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Abstract: As essential components of our connective tissues, elastic fibres give tissues such as major
blood vessels, skin and the lungs their elasticity. Their formation is complex and co-ordinately
regulated by multiple factors. In this review, we describe key players in elastogenesis: fibrillin-1,
tropoelastin, latent TGFβ binding protein-4, and fibulin-4 and -5. We summarise their roles in
elastogenesis, discuss the effect of their mutations on relevant diseases, and describe their interactions
involved in forming the elastic fibre network. Moreover, we look into their roles in wound repair for
a better understanding of their potential application in tissue regeneration.
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1. Introduction

Elastic fibres endow tissues and organs with elasticity and extendibility in response
to mechanical forces. Aberrant formation and destruction of elastic fibres leads to many
diseases, such as Marfan syndrome (MFS) [1], cutis laxa and aneurysms [2]. Elastic fibres
are formed predominantly from elastin and fibrillin microfibrils [3]. Elastic fibre proteins
guide and facilitate elastogenesis, where tropoelastin globules are deposited on a fibrillin
microfibril scaffold, a process which is facilitated by fibulin-4 and -5 and latent TGFβ-
binding protein (LTBP)-4. In addition to elastogenesis, elastic fibre proteins have been
implicated in wound healing: for instance, in keloid disease and hypertrophic scarring,
disorganised and reduced elastin and fibrillin has been observed [4,5]. Furthermore, elastic
fibre proteins are important players in regulating TGFβ signalling [6] and integrin-mediated
cell attachment and spreading, which can further contribute to wound healing. Thus, this
review focuses on the elastic fibre proteins tropoelastin, fibrillin-1, LTBP4, fibulin-4 and -5,
and discusses their roles in elastogenesis and wound repair.

2. Elastic Fibre Proteins and Their Roles in Elastogenesis
2.1. Fibrillin-1

In humans, the fibrillin family is composed of three highly conserved proteins, fibrillin-
1, -2 and -3, all of which are engaged in the formation of microfibrils. Fibrillin-2 and -3 are
mainly expressed in fetal tissues, while fibrillin-1 is continuously expressed throughout
adulthood in tissues such as the heart, aorta, lung, nervous system and skin [7,8]. Mutations
in the FBN1 gene, which encodes fibrillin-1, are associated with MFS, isolated autosomal
dominant ectopia lentis 1, mitral valve-aorta-skeleton-skin (MASS) syndrome [9], Weill–
Marchesani syndrome (WMS) [10], stiff skin syndrome [11], acromicric and geleophysic
dysplasias [12] and Marfanoid-progeroid-lipodystrophy syndrome [13]. Human fibrillin-1
is composed of 2781 amino acids and contains multiple domains, the majority of which
are calcium binding EGF-like (cbEGF) domains [14,15]. Other domains are the fibrillin
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unique N-terminal (FUN) region, 8-cysteine domains (also known as TGFβ binding-like or
TB domains), hybrid domains, a proline-rich region and a C-terminal region, as shown in
Figure 1 [3,16]. In vitro experiments have shown that fibrillin-1 interacts with itself, leading
to microfibril assembly [17–19], and interacts with fibrillin-2 [17], heparan sulphate [20–22],
microfibril-associated glycoproteins [23], fibronectin [24] and other elastic fibre proteins
discussed later in this review, to form elastic fibres.
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Figure 1. Schematic diagram of fibrillin-1 domain structure and microfibril organisation. (A) Fibrillin-
1 is a modular multi-domain protein predominantly composed of calcium binding EGF-like domains,
TB and hybrid domains. Fibrillin-1 has a unique N-terminal (FUN) and C-terminal domain, and the
internal unique domain is proline-rich; (B) The pleated model (upper) and staggered model (lower)
of fibrillin microfibril organisation. In the pleated model, the fibrillin-1 monomer is compressed and
folded within one interbead repeat (57 nm period). In the staggered model, each fibrillin-1 monomer
is staggered in a head-to-tail pattern spanning two or three interbead repeats. The TB or 8-cysteine
domains are numbered.

