plants, n ≥ 20; “*” represents
p-value < 0.05; “**” represents p-value < 0.01; “***” represents p-value < 0.001; error bar represents
standard error.

3. Discussion

Sex determination and differentiation is an important question for monoecious and
dioecious plant. In some species, the sex determining genes have been identified, such as
asparagus, kiwifruit and persimmons. However, sex determining gene is still unclear in
spinach; it may be transcription factor or noncoding RNA. Hence, we performed small
RNA sequencing to search some clues.

It was the first time to sequencing small RNAs in spinach. Totally, 92 known miRNAs
and 3402 novel miRNAs were identified in 18 spinach flower samples (Table 1), which en-
riched plant miRNA resource. To analyze the miRNAs related to spinach sex determination
or differentiation, 74 differentially expressed miRNAs were screened out among female
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and male flower at three early developmental stages (Figure 2a), including 20 female-
biased miRNAs, 9 female-specific miRNAs, 48 male-biased miRNAs and 17 male-specific
expression miRNAs (Figure 2b). Moreover, 22 miRNA-target pairs were found through
target prediction (Figure 3). These 74 sex-biased or sex-specific miRNAs can be served as
candidates of spinach sex differentiation, but not sex determination as they were not reside
in sex chromosome. Genes residing in sex chromosome, especially in sex-determining
region, are important clues to explore spinach sex determination and differentiation. Hence,
we analyzed the miRNAs residing in sex chromosome; and then we found 496 miRNAs
in sex chromosome, but none was sex-biased miRNA (Figure 4). Considering that sex
determinant plays a role in early spinach flower development stage, so we screened out ten
DE miRNAs between FNS and M03, two earliest stages among samples (Table 4). 14 targets
with opposite expression trend to these ten DE miRNAs were also identified (Table 4).
The function of these ten DE miRNAs residing in sex chromosome will be studied in our
future work.

Herein, one of the DE miRNAs residing in sex chromosome, sol-miR2550n, were
firstly studied for its function. Through VIGS and overexpression method, we found
that silencing of sol-miR2550n in spinach induced abnormal male flower (anther abortion)
and overexpression of sol-miR2550n in Arabidopsis resulted in early flowering (Figure 5).
sol-miR2550n showed higher expression level in male flower (M03) than in female flower
(FNS) (Table S3), hence down-regulation of its expression influenced the male flower
development. However, up-regulation of its expression didn’t affect flower structure but
induced early flowering. In spinach, the flowering time of male plant is earlier than female
plant [54]. Hence, an interesting hypothesis is that up-regulation of a male factor may
promote the male trait, such as early flowering. Hence, sol-miR2550n may be a male-
promoting factor. The exact molecular mechanism needs to be explored in future work.
Meanwhile, sol-miR172, a homolog of the well-known flower-related factor miR172 [53,55],
was also studied in this work as a positive control. In spinach, sol-miR172 also showed
higher expression level in M03 (male flower) than in FNS (female flower) but not resided in
sex chromosome. Overexpression of sol-miR172 in Arabidopsis resulted in early flowering, in
accordance with ath-miR172 (Figure 5). However, down-regulation of sol-miR172 in spinach
resulted in anther abortion of male flower, which is not similar with ath-miR172 (influencing
flower whorls pattern) (Figure 5). Such difference may be due to the architecture difference
between unisexual flower and bisexual flower and also indicated a new potential regulation
pathway of miR172 in unisexual flower development. The molecular mechanism will be
studied in our future work.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

All plants used in this study were Spinacia oleracea L. cv DA JIAN YE BO CAI, a
dioecious plant. Seeds were obtained from U.S. National Plant Germplasm System (https:
//npgsweb.ars-grin.gov/gringlobal/search.aspx?, accessed on 23 July 2021, accession
number is PI 527332) and grown in an experimental field at Henan Normal University,
Xinxiang, China (113.90◦ E, 35.32◦ N). Female and male flowers collected at three stages
were separately used for Small RNA Sequencing and qRT-PCR. Flower samples were same
with our previous published paper [52].

Spinach plants used for VIGS treatment were planted in climate chamber (Jiangnanyiqi,
Ningbo, China) with 16 h/8 h day/night, 18 ◦C, 60% humidity. Arabidopsis plants were
planted in climate chamber (Jiangnanyiqi, Ningbo, China) with 16 h/8 h day/night, 22 ◦C,
and 60% humidity.

