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Abstract: Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the
United States and Western Europe in recent years. EAC is a classic example of obesity-related
cancer where the risk of EAC increases with increasing body mass index. Pathologically altered
visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote
EAC by directly affecting gastroesophageal reflux disease and Barrett’s esophagus (BE), as well as
a less reflux-dependent effect, including the release of pro-inflammatory adipokines and insulin
resistance. Deregulation of adipokine production, such as the shift to an increased amount of leptin
relative to “protective” adiponectin, has been implicated in the pathogenesis of BE and EAC. This
review discusses not only the epidemiology and pathophysiology of obesity in BE and EAC, but also
molecular alterations at the level of mRNA and proteins associated with these esophageal pathologies
and the potential role of adipokines and myokines in these disorders. Particular attention is given to
discussing the possible crosstalk of adipokines and myokines during exercise. It is concluded that
lifestyle interventions to increase regular physical activity could be helpful as a promising strategy
for preventing the development of BE and EAC.

Keywords: esophageal adenocarcinoma; Barrett’s esophagus; gastroesophageal reflux disease; obe-
sity; adipose tissue; adipokines; inflammation; myokines; exercise

1. Introduction

Esophageal cancer is currently a major public health problem in Europe and worldwide
due to its aggressive nature and low survival rate. There are two main histological types
of esophageal cancer, squamous cell carcinoma (SCC) and adenocarcinoma (EAC), which
differ significantly in their patterns of etiological factors. Risk factors for SCC include male
gender, alcohol consumption, smoking, certain dietary factors, and poor oral hygiene [1].
Obesity, especially gastroesophageal reflux disease (GERD), male gender, and smoking
are major risk factors for EAC [1–5]. Interestingly, EAC is the most deadly and fastest
growing cancer in the United States. The presence of GERD is associated with an increased
risk of developing Barrett’s esophagus (BE), a precancerous condition characterized by
the replacement of normal squamous epithelium with a columnar cylindrical epithelium,
usually with intestinal metaplasia [6]. As these risk factors are at least partially modifiable,
there are many options for intervention to prevent EAC. As BE is the only known precursor
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to EAC, advances in the monitoring of BE are essential to enable diagnosis and improve
patient outcomes.

2. Epidemiology

The incidence of EAC has rapidly increased in Europe and the United States over the
past four decades and even more than six-fold since the 1970s, surpassing SCC [5,7–10].
Although before the 1970s, EAC was less common than SCC, it now has the fastest growing
incidence of any type of cancer in Western populations [11–17]. EAC is also becoming an
increasingly common cause of morbidity and mortality in the United States and Europe [5].
The incidence of EAC is still predicted to increase significantly in the coming years [8].

The reason for this increase is unclear, being at least in part attributed to the concomi-
tant increase in the incidence of GERD and obesity worldwide [16,18]. As shown in a recent
systematic review, the incidence of GERD was 18.1–27.8% in North America and 8.8–25.9%
in Europe [19]. The physiological reflux of gastric contents into the esophagus occurs
in most individuals, but when these episodes occur regularly, they lead to GERD [20].
Patients with GERD show an increased risk of developing BE [21], a precancerous condition
defined by the replacement of normal squamous epithelium with a columnar epithelium,
usually accompanied by the intestinal metaplasia. These conditions can lead to low-grade
dysplasia, high-grade dysplasia, and ultimately to EAC development [5,9,22–26]. BE is
associated with a 10- to 40-fold increased risk of EAC development [27–29]. BE patients
had a higher body mass index (BMI) than the control group and more often presented a
record of smoking and reported recurrent GERD symptoms [30]. Changes in lifestyle and
eating habits, such as a sedentary lifestyle or lack of physical activity, as well as dietary
aspects mainly involving a high-fat diet (HFD), are epidemiologically correlated with the
development of EAC [31,32]. Obesity, with its epidemic proportions around the world, is a
major clinical and public health problem of widespread importance [33,34]. As mentioned
earlier, obesity may contribute to GERD pathogenesis, but it is also considered an impor-
tant risk factor for cardiovascular disease, stroke, type 2 diabetes, high blood pressure,
osteoarthritis, liver disease, chronic kidney disease, and several types of cancer [34–38].

Epidemiological studies have shown that obesity and the incidence of EAC are similar,
and there is a strong correlation between obesity and the risk of EAC [39–47]. Obesity
constitutes a significant risk factor for developing BE as well as EAC [2,48], and this
increased risk of these disorders is primarily linked with visceral obesity [49].

As stated by the World Health Organization [50], obesity is defined as an excessive
or abnormal accumulation of body fat that has a negative impact on health. In order to
determine the total amount of fat in an organism and the distribution of fat in an organism,
a variety of methods have been used, including anthropometric measures such as body
mass index (BMI), waist circumference, waist-to-hip ratio (WHR), bioelectrical impedance
analysis, dual-energy X ray absorptiometry (DEXA), computed tomography (CT) scan, and
magnetic resonance imaging (MRI) [51].

The most commonly used measure to diagnose and classify obesity is the BMI, defined
as a person’s weight in kilograms divided by the square of their height in meters (kg/m2).
BMI values from 25 kg/m2 to 29.9 kg/m2 is considered overweight and higher values of
BMI are defined as obesity [47,52].

Significant associations between BMI and EAC risk have been found with positive
BMI value–response relationships [39,46], with the highest risk occurring among those
with the most severe obesity [39]. The retrospective cross-sectional study has shown
that being overweight is estimated to entail a 2.5-fold increased risk of BE [52]. Another
study demonstrated a relationship between BMI and the length of BE mucosa [53]. Many
studies indicate that exclusive reliance on the BMI as an indicator of obesity is a significant
limitation in research designed to determine the relationship between obesity and human
diseases [54–58]. The BMI consists of adipose tissue, which represents the mass of skeletal
muscles, bones and organs, and the lean mass index, which is the sum of peripheral and
visceral fat (VAT) [59]. All these components of BMI play different roles in influencing
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the health of the human body. While these epidemiological studies are very important,
they will not be completely accurate. Most epidemiological studies use obesity measures,
such as BMI, that do not reflect the real picture and pathomechanism of obesity. It should
also be considered that it is very difficult to separate a relative contribution of diet and
obesity to cancer development [60]. These factors may act independently or in combination,
influencing, for example, the composition of the microbiota in the intestine [61]. The
importance of this problem is demonstrated by individuals with a normal-body-weight
metabolic obesity, who present with metabolic disorders and an increased risk of several
obesity-related cancers, even though they look thin [62]. Waist circumference (visceral
obesity indicated by a waist circumference >94 cm in men and >80 cm in women) and
WHR (>0.9 for men and >0.8 for women) are two methods of determining visceral obesity.