The importance and function of fibrillin in vivo has been probed using a range of
mouse models. In mg∆/mg∆ mice, in which exons 19–24 of FBN1 are deleted, no gross phe-
notypic abnormalities were observed at birth, but mice died suddenly around three weeks
of age, and were characterised as vascular compromised, with aneurysmal dilatation, focal
fragmentation of elastic fibres and accumulation of the amorphous matrix observed [25].
Depending on genetic background, heterozygous mice had a normal lifespan, but showed
some classic MFS phenotypes, including pulmonary alterations and disruption or degra-
dation of the elastic fibres [26]. Disorganised elastic fibres were observed in the cornea of
the fibrillin-1 mg∆ heterozygous mice by electron microscopy and X-ray scattering [27]. In
addition, fibrillin-1 MFS mouse models with point mutations, domain deletion or trunca-
tions have also been generated to determine the role of fibrillin-1 in elastic-fibre-associated
diseases (for review, see [28,29]). In a model of WMS, the WM∆ mice with in-frame deletion
of exons 9–11 in FBN1 had thickened, less elastic skin and altered ultrastructure of fibrillin
microfibrils [30].

Despite our knowledge of the tissue role of fibrillin microfibrils, how the ~150 nm
long fibrillin monomers are organised into microfibrils with a periodicity of ~57 nm is still
not fully resolved. When visualised by electron microscopy, microfibrils have a “beads-
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on-a string” appearance [3]. Two models have been suggested for the packing of fibrillin
molecules within microfibrils based on a range of data, including small angle X-ray scatter-
ing (SAXS), electron tomography, antibody mapping and X-ray crystallography [31–34]. In
the pleated model, the N- and C-termini are overlapped within the bead, and the remaining
domains are arranged within the interbead so one fibrillin monomer spans a single 57 nm
microfibril repeat (Figure 1B). In the linear model, the termini are also overlapped within
the bead, but the fibrillin monomers are staggered in the microfibrils, and could span two
or more interbead repeats (Figure 1B).

2.2. Tropoelastin

Tropoelastin is the soluble precursor of elastin and is encoded by the ELN gene. The
most common splice form of human tropoelastin is ~60 kDa, containing cross-linking do-
mains rich in lysine residues and hydrophobic domains rich in proline and glycine residues,
as shown in Figure 2 [35]. Tropoelastin is secreted to the cell surface by elastogenic cells,
and then undergoes rapid spontaneous self-assembly or coacervation to form spherical
structures under physiological conditions via specific interaction sites on its hydrophobic
domains [36]. These structures are stabilised by cross-linking via its lysine residues medi-
ated by lysyl oxidase to further form tetrafunctional desmosine cross-links [37]. Elastin
globules are then deposition onto fibrillin microfibrils with the assistance of elastic-fibre-
associated proteins to form elastic fibres. This is facilitated by specific functional regions on
the microfibrils, and is supported by the elastic fibre proteins fibulin-4, fibulin-5 and LTBP4,
which will be described within this review. This complex and orchestrated process has
been described and reviewed extensively elsewhere [38,39]. The expression of tropoelastin
is initiated and increases rapidly at the late stage of fetal development [40], whereas there
is hardly any de novo synthesised tropoelastin in adulthood. Despite its limited synthesis
time window, elastin is stable once deposited, having an estimated half-life of several
decades and potentially up to 70 years [41].
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Figure 2. Domain structure of tropoelastin. Valine, proline and glycine-rich hydrophobic domains
are involved in the self-assembly or coacervation of tropoelastin. Hydrophilic domains, rich in lysine,
alanine and proline residues are arranged alternately between hydrophobic domains and contribute
to the cross-linking of tropoelastin. The C-terminal RKRK motif binds with integrins to regulate cell
adhesion and interacts with microfibrils to facilitate elastic fibre assembly.