4.2. Library Construction and Sequencing

After total RNA was extracted by TRIzol (Thermo Fisher Scientific, Waltham, MA,
USA), the RNA molecules in a size range of 18–30 nt were enriched by polyacrylamide
gel electrophoresis (CWBIO, Taizhou, China). Then the 3′ adapters were added and the

https://npgsweb.ars-grin.gov/gringlobal/search.aspx
https://npgsweb.ars-grin.gov/gringlobal/search.aspx
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36–44 nt RNAs were enriched. The 5′ adapters were then ligated to the RNAs as well.
The ligation products were reverse transcribed by PCR amplification and the 140–160 bp
size PCR products were enriched to generate a cDNA library and sequenced using Illu-
mina HiSeq TM 2500 (Illumina, San Diego, CA, USA) by Gene Denovo Biotechnology Co.
(Guangzhou, China).

Reads obtained from the sequencing machine included dirty reads containing adapters
or low quality bases which would affect the following assembly and analysis. Thus, to
acquire clean tags, raw reads were further filtered using fastp software (https://github.
com/OpenGene/fastp, version 0.12.4, 1 March 2022) according to the following rules:

(1) Removing low quality reads containing more than one low quality (Q-value ≤ 20)
base or containing unknown nucleotides (N);

(2) Removing reads without 3′adapters;
(3) Removing reads containing 5′adapters;
(4) Removing reads containing 3′ and 5′ adapters but no small RNA fragment between them;
(5) Removing reads containing ployA (the content of A base in a reads is higher than

70%) in small RNA fragment;
(6) Removing reads shorter than 18 nt (not include adapters).

4.3. Alignment and Identification of Small RNA

All of the clean tags were aligned with small RNAs in GeneBank database (https:
//www.ncbi.nlm.nih.gov/genbank/, Release 209.0, 1 March 2022) using blast (https:
//blast.ncbi.nlm.nih.gov/Blast.cgi, version 2.2.25, 1 March 2022) (blastn, identity > 97%) to
identify and remove rRNA, scRNA, snoRNA, snRNA and tRNA. Meanwhile all of the clean
tags were aligned with small RNAs in Rfam database (http://rfam.xfam.org/, version
11.0, 1 March 2022) using blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi, version 2.2.25,
1 March 2022) (blastn, identity > 97%) to identify and remove rRNA, scRNA, snoRNA,
snRNA and tRNA. All of the clean tags were also aligned with reference genome [44]
using bowtie (https://www.nature.com/articles/nmeth.1923, version 1.1.2, 1 March 2022)
(parameters: -v 0 –best –strata –a). Those mapped to exons or introns might be frag-
ments from mRNA degradation, so these tags were removed. The tags mapped to repeat
sequences using RepeatMasker (http://www.repeatmasker.org/, 1 March 2022, version
open-4.0.6, RepeatMasker Database: RepeatMaskerLib.embl Update 20150807, parameters:
RepeatMasker -engine wublast -s -no_is -cutoff 255 -frag 20000) were also removed.

After removing rRNA, scRNA, snoRNA, snRNA, tRNA, mRNA degradation frag-
ments and repeat sequences, the clean tags were then searched against miRBase database
(http://www.mirbase.org/, 1 March 2022, Release 21) using bowtie (http://bowtie-bio.
sourceforge.net/index.shtml, 1 March 2022, version 1.1.2, parameters: -v 0 –best –strata -a)
to identify exist and known miRNAs. Then the unidentified clean tags were mapped to ref-
erence genome [44]. According to their genome positions and hairpin structures predicted
by software Mireap_v0.2 (https://sourceforge.net/projects/mireap/, 1 March 2022), the
novel miRNA candidates were identified. The default parameters of software Mireap_v0.2
were as follows:

(1) Minimal miRNA sequence length is 18 nt;
(2) Maximal miRNA sequence length is 25 nt;
(3) Minimal miRNA reference sequence length is 20 nt;
(4) Maximal miRNA reference sequence length is 23 nt;
(5) Maximal copy number of miRNAs on reference is 20;
(6) Maximal free energy allowed for a miRNA precursor is 18 kcal/mol;
(7) Maximal space between miRNA and miRNA* is 300 nt;
(8) Minimal space between miRNA and miRNA* is 16 nt;
(9) Maximal bulge between miRNA and miRNA* is 4 nt;
(10) Maximal asymmetry of miRNA/miRNA* duplex is 4 nt;
(11) Flank sequence length of miRNA precursor is 20 nt.

https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://rfam.xfam.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.nature.com/articles/nmeth.1923
http://www.repeatmasker.org/
http://www.mirbase.org/
http://bowtie-bio.sourceforge.net/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
https://sourceforge.net/projects/mireap/


Int. J. Mol. Sci. 2022, 23, 4090 11 of 14

4.4. MiRNA Expression Profiles

Total miRNAs consist of existing miRNAs, known miRNAs and novel miRNAs,
based on their expression in each sample, the miRNA expression level was calculated and
normalized to transcripts per million (TPM). The formula is as follows: TPM = Actual
miRNA counts/Total counts of clean tags*106.