The imaging techniques and EXA provide more accurate adipose tissue volume
and distribution estimations. When the higher mortality risk is linked to an increase in
total adipose tissue assessed by DEXA, the imaging techniques have indicated that fat
distribution (specifically visceral adipose tissue) rather than overall fat levels are more
predictive. For a long time, the term “visceral obesity” was used to describe an excess
of fat in the abdominal cavity. However, it is now widely accepted that VAT comprises
fat deposits found throughout the body, including the omentum, mesenteric, epiploic,
gonadal, epicardia, and retroperitoneal depots, and is frequently accompanied by other
ectopic fat deposits. When reviewing the literature, it becomes clear that studies that
present normative VAT measurements are scarce [63]. Recently, Elliot et al. [64] examined
the visceral fat area (VFA) in patients with EAC using computer tomography and defined
visceral obesity as VFA > 163.8 cm2 for men and 80.1 cm2 for women, respectively.

Regarding esophageal disorders, it is important to note that the esophago-gastric
junction (GC) fat pad, which envelopes the distal esophagus and shares its vascularity,
warrants specific attention in this context [65]. In obesity, the EGJ fat pad is the location of
VAT accumulation and source of proinflammatory and pro-cancerous substances, as Paris
and colleagues pointed out in a recent paper [66].

Visceral obesity is a risk factor for BE and EAC, regardless of BMI, and its effects are
influenced by reflux-dependent and reflux-independent mechanisms [3,49,67]. For instance,
patients receiving cholesterol-lowering statin therapy have shown a reduced incidence of
BE [68,69] and EAC [70–72]. Numerous studies have confirmed that central abdominal
obesity and increased visceral fat rather than BMI have been postulated to constitute a
significant risk factor for EAC and BE [73–77]. It has been suggested that the influence
of obesity on the risk of BE and EAC may be underestimated in studies based solely on
BMI [32,78]. Kramer et al. observed no correlations between BMI, WHR, and short-segment
BE, but they did find a statistically significant correlation between WHR and long-segment
BE in their study [79]. However, waist circumference and WHR are non-specific measures
of abdominal fat, which has a visceral and a subcutaneous component. It has been shown
that the relative distribution of abdominal fat in these two compartments has a varied
effect on the risk of BE. Abdominal cavity CT showed that BE is associated with abdominal
visceral obesity [73]. The study revealed that VAT, but not SAT, is related to BE [12]. White
men with BE have a high VAT/SAT (VAT/SAT) ratio, which has been linked to BE, and
this association between VAT to SAT and BE remains even when there is no evidence of
GERD [73].

Barrett’s esophagus has been arbitrarily divided into a long (≥3 cm long) and a short
(<3 cm long) segment [80] and this division is of clinical relevance also in the context of
obesity. Some research investigated whether the link between visceral obesity and BE
differed for the long segment vs. the short segment [73,79]. They discovered that the
association between abdominal obesity as evaluated by WHR [79] or the VAT/SAT ratio as
determined by CT [73] is especially prevalent in patients with long-segment BE who are
white men. An association has also been demonstrated between the metabolic syndrome
and BE and EAC, and interestingly, this relationship is stronger for men and, for them,
these effects appear to be independent of previous GERD history [81,82].
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The dietary factors that have been identified as possible risk factors for BE and EAC do
not have to be restricted to HFD. Diet may impact the risk of developing EAC via an impact
on the risk of developing GERD or BE, as well as the rate at which the patient progresses
from BE to EAC. Kubo et al. observed that eating a diet rich in fruits and vegetables and
fish was inversely related to the risk of BE, but the Western diet was associated with an
increased risk of BE. The consumption of red meat was found to be positively linked with
EAC development [83]. Diet may influence the risk of developing EAC via an impact on
developing GERD or BE and the rate at which the patient progresses from BE to EAC. Kubo
et al. [84] observed that eating a diet rich in fruits and vegetables and fish was inversely
related to the risk of BE, but the Western diet was associated with an increased risk of BE.
In their research, Jiao and colleagues [85] confirmed that higher consumption of red meat
and saturated fat may be associated with an increased incidence of BE. They postulated
that this effect could be explained by advanced glycation end products (AGEs), found in
high concentrations in high-fat foods and high-temperature cooked meat.

Larger consumption of dark green vegetables, on the other hand, was related to a
decreased risk of BE, as proven by the same group of investigators [86]. They hypothesized
that this protective effect might be explained by many nutritional components, including
fiber, antioxidants, and folate [86].

3. The Role of Obesity in BE and EAC Development

Obesity is considered a metabolic disease causing a chronic, low-grade inflammation
called meta-inflammation, characterized by the activation of pro-inflammatory pathways,
and resulting in an increase in the synthesis of acute-phase reagents, such as C-reactive
protein, and the production and release of pro-inflammatory cytokines [47,87]. Adipose
tissue is not homogeneous; there are two main types: white adipose tissue (WAT) and
brown adipose tissue (BAT) [88]. WAT is made up of adipocytes embedded in a collagen
skeleton; in addition to adipocytes, adipose tissue contains a subpopulation of stem cells
called stromal vascular fraction cells, preadipocytes, fibroblasts, leukocytes, macrophages,
and endothelial cells.

Anatomically, the WAT consists of two major compartments: subcutaneous adipose
tissue (SAT) and visceral adipose tissue (VAT), each with its own metabolic and immuno-
logical characteristics [89,90]. VAT and SAT can store energy in the form of triacylglyc-
erols. Both can produce physiologically active substances that affect energy balance and
metabolism. Additionally, the visceral WAT layer protects the body’s essential organs,
while the subcutaneous WAT layer acts as an insulator against heat and cold [88].

The metabolic consequences of obesity are strongly influenced by differences in fat
distribution across the body. Premature mortality and a higher incidence of metabolic and
cardiovascular diseases are all linked to visceral obesity. However, those who store WAT
mostly subcutaneously, on the other hand, have a lower risk of death and metabolic diseases.
In particular, VAT shows increased pro-inflammatory and pro-cancer properties compared
to SAT, and its hypertrophy has been associated with a pro-inflammatory state [87,91].

Healthy VAT is well-vascularized, with regulatory and immunosuppressive cells and
the production of anti-inflammatory molecules [92]. As a result of the VAT accumulation
in obese persons, the pro-inflammatory transformation occurs, accompanied by the pro-
duction of several pro-inflammatory substances by adipocytes. With the development of
visceral obesity, adipocytes become hypertrophic and hypoxic, and eventually die, trigger-
ing an innate immune response [92]. Reduced production of anti-inflammatory adipokines
such as adiponectin (APN) is also characteristic of hypertrophic adipocytes. The inflamma-
tory cells’ infiltration of adipose tissue further increases the production of inflammatory
mediators [92–94].