The 3D structure of tropoelastin was first analysed by small-angle neutron scattering
(SANS) and SAXS, and showed that the tropoelastin molecule is asymmetric with a “head-
like” N-terminal region and a “foot-like” C-terminal region. An extended coil region,
a flexible hinge and a bridge region are located between the N- and C-terminal regions [42].
More recently, using replica exchange molecular dynamics simulations (REMD), the fully
atomistic molecular structure of human tropoelastin was modelled and found to have
common structural features and similar dimensions to the SAXS tropoelastin model [43].
Discrepancies in local structure observed between these two models reflect the dynamic
properties of tropoelastin. Notably, there are 13 transcript variants of tropoelastin displayed
in the NCBI, and results from several studies by nuclear magnetic resonance (NMR) and
SAXS [44,45] suggest that different tropoelastin isoforms from different transcript variants
may have remarkable effects on the structure of tropoelastin. It may be that the tropoelastin
isoforms express in a tissue- and/or development-specific manner to further influence the
formation or properties of elastic fibres.
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Mutations in tropoelastin can result in cutis laxa (CL) and supravalvular aortic steno-
sis [9]. In Williams syndrome (WS) patients, a 500 kb region at 7q11.23 containing ELN and
other genes is deleted [9], suggesting the important role of tropoelastin in the aetiology of
WS. The relationships between polymorphisms of tropoelastin and other diseases have also
been studied, such as aortic dissection [46] and abdominal aortic aneurysm [47].

2.3. Latent TGFβ Binding Protein (LTBP)-4

The LTBPs have similar domain composition to fibrillin and are therefore members
of the fibrillin superfamily. In humans, there are four LTBP isoforms, namely LTBP1-4.
The LTBPs were named due to their role in the latency of TGFβ, where the formation of
a covalent disulphide bond between LTBP1, -3 and -4 with the propeptide of TGFβ results
in the formation of a large latent TGFβ complex, an important regulator of TGFβ signalling.
Both LTBP2 and LTBP4 are involved in elastic fibre formation, but here we focus on LTBP4
due to its essential role in elastogenesis, as evidenced by the pathology observed in humans
and mice with mutations in LTBP4 [48–50]. LTBP4 is an extracellular glycoprotein encoded
by the LTBP4 gene, and has the highest expression in the heart, small intestine and uterus,
followed by the ovary, adrenal gland and aorta [51]. There are at least four transcripts
of LTBP4 produced by alternative splicing, including LTBP4L, LTBP4S, LTBP4∆2E and
LTBP4∆E, of which LTBP4L and LTBP4S are the major isoforms with distinct functions and
tissue-specific expression [48,52]. LTBP4 is also a genetic modifier of Duchenne muscular
dystrophy (DMD), where polymorphisms in LTBP4 have been linked to the age at loss of
ambulation in DMD patients [53,54]. The domain structure of LTBP4 is homologous to
fibrillin-1 with 8-cysteine domains and EGF-like domains, the majority of which also bind
calcium, as shown in Figure 3.
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Figure 3. Domain arrangement of LTBP4. The domain structure of LTBP4L and LTBP4S are both
characterised by multiple calcium-binding EGF-like domains and 8-cysteine domains, but the tran-
scription of LTBP4L and LTBP4S are initiated by independent promoters, resulting in tissue-specific
expression patterns of LTBP4L and LTBP4S.