To identify DE miRNAs across samples or groups the formula was shown as follows:

p(x|y) =
(

N2
N1

)y (x+y)!

x!y!
(

1+ N2
N1

)(x+y+1)

C(y ≤ ymin|x) =
y≤ymin

∑
v=0

p(y|x)

D(y ≥ ymax|x) =
∞
∑

y≥max
p(y|x)

We identified miRNAs with a fold change ≥ 2 and p value < 0.05 in a comparison as
significant DE miRNAs.

4.5. Target Gene Prediction

Based on the sequences of the exist miRNAs, known miRNAs and novel miRNAs,
the candidate target genes were predicted. The software patmatch (ftp://ftp.arabidopsis.
org/home/tair/Software/Patmatch/, 1 March 2022, version 1.2) was used to predict target
genes. The default parameters were as follows:

(1) No more than four mismatches between sRNA & target (G-U bases count as 0.5 mismatches)
(2) No more than two adjacent mismatches in the miRNA/target duplex
(3) No adjacent mismatches in in positions 2–12 of the miRNA/target duplex (5′ of miRNA)
(4) No mismatches in positions 10–11 of miRNA/target duplex
(5) No more than 2.5 mismatches in positions 1–12 of the of the miRNA/target duplex (5′

of miRNA)
(6) Minimum free energy (MFE) of the miRNA/target duplex should be > = 74% of the

MFE of the miRNA bound to it’s perfect complement.

4.6. qRT-PCR

E.Z.N.A.® Plant miRNA Kit (OMEGA, Norcross, GA, USA) and E.Z.N.A.® Plant
RNA Kit (OMEGA, Norcross, GA, USA) was used to isolate miRNA and total RNA, sep-
arately, according to manufacturer’s introduction. Mir-X miRNA First-Strand Synthesis
Kit (TaKaRa, Shiga, Japan) was used to perform reverse transcription of miRNA. Prime-
Script™ RT reagent Kit with gDNA Eraser (TaKaRa, Shiga, Japan) was used to synthesis
the cDNA of total RNA. Mir-X miRNA qRT-PCR TB Green Kit (TaKaRa, Shiga, Japan) and
TB Green ® Premix Ex Taq™ II (Tli RNaseH Plus) (TaKaRa, Shiga, Japan) were used to
perform the qRT-PCR of miRNA and mRNA, respectively. qRT-PCR was carried out on
LightCycler® 480 System (Roche, ) according to the manufacturer’s instructions. SpoEF,
SpoUBQ, At5sRNA, AtACTIN2 were used as an internal control for normalization. The
relative expression level of transcript was calculated with 2−∆∆CT method. All primers
sequences are listed in Table S4.

4.7. Vector Construction and Plant Transformation

The pre-miRNA was cloned using Trans-Start® FastPfu Fly DNA Polymerase (TRANS-
GEN, Beijing, China) and inserted into the pTRV2 vector (VIGS) or pLP100-35s vector
(overexpression) with ClonExpressIIOne Step Cloning Kit (Vazyme, Nanjing, China). These
vectors were transformed into Agrobacterium competent cells (GV3101, WEIDI, Shanghai,
China). Spinach seedlings with four leaves were injected with Agrobacterium infection
buffer including pTRV2-pre-miRNA vector; flower phenotype was observed after about
30 days. Arabidopsis flower buds were dipped in Agrobacterium infection buffer including
pLP100-35s-pre-miRNA vector; positive T1 plants were used to observe phenotype.

ftp://ftp.arabidopsis.org/home/tair/Software/Patmatch/
ftp://ftp.arabidopsis.org/home/tair/Software/Patmatch/
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5. Conclusions

It was the first time to sequencing small RNAs in spinach. 92 known and 3402 novel
miRNAs were identified, which enriched plant miRNA resource. 74 DE miRNAs includ-
ing male-biased/specific and female-biased/specific expression miRNAs were identified
between male and female flowers. Moreover, target prediction identified 22 sex-biased
microRNA-target pairs, which may be involved in spinach sex determination or differ-
entiation. Genes residing in sex chromosome, especially in sex-determining region, are
very important for sex determination or differentiation. Hence, miRNAs residing in sex
chromosome were analyzed and 55 DE microRNAs between FNS and M03 were identified;
and one of them, sol-miR2550n, was analyzed via genetic transformation. Silencing of
sol-miR2550n resulted in abnormal anther while overexpression of sol-miR2550n induced
early flowering, indicating sol-miR2550n may be a male-promoting factor. Conclusively,
our work can supply valuable information for exploring spinach sex determination and
differentiation and provide a new insight in studying unisexual flower development.
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