With extensions to the sub-scapular, cervical, and axillary areas, one may find the bulk
of the BAT depot in the deep interscapulum region. However, BAT can also be found at
aortic, paraspinal, and adrenal sites. Adaptive thermogenesis is the primary role of BAT’s
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multicellular, mitochondria-rich, and uncoupling protein 1-positive adipocytes. Obesity
and insulin resistance are negatively related to the amount of active BAT in the body [94].

A new type of brown adipocytes embedded in the WAT, referred to as beige or brite
cells, has been discovered in recent years. These cells are activated in response to cold, β-
adrenergic stimulation, and peroxisome proliferator-activated receptors (PPAR-), a process
known as adipose tissue browning [95]. Classic brown adipocytes derive from MYF5+
(muscle developmental gene) mesenchymal stem cells in the embryonic mesoderm, whereas
beige cells appear to arise from endothelial and perivascular cells in WAT stores [96]. In
humans, the MYF5 gene encodes a protein known as myogenic factor 5 that regulates
muscle differentiation or myogenesis, both of which are essential for the development of
skeletal muscle.

WAT and BAT can communicate with other organs to control metabolism by secreting
adipokines and batokines, respectively, signaling lipid types (lipokines), and exosomal mi-
croRNAs (miRNAs) [84,85]. Adipokines and batokines, signaling types of lipids (lipokines),
and exosomal microRNAs (miRNAs), all of which are released by WAT and/or BAT, act
as mediators for inter-organ communication and can regulate metabolism [97,98]. WAT
in particular acts as a hormonal organ that produces biologically active adipokines, such
as APN, interleukin (IL)-1, IL-6, IL-8, interferon-γ, TNF-α (tumor necrosis factor-α), lep-
tin apelin, chemerin, and resistin. Adipokines can regulate metabolic homeostasis and
influence immune function [99].

Obesity is a well-defined risk factor for several cancer types and is associated with
poorer outcomes [100]. Several hypotheses explain how obesity might contribute to EAC
development and growth.

The pathomechanism by which VAT promotes EAC is not clear, but it is now generally
accepted that abdominal obesity mediates its influence via both mechanical and metabolic
effects. The most apparent mechanism seems to be the worsening of GERD due to mechan-
ical factors [101]. Although obesity, primarily abdominal, is a significant contributor to the
development and severity of GERD and BE, it is also an independent risk factor for EAC,
with a 52% increase in risk for every five BMI units [40,101]. These observations indicate
the existence of “GERD-independent”, possibly metabolic mechanisms mediated by VAT
in the development of esophageal cancer in obese individuals (Figure 1) [6,102].

3.1. Obesity and GERD

A key relevant pathway linking obesity with EAC could be the occurrence of GERD,
as long as the severe GERD is associated with an up to 40-fold increased risk of EAC [103].
GERD is a global disorder and unquestionably a disease that is directly linked to obesity [24].
Obesity triples the chance of developing GERD [104] and doubles the risk of erosive
esophagitis [105]. Moreover, the prevalence of GERD is proportional to the severity of
obesity [106]. The prevalence of GERD symptoms in patients with morbid obesity reaches
50% [107]. Successful weight loss and the therapy to reduce the visceral adipose tissue
have been shown to significantly reduce GERD symptoms [108–113].

Several mechanisms may be responsible for such a strong link between obesity and
GERD. The already recognized mechanism of exacerbation of GERD is attributed to mechan-
ical factors, i.e., disruption of the reflux barrier of the gastroesophageal junction [101]. Ab-
dominal obesity is strongly associated with a higher number of transient lower-esophageal
sphincter relaxations and abnormal peristalsis [114–118]. Impaired esophageal motility
could also lead to abnormal esophageal clearance [114,115]. Abdominal obesity may pre-
dispose to disruption of the anatomic gastroesophageal junctions, causing hiatal hernia
formation [106,119].
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hypothetical model of gastroesophageal reflux disease (GERD) pathogenesis leading to Barrett’s 
esophagus (BE) and subsequent progression to esophageal adenocarcinoma (EAC) (B) in obese 
patients; isolated BE cell lines in vitro or experimental animal models of diet-induced obesity. The 
inflammatory molecular changes associated with the development of BE include changes in the 
molecular expression of pro-inflammatory factors such as the upregulation of COX-2, iNOS, ObR, 
and Adipo-R2, followed by the downregulation of adiponectin and Adipo-R1 at the mRNA level 
and/or and an increase in the level of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and 
chemokines (MCP) in plasma and esophageal tissues. Exercise can reduce the inflammatory effect 
of GERD and possibly the number of GERD episodes by exerting an anti-inflammatory effect by 
reducing the esophageal expression and plasma levels of proinflammatory factors and cytokines, 
restoring the leptin-to adiponectin-ratio, altering the gut microbiota, and counteracting visceral 
obesity exacerbating GERD, BE, and then EAC. 
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Figure 1. Normal esophageal squamous epithelium reflecting healthy esophagus (A) and hypothetical
model of gastroesophageal reflux disease (GERD) pathogenesis leading to Barrett’s esophagus (BE)
and subsequent progression to esophageal adenocarcinoma (EAC) (B) in obese patients; isolated BE
cell lines in vitro or experimental animal models of diet-induced obesity. The inflammatory molecular
changes associated with the development of BE include changes in the molecular expression of
pro-inflammatory factors such as the upregulation of COX-2, iNOS, ObR, and Adipo-R2, followed by
the downregulation of adiponectin and Adipo-R1 at the mRNA level and/or and an increase in the
level of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokines (MCP) in plasma and
esophageal tissues. Exercise can reduce the inflammatory effect of GERD and possibly the number
of GERD episodes by exerting an anti-inflammatory effect by reducing the esophageal expression
and plasma levels of proinflammatory factors and cytokines, restoring the leptin-to adiponectin-ratio,
altering the gut microbiota, and counteracting visceral obesity exacerbating GERD, BE, and then EAC.

Abdominal obesity may lead to an increased intra-abdominal pressure [120]. Recently,
Del Grande et al. [121] reported that the presence and severity of GERD in obese subjects
were positively correlated with the trans-diaphragmatic pressure gradient caused by in-
creased intra-abdominal pressure due to visceral obesity. It is of interest that these effects
were recorded independently of BMI. Dietary habits such as irregular food consumption,
especially in the evening hours, and a diet rich in reflux-promoting factors may also worsen
GERD symptoms in obese subjects [122–128].