Mutations in LTBP4 are associated with an inherited connective tissue disease, auto-
somal recessive cutis laxa type 1C (ARCLIC) in humans [55], which is recapitulated by
an ARCLIC-like phenotype in LTBP4 deficient mice [48]. ARCLIC patients have CL in ad-
dition to pulmonary, intestinal and facial abnormalities. Immunohistological and electron
microscopy studies on both skin and lung sections from patients with either homozygous or
heterozygous LTBP4 mutations showed abnormal elastic fibres. Fragmented elastic fibres
were observed in the deep dermis of the skin, while in the papillary dermis, elastic fibres
were diminished [56]. The lung sections showed enlarged air sacs with fragmented elastic
fibres and other areas with collapsed air sacs. LTBP4S-deficient mice showed similarly
abnormal ultrastructure of elastic fibres in their lungs. Knock-down of LTBP4 in human
dermal fibroblast cells and knock-out of LTBP4S in mice resulted in a punctate deposi-
tion of elastin, but addition of recombinant LTBP4S enhanced elastic fibre assembly [50].
LTBP4 is facilitated by members of the fibulin family in elastogenesis in an LTBP4L- or
LTBP4S-isoform-specific manner [49,50].
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2.4. Fibulin-4 and Fibulin-5

The fibulin family contains long fibulins (fibulin-1 and -2), short fibulins (fibulin-3,
-4, -5 and -7) and hemicentins (fibulin-6 and -8) [57]. Among them, fibulin-4 and fibulin-5
have discrete and essential roles in elastic fibre formation [58]. Fibulin-4 and fibulin-5,
encoded by the FBLN4 and FBLN5 genes, are characterised by cbEGF domains and a C-
terminal fibulin domain, as shown in Figure 4. Mutations in FBLN4 result in a spectrum
of phenotypes, including CL, deformation or occlusion of elastic arteries, aortic aneurysm
and arachnodactyly [59–61]. These findings show that fibulin-4 plays an indispensable role
in elastogenesis. Fibulin-4 regulates the self-assembly of elastin, which has been shown
in vitro with an elastin-like polypeptide [62], and together with fibrillin regulates elastin
deposition onto microfibrils [58]. Fibulin-4 directly binds the cross-linking enzyme lysyl
oxidase, and forms a ternary complex by further interacting with tropoelastin, facilitating
the cross-linking of tropoelastin [58]. LTBP4 also binds fibulin-4 in an isoform-specific
manner [48,49]. The deposition of fibulin-4 is normal in mice that only express the long
isoform of LTBP4 but is deficient in LTBP4−/− null mice [48]. Furthermore, the addition of
fibulin-4 to wildtype and LTBP4S−/− fibroblasts showed a normal linear deposition of the
exogenous fibulin-4, while cell cultures from LTBP4−/− showed a scattered and globular
deposition of recombinant fibulin-4 [48], suggesting a functional interaction with LTBP4L
is required for correct fibulin-4 deposition. Fibulin-4 has also been suggested to induce
a stable conformational and functional change in LTBP4L, which promotes tropoelastin
deposition onto the elongated LTBP4L [63].
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Figure 4. Domain structure of fibulin-4 and fibulin-5. Both fibulin-4 (A) and fibulin-5 (B) are
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Fibulin-5 is predominantly expressed in the heart, ovary and colon [64], and has been
linked to CL [65,66]. In 1.7% of age-related macular degeneration (AMD) patients, missense
mutations in fibulin-5 were found [67,68], and structural analysis of CL and AMD mutations
revealed that the mutations in fibulin-5 altered the structure, which may contribute to AMD
and CL [69]. These pathologies are linked to defective elastic fibre assembly, suggesting
an important role for fibulin-5 in elastogenesis. Indeed, fibulin-5 was found to affect the
self-assembly and coacervate maturation of an elastin-like polypeptide in vitro [62]. Using
sandwich binding assays, fibulin-5 was found to act as an adapter mediating the binding of
fibrillin-1 to tropoelastin [70]. Furthermore, after fibulin-5 knockdown elastin globules with
limited association to microfibrils were observed in rat fetal lung fibroblasts, indicating
their necessary role in elastin globule deposition onto microfibrils [58]. Knockdown of
LTBP4 in fibroblast cultures prevented the deposition of both elastin and fibulin-5, and the
addition of fibulin-5 did not rescue this effect, whereas the addition of LTBP4 restored the
deposition of elastin and fibulin-5 [50]. Together, these studies show that the deposition of
elastin–fibulin complexes onto the microfibril scaffold requires LTBP4 (Figure 5), and that
these processes are underpinned by numerous molecular interactions, as described in the
following section.
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Figure 5. Model for elastic fibre assembly. Both fibulin-4 and fibulin-5 and their complexes with
tropoelastin bind to LTBP4, and tropoelastin can also bind directly to LTBP4. These complexes mediate
the deposition of elastin onto a fibrillin microfibril scaffold, supported by molecular interactions
between fibrillin, tropoelastin, LTBP4, fibulin-4 and -5, as detailed in Table 1.

2.5. Interactions Supporting Elastic Fibre Assembly

Multiple studies have demonstrated that fibrillin-1, tropoelastin, LTBP4, fibulin-4 and
-5 interact in order to implement their function in elastogenesis, as shown in Table 1. Fibulin-
5 interacts with tropoelastin via binding sites throughout the fibulin-5 molecule [58,71,72],
and mutations in fibulin-5 can either reduce or increase its affinity for tropoelastin [73,74].
Similarly, fibulin-4 strongly interacts with tropoelastin in the presence of Ca2+, and also
in solution, as evidenced by co-immunoprecipitation [75]. Comparatively, tropoelastin
binds with higher affinity to fibulin-5 than fibulin-4, based on SPR analysis [58]. These
interactions are thought to facilitate the cross-linking of tropoelastin and subsequent de-
position of tropoelastin onto microfibrils. In addition, fibulin-4 and fibulin-5 can either
self-associate [62,76] or interact with each other [58], but whether this has a role in elastoge-
nesis remains unclear.

Fibulin-4 and -5 also interact with LTBP4 and fibrillin-1, thus promoting the deposition
of tropoelastin–fibulin complexes onto microfibrils. In particular, the C-terminal domain
of fibulin-5 interacts with an N-terminal region of LTBP4 [50]. The interaction between
fibulin-4 and LTBP4 is also mediated via an N-terminal region, with both long and short
isoforms of LTBP4 binding to fibulin-4, but LTBP4L binds fibulin-4 more tightly than
LTBP4S [48] via a central region of fibulin-4 [63]. Interestingly, our group recently found
that tropoelastin can directly bind the C-terminal region of LTBP4 via binding studies
using Biolayer interferometry [77], but the function of the LTBP4–tropoelastin interaction
in elastic fibre assembly remains to be further explored.

Consistent with a role in facilitating the deposition of tropoelastin–fibulin complexes
onto microfibrils, fibulin-4 and -5 both bind with high affinity to the N-terminal half of
fibrillin-1 [71], and the N-terminal hybrid1 domain in fibrillin is required for this interac-
tion [70]. A CL causing S227P mutant in fibulin-5 impaired its interaction with fibrillin-1,
as observed by immunostaining in vitro [73], and CL mutations A397T, E57K and E126K in
fibulin-4 resulted in impaired binding to fibrillin-1 [78].

In addition, fibrillin-1 also interacts with LTBP4 via the N-terminal hybrid1 domain to
incorporate LTBP4 into microfibrils, since deletion of this domain abolishes the binding of
fibrillin-1 to LTBP4, and an N164S mutation reduced binding to LTBP4 [79]. Fibrillin and
tropoelastin also interact directly, with the central sequence of fibrillin-1 interacting with
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tropoelastin [80]. As these elastic fibre proteins can all form binary interactions in vitro
(detailed in Table 1), what remains to be elucidated is the hierarchy and order of interactions
required for effective elastogenesis in vivo.

Table 1. Interactions and functions of elastic fibre proteins.