It is not excluded that adipokines released by adipose tissue may influence the devel-
opment and severity of GERD [107]. Increased leptin and leptin receptor (ObR) levels and
decreased APN levels were reported in obese patients with GERD [129–132], and increased
leptin levels, widely considered as a marker of obesity, have been associated with frequent
GERD symptoms [133] and clinical and endoscopic severity of GERD [130]. Numerous
studies have revealed that the serum APN levels are inversely associated with BE in GERD
patients [134–136].

In obese subjects, pro-inflammatory cytokines and adipokines released from patholog-
ically altered VAT may play a role in the development of esophagitis [137]. For example,
Murata et al. [138] showed that administration of leptin worsened reflux esophagitis in
rats with evident infiltration of CD3 + T cells and a significant increase in the levels of
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macrophage inhibitory factor (MIF) and TNF-α, IL-1β, and IL-6 in esophageal tissue, the
latter being considered as the downstream targets of MIF. Interestingly, abdominal visceral
fat and leptin, independently of each other, increased the risk of reflux esophagitis [137].
Moreover, the decreased APN levels were correlated with an increased risk of erosive
esophagitis observed in a large group of more than two thousand patients undergoing
physical check-up [139].

3.2. Role of Adipokines

Chronic inflammation associated with epithelial metaplasia, present in BE, increases can-
cer risk, presumably favoring the tumor microenvironment and tumor progression [140–142].
In a pathologically modified VAT, the release of increased amounts of the pro-inflammatory
cytokines [143,144] and an enhancement of plasma levels of pro-inflammatory adipokines
in BE patients have also been observed [135,145–150].

In obese conditions, pathologically modified adipose tissue demonstrates an altered
signalling molecules profile, forming a pro-tumorigenic milieu [60,151]. The low-grade
chronic inflammation develops due to the adipose tissue in obesity. The pro-inflammatory
transformation associated with the pathological expansion of visceral fat and infiltration of
adipose tissue by inflammatory cells prompts the secretion of many pro-inflammatory me-
diators from adipose tissue [93]. Adipocytes secrete adipokines such as leptin and TNF-α
that may exhibit mitogenic effects resulting in the progression of BE to EAC. Adipokines
and other pro-inflammatory cytokines may promote carcinogenesis through various mech-
anisms [152]. Adipokines can act locally and exert a systemic endocrine effect or exhibit a
tumorigenic effect [60]. Inflammatory cells infiltrating obese adipose tissue can also pro-
duce reactive oxygen species (ROS) known for their mitogenic effects at low concentrations,
thus playing the role of tumor promoters [153]. This systemic and chronically elevated
secretion of pro-inflammatory cytokines and ROS in obesity may undoubtedly promote
carcinogenesis [154].

Currently, the impact of obesity on the tumor microenvironment (TME) is of great
interest [60]. The TME is composed of cellular components such as endothelial cells,
immune cells such as microglia, granulocytes, lymphocytes, macrophages, and tumor
stromal cells, including stromal fibroblasts and non-cellular components of the extracellular
matrix [60]. Low-grade fat inflammation in obesity is comparable to that of the TME,
clearly suggesting the ability of altered adipose tissue to stimulate tumor growth [103,155].
Data from animal models indicate that pro-inflammatory cytokines are essential for the
development of BE [156]. Leptin has been shown to increase the proliferative and invasive
capacity of Barrett cell lines, and APN has been shown to block the cancer-promoting
effects of leptin in experimental models [157–164]. When EAC cell lines were cultured in
adipose tissue conditioned medium with VAT, their increased ability to proliferate, migrate,
and invade was observed [165].

3.2.1. Leptin

Leptin [166] was the first adipokine to be described, and its plasma levels increase
in proportion to adipose tissue mass. Leptin is a pro-inflammatory adipokine that has
been shown to contribute to the local and systemic inflammatory milieu in obesity via
a mechanism involving the activation of pro-inflammatory cells, the stimulation of the
Th1 cell response, and the production of pro-inflammatory cytokines [167]. In addition,
this peptide can exert a direct effect on esophageal epithelial cells, influencing subsequent
stages of the EAC cascade [164,168,169]. Recent studies have shown that leptin inhibited
apoptosis and increased proliferation in obesity-related cancer cell lines [170–172], including
EAC [173]. For instance, Ogunwobi et al. [173] showed that leptin stimulated proliferation
and inhibited apoptosis via extracellular signal-regulated kinase, p38 mitogen-activated
protein kinase, phosphatidylinositol 3′-kinase/Akt, and Janus tyrosine kinase 2-dependent
activation of cyclooxygenase-2 and prostaglandin E2 production in OE33 cells (Barrett’s-
derived EAC line). These investigators have suggested that these pathways may link
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obesity with the development of EAC [173]. Human studies have revealed that leptin ObR
is abundantly expressed in precancerous (BE) and cancerous (EAC) conditions [174,175].
Elevated serum leptin levels have been considered as an independent risk factor for BE
development [145,158,159,163,164,176,177]. In BE patients, elevated levels of leptin and
insulin resistance were associated, independently of GERD, with an increased risk of
EAC, while elevated levels of high-molecular-weight APN were inversely correlated with
EAC [163].

3.2.2. Adiponectin

APN is an adipokine whose plasma levels, unlike leptin, decline as body fat increases.
This adipokine was reported to improve insulin sensitivity and to exert anti-inflammatory
and anti-tumor effects [178]. Low APN levels are an independent risk factor for several
cancers [179–181], including EAC [160–162]. Earlier studies documented that patients
with BE and EAC had significantly lower levels of the anti-inflammatory adipokine, APN,
compared to healthy controls [160–162]. Moreover, APN reduced the leptin-induced
proliferation in EAC cells by acting through the APN type 1 receptor [182], inhibiting
leptin-induced signalling and the procarcinogenic potential of this peptide by activating
protein tyrosine phosphatase 1B, and thus, alleviating early events in leptin-induced signal
transduction [157].

3.3. The Role of Insulin Resistance

Another mechanism by which the overgrowth of VAT may influence the development
of EAC is the induction of insulin resistance. Epidemiological studies have shown that pa-
tients with metabolic syndrome have a higher incidence of cancer [152]. Hyperinsulinemia
is a significant risk factor for the development of BE [177] and patients with BE and insulin
resistance have an increased risk of developing EAC [163]. The reduced tissue sensitivity to
insulin resulted in an increase in glucose and insulin levels, and chronic hyperinsulinemia
promoted the secretion of insulin-like growth factor 1 (IGF-1) and a decrease in the produc-
tion of IGF-binding proteins [183]. Insulin itself may be mitogenic and anti-apoptotic, but
IGF-1 is likely to mediate most of the proliferative effects of insulin [183]. The increased
expression of IGF-1 receptors is strongly associated with malignant progression of BE to
EAC [184]. Interestingly, IGF-1 significantly stimulated the proliferation in EAC cell lines
and the serum IGF-1 levels were elevated in patients, with EAC being further potentiated
in patients with visceral obesity as compared with non-obese individuals [185]. Moreover,
the IGF-1 receptor expression in dissected EAC tumor samples was significantly higher in
patients with visceral obesity than the non-obese patients. Survival was longer in patients
without expression of the IGF-1 receptor than in patients with IGF-1-receptor-positive
tumors [186].

In a mouse model, hyperinsulinemia significantly increased the incidence of esophageal
cancer in the presence of duodenal reflux, and both the insulin receptor and IGF1 receptors
were overexpressed [187]. The hypotheses for adipokines and insulin resistance in obesity
in the context of BE and EAC pathogenesis may overlap because insulin resistance is at
least partially mediated by adipokines and cytokines released from the altered adipose
tissue [154].

3.4. Role of Diet

The potential effect of HFD feeding on the development of BE and EAC has been in-
vestigated in experimental animal models. In a rat model of BE, Clark et al. [188] observed
that reflux of gastroduodenal content into the lower esophagus of rats could induce both
Barrett’s metaplasia and EAC, and an HFD promoted carcinogenesis. Chen et al. [189]
demonstrated that HFD intake changed the bile-acid composition of bile juice and enhanced
the development of BE and EAC via an increase in the concentration of taurine conjugates
in bile juice in a rat duodenal-contents reflux model. Molendijk et al. observed that HFD
increased the severity of inflammation and the length of esophageal metaplasia [190]. Feed-
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ing a HFD in rodents was correlated with more proliferative EAC tumors associated with
alterations in the secreted adipokines profile [191]. HFD feeding accelerated carcinogenesis
in a mouse model of BE by altering the gut microbiota, independently of obesity [192].

The effect of HFD on the esophageal microbiota and its role in the development of
EAC has been recently investigated [193,194]. The distal esophagus has a characteristic
microbiome mainly composed of the oral flora that changed in the BE and GERD [195–197].
Furthermore, there is already sufficient evidence to believe that the esophageal microbiota
is involved in the EAC cascade at different stages of tumorigenesis [193–196,198–201].

4. Role of Physical Activity

The observations presented above suggest that therapies aimed at improving the
endocrine profile of adipose tissue may translate into practical clinical interventions. Past
studies have shown the benefit of alternative non-pharmacological interventions such as
exercise in the treatment of several chronic diseases including cardiovascular and metabolic
diseases as well as cancer [202–204]. Epidemiological studies showed that regular physical
activity may prophylactically reduce the risk of developing cancer, as well as influencing
cancer activity and its progression. Physical activity has been shown to have a beneficial ef-
fect on cancer therapy because physical activity significantly reduced the risk of developing
various types of cancer [205–207].

Although acute, vigorous exercise can induce gastroesophageal reflux disease, moder-
ate and regular exercise is associated with a reduced incidence of erosive oesophagitis [208].
Data from a prospective study in the Norwegian population showed a significant protec-
tive effect of regular physical activity [209]. Another study found that people with reflux
symptoms were less physically active than those without symptoms [210]. Interestingly,
monozygotic twins who were less physically active showed the typical symptoms of GERD
compared to those who exercised regularly [211]. Regular physical activity helps to main-
tain a healthy body weight, thus reducing the risk of obesity-related GERD [212]. Regular
exercise is also beneficial in preventing reflux by strengthening the crural diaphragm, an
essential component of anti-reflux mechanisms [209].

A recent epidemiological study from Germany showed that BE patients were more
likely to be physically inactive and had a higher percentage of poor performance indicators
than controls [213]. The relationship between physical inactivity in humans and the risk
of developing EAC is relatively well established, but the mechanism by which exercise
can improve human outcomes for BE and EAC is poorly understood. For example, an
association between a sedentary lifestyle and an increased risk of EAC has been docu-
mented [205,214]. Moreover, recent meta-analyses, reviews, and epidemiological studies
highlight the importance of physical activity in reducing the risk of EAC by a mechanism
that may be associated with a reduction in the release of pro-inflammatory and carcinogenic
adipokines [205,214–220].

Role of Adipose Tissue-Muscle Crosstalk

The exact mechanisms by which exercise protects against chronic diseases such as BE
and EAC remain unknown, but they can be attributed not only to weight management
through exercise, but also to exercise-inducing anti-inflammatory and antioxidant effects.
Myokines, which are substances generated and released by skeletal muscle, may be re-
sponsible for the anti-inflammatory benefits of moderate exercise, whereas high-intensity
exercise can lead to inflammation and immunosuppression [221–223]. A growing number
of myokines have been identified, including interleukin-6, interleukin-8, and interleukin-15,
brain-derived neurotrophic factor, ciliary neurotrophic factor, vascular endothelial growth
factor, fibroblast growth factor 21, irisin, meteorin-like, and aminoisobutyric acid (BAIBA),
secreted protein acidic and rich in cysteine (SPARC) [196], and oncostatin-M (OSM) [224].
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Hence, physical exercise may exert its anti-inflammatory effect via a decrease in
VAT and the generation of an anti-inflammatory environment with each bout of exer-
cise [224,225]. By participating in the interaction between skeletal muscle and adipose tis-
sue, myokines have the potential to balance and counteract the activity of pro-inflammatory
adipokines (see Table 1). PPAR-γ coactivator 1-α (PGC-1α) plays an important role in the
regulation of skeletal muscle adaptation to exercise, and the levels of this peptide correlate
with those of myokines released from exercising muscles [224]. Moreover, these myokines
exhibited anti-inflammatory effects and improved glucose tolerance in obese/diabetic
animals [224]. Exercise can also influence the release of adipokines from the adipose tis-
sue of obese individuals by decreasing TNF-α, visfatin, omentin-1, and leptin levels, and
increasing APN levels [226].

Like adipose tissue, skeletal muscle has also been shown to release various miRNAs, an
additional component of the communication between adipose tissue and muscle [227,228].
New evidence suggests that exercise is also mediated by extracellular vesicles, which con-
tain both classical myokines and other bioactive molecules, including miRNAs [228,229].
APN, which is reduced in visceral obesity and whose release is stimulated by exercise,
regulates the number of miRNAs in adipose tissue [230,231]. MiR883b-5p, which is upreg-
ulated by APN and lowered in obesity, showed an inhibitory effect on lipopolysaccharide
(LPS)-binding protein and Toll-like receptor 4 (TLR4) signaling, thus acting as an important
mediator of the anti-inflammatory activity of this adipokine [230].