Interaction Function

Fibrillin-1–fibulin-4 [58,70,71,78]

Tropoelastin cross-linking and deposition onto microfibrilsFibrillin-1–fibulin-5 [58,70,71,73]
Tropoelastin–fibulin-4 [58,75]

Tropoelastin–fibulin-5 [58,71–74]

Tropoelastin–fibrillin-1 [80] Tropoelastin deposition and elastic fibre formation

Fibrillin-1–LTBP4 [79] Deposition and sequestering of latent TGFβ in the extracellular matrix

Fibulin-4–fibulin-5 [58] Unknown: Might contribute after initial elastin cross-linking

Tropoelastin–LTBP4 [77] Unknown: Might contribute to elastic fibre formation

LTBP4–fibulin-5 [50] Deposition of fibulin-5 and tropoelastin on microfibrils

LTBP4–fibulin-4 [48,63] Conformational switch of LTBP4 structure, deposition of tropoelastin onto
the elongated LTBP4, and deposition of fibulin-4 on microfibrils

3. The Role of Elastic Fibre Proteins in Wound Repair

In addition to their role in elastogenesis, there is increasing evidence demonstrating the
importance of these elastic fibre proteins in wound repair. In a periodontal disease model,
fibrillin-1 expression was strongly elevated at the beginning of the destruction of periodon-
tal tissue, but decreased with wound healing [81]. This decrease in fibrillin-1 expression
during wound healing has been associated with the differentiation of fibroblasts to myofi-
broblasts in dental pulp healing [82]. Overexpression of fibulin-5 in a dermal ulcer model
showed that fibulin-5 expression facilitates wound healing in vivo [83]. Numerous reports
have demonstrated the role of tropoelastin in the inflammation and proliferation stages
of wound healing; for example, tropoelastin induced transient expression of chemokines,
which are necessary for tissue recovery [84]. Elastic fibre proteins are also important for
the extracellular regulation of TGFβ, an important mediator of wound healing [85]. Thus,
in the following section, we review the role of elastic fibre proteins in TGFβ sequestration
and activation.

3.1. Elastic Fibre Proteins and TGFβ Signalling

TGFβ is secreted as a large latent complex (LLC) covalently linked to members of the
LTBP family. A disulphide bond is formed between LTBP1, 3 and 4 and the TGFβ pro-
domain (latency-associated peptide (LAP)), and the LLC then deposits into the extracellular
matrix via the interactions between LTBPs and fibrillin and fibronectin [86]. LTBPs influence
TGFβ signalling by at least two mechanisms: promoting effective secretion of latent TGFβ
from cells [87,88], and the localisation of latent TGFβ in the matrix [86]. LTBP4 interacts with
different isoforms of TGFβ (TGFβ1, β2, β3), and two different LTBP4 SNPs enhance and
reduce TGFβ signalling, respectively [89]. Co-immunoprecipitation showed an interaction
between LTBP4 and the TGFβ receptor 2, and knock-down of LTBP4 reduced the expression
of TGFβ receptor 2 and signalling [90]. Lu et al. found that knock-down of LTBP4 in
systemic scleroderma skin fibroblasts reduced the extracellular level of TGFβ and the
downstream targets of TGFβ signalling [91].

Integrins are activators of TGFβ by binding to and unfolding LAP to release mature
TGFβ from the latent complex to enable TGFβ receptor binding [92]. Binding of LAP to
LTBP is required to provide resistance to the pulling force [93]. Recently, Campbell et al. also
showed by cryo-EM that αvβ8 could activate latent TGFβ without releasing mature TGFβ
from the latent complex [94]. Fibrillin-1 has been linked to the regulation and bioavailability
of TGFβ in the extracellular matrix via direct interaction with LTBP1 and LTBP4 and via
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stabilising the LLC [95,96]. Although the mechanisms are not fully elucidated, many studies
support a role for fibrillin-1 in TGFβ sequestration. For example, fibrillin-1 mutations
are associated with MFS, which is linked to an increase in TGFβ activation in connective
tissues [96], and osteoblasts from Fbn1−/− mice have more activated TGFβ [97]. In addition,
fibrillin-1 was found to influence pSmad2-dependent TGFβ signalling via regulating the
expression of miR-503 in fibroblasts [98].