It has recently been suggested that the penetration of adipose tissue into the muscle
also plays a key role in tumor promotion [232]. Epidemiological studies have shown
that regular physical activity is associated with reduced development and progression
of cancer [233,234]. Animal studies have shown that exercise is associated with reduced
tumor growth and metastatic spread [235]. In addition to reducing inflammation, myokines
also play a direct role in the tumor-suppressing effects of exercise [194]. Two anti-tumor
myokines, OSM [207] and SPARC [236], have recently been identified that inhibit colon
tumor formation and inhibit breast cancer cell growth, respectively. OSM has been shown
to exert significant in vitro apoptotic effects on tumor cell lines by inhibiting proliferation
in a variety of tissues including breast epithelial, melanoma, ovarian, and lung cells [207].
SPARC is secreted into the bloodstream in response to exercise, and its release was found
to be associated with the inhibition of colon tumor formation via the increasing of apop-
tosis [236]. A single training session quickly raised SPARC levels in the blood plasma
and muscles, suggesting that contracting myocytes release this myokine into the systemic
circulation. This exercise-induced increase in SPARC appears to be muscle specific as
no increase in this myokine has been observed in other organs [236]. There are strong
indications for a role of irisin as an anti-cancer agent because this myokine has inhibited
the viability of several types of cancer cells, including esophageal cancer cells [237–240].
Exosomal miRNAs have been shown to play an important role in regulating tumor progres-
sion and the anti-tumor effects of exercise can be mediated by altered miRNA expression,
as suggested recently [241,242].
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Table 1. The role of mediators secreted by adipose tissue (adipokines) and muscle tissue
(myokines) in the development of Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC).
BE—Barrett’s Esophagus; EAC—Esophageal Adenocarcinoma; GERD—Gastroesophageal Reflux
Disease; IL-1β—Interleukin 1 Beta; IL-6—Interleukin 6; TNF-α—Tumor Necrosis Factor-α. Labelling
“↓” means “decreased” while labelling “↑” means “increased”.

Mediator Role in BE Role in EAC

Adipokines

Leptin

• ↑ Pro-inflammatory cells
activation [167];

• ↑ Pro-inflammatory cytokines
production [167];

• ↑ Proliferative and invasive
capacity of BE cell lines
[157–164];

• High expression of the leptin
receptor in BE cells [103];

• Serum levels positively
associated with BE [243];

• High serum levels considered to
be an independent risk factor for
BE development
[145,158,159,163,164,176,177].

• ↓ Apoptosis in EAC cells [152,173];
• ↑ Proliferation in EAC cells [152,173];
• High leptin receptor expression in EAC

cells [103];
• High serum levels and insulin

resistance in BE patients considered to
be an independent from GERD risk
factor of EAC [163].

TNF-α, IL-1β, IL-6

• Pro-inflammatory effects [66];
• Impairs the integrity of the

esophageal barrier [66].

• ↑ Oncogene expression [32];
• ↑ Tumor growth and metastasis [244];
• ↑ Oxidative damage [245].

Adiponectin

• Anti-inflammatory effects [178];
• Lower serum levels in BE

patients than in healthy controls
[160–162];

• High receptor expression
associated with less advanced
disease stage and improved
overall survival [103].

• Anti-tumor effects [178]:
• ↑ Apoptosis of EAC cells [246];
• ↓ Cancer-promoting effects of leptin in

experimental models [157–164,182].
• Inhibits grow factors [32];
• Low serum levels considered to be an

independent risk factor for EAC
[160–162];

• High receptor expression associated
with less advanced disease stage and
improved overall survival [103].

Myokines

• Influence the release of
adipokines [226]:

• ↓ Leptin, TNF-α, visfatin,
omentin-1;

• ↑ Adiponectin.
• Anti-inflammatory effects [224].

• Tumor-suppressing effects
[207,236–239];

• ↑ Apoptosis of cancer cells
[207,236–239];

• ↓ Viability and proliferation of cancer
cells [207,236–239].

5. Molecular Alterations in Experimental and Clinical BE and EAC Complicated
by Obesity

Increased risk of cancer associated with obesity may be attributed to various interde-
pendent mechanisms, such as systemic inflammation, immune dysregulation, adipokine
secretion, insulin and insulin-like growth factor1 (IGF-I) signaling, tumor angiogenesis,
and the gut microbiota. In addition, optional interventions, such as restriction of diet
and exercise, can be prophylactic or therapeutic for obesity and gastrointestinal cancers,
including BE and EAC [247]. Recent evidence indicates that adipokine expression and
the ratio of leptin to adiponectin are important for metabolic characteristics in patients
with esophageal disorders. In addition to an unregulated leptin/adiponectin ratio, the
risk of esophageal cancer among obese individuals can be partly explained by several
factors: high incidence of GERD, the linear relationship between central obesity and the
development of BE, as well as low levels of adiponectin and high levels of leptin. These
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factors may influence the processes of cell proliferation, the state of insulin resistance that
creates the oncogenesis environment, and changes in intestinal and esophageal microbiota
due to unhealthy eating habits that promote carcinogenesis [32]. As mentioned, low levels
of adiponectin and high levels of leptin, as well as leptin OB receptors, are highly expressed
on esophageal epithelial cells. The observation that patients with BE had higher levels of
leptin in the fundus than those with normal esophagus confirms that hormones causing
metabolic changes may play an important role in the pathogenesis of this disorder due to
leptin-mediated signal transduction in BE [243]. Moreover, ObR expression was increased
in esophageal epithelial cells. In line with this finding, serum adiponectin was found to
be inversely related to BE, particularly in men. The same trend was observed in patients
with GERD and erosive esophagitis as decreased levels of esophageal adiponectin and low
serum adiponectin levels were reported compared with patients without GERD. Similarly,
such an imbalance between leptin and adiponectin was reported to increase the risk of
erosive esophagitis [243].

Another axis that could be modified through a lifestyle intervention might be insulin/
IGF-1 signaling directly on the esophageal tissue affected by Barrett’s lesions. The molecular
changes in the insulin/IGF-1 axis still need elucidation, but insulin resistance is known
to create a neoplastic environment. Arcidiacono et al. [248] provided data on esophageal
protein expression suggesting that BE patients who entered the intervention program
and made lifestyle changes presented with a downregulation of most proteins involved
in insulin-/IGF-1-induced molecular signal transduction. These patients not only lost
body weight, normalized their glycemic status, improved their HOMA-IR indexes, and
decreased their IGF-1 serum levels, but also exhibited lower IGF-1/Binding protein 3
molar ratios [248]. In addition, the molecular analysis of BE tissue revealed a significant
reduction in expression of insulin receptor signal1 (IRS1), p70S6K, and the extracellular
signal-regulated kinase (ERK1/2) total protein, accompanied by a decrease in IGF-1 serum
levels. Furthermore, patients who showed a lower expression of IRS1 belonged to two
distinct subpopulations, with one of them displaying a significant decrease in the expression
of major proteins involved in insulin/IGF-1 signal transduction such as Akt, p70S6K,
and ERK1/2. However, among the second subpopulation, a significant increase in the
relative inhibitory phosphorylation of the anti-tumor protein IRS1 and TSC2 and increased
activation of the mitogenic pathway associated with ERK1/2 were observed [248]. The
interventional lifestyle modification program in these patients resulted in no weight loss,
an increase in blood glycaemia and serum leptin, and a decrease in the serum IGF-binding
protein 3.

The interventional lifestyle modification program in these patients resulted in no
weight loss, an increase in blood glycaemia and serum leptin, and a decrease in the serum
IGF-binding protein 3. Interestingly, moderate exercise was beneficial because glucose
homeostasis, glycemic control, insulin resistance, and insulin sensitivity improved and
reduced IGF-1 availability was observed, especially in those patients who responded
optimally to this approach, confirming the possibility of decreased risk of BE evolution
towards EAC. Changing eating habits, combined with moderate exercise, resulted in
molecular modifications of the insulin/IGF-1 pathway in the esophageal tissue affected by
precancerous lesions, ultimately having a beneficial effect in BE patients [248].

Clinical observations that leptin can exert pathological effects by promoting EAC were
confirmed by an in vitro study of the EAC cell line OE33 derived from BE [173]. These
authors reported that leptin stimulates the proliferation of OE33 cells in a dose-dependent
manner while inhibiting cell apoptosis [173]. Expression of long and short leptin receptors
by OE33 cells in their study [173] was confirmed by qRT-PCR, Western blotting, and
immunocytochemistry. The expression of cyclooxygenase (COX)-2-derived prostaglandins
(PG) was considered a potential target enzyme responsible for these effects, as the leptin
effect was replicated by the addition of prostaglandin E2 (PGE2) and leptin-stimulated cell
proliferation resulted in the production of PGE2 [173]. Consequently, the deleterious effect
of this combination of leptin and PGE2 was abolished by the antagonist EP-4 AH23848.
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Interestingly, the activation of ERK, p38 MAPK, phosphatidylinositol 3‘-kinase/Akt, and
Janus tyrosine kinase (JAK)-2 was a result of COX-2 induction, while epidermal growth
factor receptor (EGFr) and c-Jun NH2-terminal kinase (JNK) were down-stream targets
of COX-2. Moreover, they found that PGE2 stimulates JNK phosphorylation in an EGFr-
dependent manner, and that activation of EGFr requires protein kinase C, src, and matrix
metalloproteinase activity. The subsequent PGE2-mediated transactivation of EGFr and
JNK appears to be crucial for leptin-induced cell proliferation and this mechanism may
contribute to the increased risk of EAC in obesity [173].

Signal transduction and the molecular pathways of visceral obesity affecting the
esophageal mucosa remain unexplored. In another study, the authors aimed to identify the
pathways by which visceral fat influences oncogenesis [249]. In their study, the expression
of ObR and adiponectin 1 and 2 receptors (Adipo-R1, Adipo-R2) was quantified by qPCR
and in the human esophageal adenocarcinoma cell line OE33 in vitro [249]. Most of the
ObRs expressed in tumors also have expressed Adipo-R1 and Adipo-R2. Despite upregula-
tion of ObR and Adipo-R2 mRNAs, the expression of AdipoR1 mRNA was decreased in
more than 50% of the samples. These molecular discoveries were significantly related to
the anthropometric and radiological measurements of obesity. Thus, Howard et al. [249]
concluded that obesity is associated with an increased expression of ObR and Adipo-R2 in
esophageal adenocarcinoma, suggesting that adipocytokine pathways play a pivotal role
in the formation of esophageal neoplasms.

Although the role of leptin in promoting the BE cascade to EAC is well documented,
the potential influence of another gastric orexigenic peptide, ghrelin, on the progression of
BE carcinogenesis has not been extensively studied. In order to investigate the role of ghre-
lin in the progression of BE, Konturek et al. [246] investigated the expression of adiponectin
and ghrelin receptors in the BE OE-19 cell line and in normal squamous epithelium by
qRT-PCR method, as well as the effect of adiponectin and ghrelin on apoptosis in BE cells
(Bax and Bcl-2 expression) and the effect of ghrelin on IL-1β and COX-2 expression in these
cells incubated with TNF-α in vitro. They found [246] that adiponectin enhanced apoptosis,
and this effect was accompanied by increased Bax expression and decreased expression of
Bcl-2. In contrast, ghrelin failed to affect the apoptosis of OE-19 cells incubated in neutral
or acidified medium with or without incubation with deoxycholic acid. The mRNA expres-
sion of adiponectin receptors (both, Adipo-R1, and Adipo-R2) was downregulated, while
expression of the ghrelin receptor (GHS-R1a) was upregulated in BE cells [246]. Moreover,
they observed [246] a decrease in COX-2 and IL-1β expression induced by TNF-α in OE-19
cells when these cells were incubated with ghrelin. The authors [246] concluded that
both adiponectin and ghrelin inhibit BE carcinogenesis through two different mechanisms,
namely, the adiponectin-induced increase in apoptosis and the anti-inflammatory effect
induced by ghrelin. Thus, obesity causing the levels of these two peptides to drop may
partially explain the progression of BE into EAC in obese subjects.

It should be noted that visceral obesity is known to increase the local visceral fat tissue,
known as the esophagogastric junction fat pad, which may be a source of pro-inflammatory
adipokines reaching the mucosa of the distal part of the esophagus at a higher concentration
than other tissues [66].

This observation in the cell line in vitro was partially confirmed by the clinical deter-
mination of the expression of adipokine receptors in BE and normal squamous epithelium
in the same patients along with the correlation of their findings with the measures and
parameters of human obesity [168]. In their study, the expression of the adiponectin 1
and 2 receptor protein (Adipo-R1 and Adipo-R2) and the leptin receptor protein (ObR) in
biopsies with 27 BE patients and normal squamous epithelium in the same patients as well
as in obese subjects and normal controls were evaluated by Western-blot analysis and then
confirmed by qRT-PCR to look for particular gene expression. They found that the levels
of Adipo-R1 and ObR, confirmed by quantitative mRNA expression, were similar in BE
mucosa and squamous epithelium in the same patients. Using linear correlation analysis, a
positive correlation was found between Adipo-R1 expression in BE epithelium compared to
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squamous epithelium in the same patients and between ObR expression in BE and normal
epithelium. Adipo-R1 and ObR protein levels were significantly higher in BE patients
compared to controls and obese subjects, suggesting that obesity may not be the main
cause of deregulation of these peptides, as well as the ghrelin and adiponectin observed
in BE, and that overweight may only be to some extent responsible for the induction of
adiponectin and leptin receptor expression in BE [168].