In fibulin-4-deficient aortic smooth muscle cells, elevated TGFβ signalling was ob-
served due to increased levels of TGFβ2 [99]. Interestingly, Burger et al. found that in
vascular smooth muscle cells, reduced fibulin-4 expression enhanced the activation of TGFβ,
but there was no change in TGFβ signalling when fibulin-4 was absent [100]. Fibulin-5
expression is reported to be regulated by TGFβ in fibroblasts and mammary epithelial
cells [101–104], and fibulin-5 overexpression in 3T3-L1 cells elevated the TGFβ-stimulated
activation of ERK1/ERK2 and p38 MAPK [104], indicating that fibulin-5 is also involved in
TGFβ signalling.

3.2. Role of Elastic Fibre Proteins Supporting Integrin-Mediated Cell Adhesion

In addition to their role in supporting TGFβ secretion and activation, elastic fibre
proteins support integrin-mediated cell adhesion. Integrins αvβ3, α5β1, αvβ6, α8β1,
αvβ6, αvβ1 and αvβ5 can bind to the TB4 domain of fibrillin-1 via an RGD sequence
in cell-based assays or protein–protein interaction analyses [33,105–108]. In addition,
fibrillin-1 was found to influence integrin-mediated focal adhesion formation by regulating
the expressions of miR-612 and miR-3185 in fibroblasts [98]. Bax et al. found that the
C-terminal GRKRK sequence in tropoelastin supports cell adhesion via interaction with
αvβ3 [109]. The same group also found that αvβ5 can interact with the central region
of tropoelastin to mediate cell adhesion [110], and Bochicchio et al. found that domains
12 to 16 of tropoelastin can interact with integrins αv and α5β1, thus promoting cell
spreading and attachment [111]. Modelling data linked these findings to show that different
regions on tropoelastin bind to multiple sites on integrin αvβ3 to co-operatively support
signalling [112]. Fibulin-5 binds human smooth muscle cells (SMC) via integrins α5β1 and
α4β1, and influences SMC proliferation and migration, but does not support the activation
of receptor tyrosine kinases [113]. In addition, Furie et al. found that fibulin-5 binds to
keloid-derived fibroblast-like cells (FLC) and regulates FLC adhesion and proliferation
through integrin β1 [114].

Collectively, elastic fibre proteins play an important role in wound healing via regulat-
ing the deposition and activation of TGFβ and supporting integrin-mediated cell adhesion,
as shown in Figure 6.
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fibrillin-1 may be involved in myofibroblast transdifferentiation in a TGFβ-dependent way. Fibrillin-1,
tropoelastin and fibulin-5 are also involved in the process of wound repair by regulating cell adhesion
via integrins.

4. Perspectives

Although the roles of fibrillin-1, tropoelastin, LTBP4, fibulin-4 and -5 in elastogenesis
have been widely studied, many scientific questions remain to be elucidated. Decipher-
ing whether interactions between LTBP4 and tropoelastin support either elastogenesis or
LTBP4-mediated TGFβ signalling in wound healing, and the role fibrillin plays in these
processes, are of great significance in tissue regeneration and elastic fibre diseases. Addi-
tionally, deciphering the order and hierarchy of interactions between all the elastic fibre
proteins is important to understand the sequence of events and molecular requirements for
elastogenesis. Considering the importance of myofibroblasts in wound healing, exploring
the detailed molecular mechanisms of how elastic fibre proteins influence myofibrob-
last differentiation may provide opportunities for novel therapeutics for wound repair.
For instance, elucidating whether changes in the expression of elastic fibre proteins or
dysfunction of elastic fibres in scar tissue alters their biomechanical properties, such as
contractility, to negatively influence myofibroblast differentiation would be an important
future research direction.
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