The reason for this discrepancy in the results of in vitro and human studies may be
related to the influence of two different types of adiponectin that were assessed, namely
full-length adiponectin (f-Ad) and globular adiponectin (g-Ad), on the expression of inflam-
matory factors [250]. The authors investigated the importance of the ROS/NF-κB signaling
pathway in adiponectin-regulated inflammation in EAC cells [250]. It is noteworthy that
f-Ad and g-Ad differently regulated both mRNA and protein levels of TNF-α, IL-8, and
IL-6, yet in a dose dependent manner in OE19 cells. For example, g-Ad increased the
production of TNF-α, IL-8, and IL-6 and increased intracellular ROS levels and NF-κB p65
activation, while in contrast, the f-Ad attenuated the production of inflammatory factors
and NF-κB p65 activation as well as decreasing the intracellular content of ROS [250].

Apparently, g-Ad exerted a pro-inflammatory effect, while f-Ad caused an anti-
inflammatory effect in a ROS/NF-κB-dependent manner in these OE19 cells, suggest-
ing that these two adiponectin forms may exert a different role in pathogenesis of BE
progressing to EAC [250].

Travellin et al. [251] examined the morphological, histological, and molecular features
of peritumoral and distal adipose tissue in 60 patients with EAC to investigate whether
depot-specific differences influence tumor behavior. They confirmed an association be-
tween increased adipocyte size, considered as a hallmark of obesity, and leptin expression,
angiogenesis (CD31), and lymph angiogenesis (podoplanin); however, these parameters
were associated with nodal metastases only in the peritumoral, but not distal, adipose
tissue of these patients. In addition, they clearly confirmed an increase in mRNA expression
levels of leptin and adiponectin receptors [251]. Furthermore, the mRNA expression of
two key regulatory genes of the epithelial–mesenchymal transition (EMT), in particular,
alpha-smooth muscle actin (α-SMA) and E-cadherin, was increased in EAC OE33 cells
incubated with conditioned medium collected from cultured biopsies of adipose tissue from
these patients. This effect was greater in cells treated with the conditioned medium taken,
in particular, from the peritumoral adipose tissue of patients with lymph node metastases.
It has been concluded that peritumoral adipose tissue secreting depot-specific paracrine
factors may directly contribute toward the progression of BE to EAC, and these effects are
mediated by leptin [251]. Thus, there is no doubt that dietary factors such as westernized
diet can efficiently accelerate the progression of BE to EAC but the mechanisms of these
effects are poorly understood.

Recently, the effect of dietary factors, including an obesity-related high-fat diet (HFD),
on the progression of BE (called L2-IL1B) to EAC was investigated in an experimental
mouse model of esophageal cancer [192]. Interestingly, in that study [192], the L2-IL1B mice
were crossbred with mice that express human IL-8 (L2-IL1B/IL8 mice). The esophageal
tissues were collected and analyzed for gene expression profiles with qPCR, immuno-
histochemistry, and flow cytometry. L2-IL1B mice fed with HFD developed esophageal
dysplasia and tumors faster than mice fed the control diet. However, it is worth noting that
the tumor development rate was independent of body weight [12]. BE tissues collected from
L2-IL1B mice fed HFD and L2-IL1B/IL8 mice revealed a substantial number of myeloid
cells and cells expressing Cxcr2 and Lgr5 messenger RNAs compared to the control [192].
Mice faeces were analyzed with 16 s ribosomal RNA sequencing and compared to 16 s
sequencing data from dysplasia or BE patients. Indeed, the HFD-fed L2-IL1B mice showed
accelerated dysplasia and increased levels of cytokines produced in dysplastic epithelium
in response to CXCL1 stimulation. Dysplastic changes in mice were accompanied by a
change in the intestinal microflora and an increase in the ratio of neutrophils to NK cells
in the esophageal tissues compared to the control group [192]. Similar differences were
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observed in BE patients who experienced EAC compared to patients who did not progress
BE to EAC. Thus, evidence has been provided that dietary factors such as HFD promote
dysplasia by altering the esophageal microenvironment and the gut microbiome, thereby
triggering inflammation and stem cell expansion independent of obesity. HFD promotes
dysplasia through the esophageal microenvironment and changes the gut microbiome,
leading to inflammation and stem cell expansion independent of obesity [192].

In another study [252], the gene expression analysis of Barrett’s metaplasia and
matched normal mucosa from squamous esophagus and gastric cardia was evaluated
in BE patients using HG-U133A Affymetrix chips on fresh frozen tissue. Their transcrip-
tome analysis revealed more than 1300 genes expressed in BE, with the exception of single
genes such as SOX and PROM1, which were only dysregulated in BE compared to reference
tissues [252]. This study [252] provides further evidence of the complexity of understand-
ing the functional molecular changes in gene expression involved in BE development and
unveils insights into new molecular pathways that may lead to better therapeutic options
and potential targets for future more effective therapy of BE progressing toward EAC.

6. Conclusions

Both obesity and EAC rates have increased sharply in recent years in the United States
and Western Europe. EAC is a classic example of obesity-related cancer, with the risk of
EAC increasing as BMI increases. Pathologically altered VAT in obesity appears to play
a key role in this process. Visceral obesity may promote EAC through direct effects on
GERD and BE, and reflux-independent effects, including adipokines and insulin resistance.
Deregulation of adipokine production, such as an altered leptin to APN ratio, is involved
in the pathogenesis of BE and EAC. The limited molecular findings presented to date have
underlined a transcriptional feedback loop linking epigenome dysregulation and metabolic
alterations in BE and EAC, suggesting that the blocking of this feedback loop seems to be a
favorable potential therapeutic strategy in experimental models of BE in vivo and in vitro
as well as in high-risk human subjects suffering from these esophageal pathologies. We
recommend that lifestyle interventions to increase regular physical activity may be helpful
as part of primary BE and EAC prevention. Although many studies have documented
the relationship between obesity and the risk of EAC, and the role of risk-modulating
non-pharmacological lifestyle interventions, such as the introduction of physical activity as
a preventive measure, the mechanism(s) of exercise’s effect on esophagus physiology and
pathology still require further explanation in clinical and translational research.
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