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Abstract: The evolution of nature created delicate structures and organisms. With the advancement
of technology, especially the rise of additive manufacturing, bionics has gradually become a popular
research field. Recently, researchers have concentrated on soft robotics, which can mimic the complex
movements of animals by allowing continuous and often responsive local deformations. These
properties give soft robots advantages in terms of integration and control with human tissue. The
rise of additive manufacturing technologies and soft matters makes the fabrication of soft robots with
complex functions such as bending, twisting, intricate 3D motion, grasping, and stretching possible.
In this paper, the advantages and disadvantages of the additive manufacturing process, including
fused deposition modeling, direct ink writing, inkjet printing, stereolithography, and selective laser
sintering, are discussed. The applications of 3D printed soft matter in bionics, soft robotics, flexible
electronics, and biomedical engineering are reviewed.

Keywords: additive manufacturing; soft materials; bionics; soft robotics; flexible electronics;
biomedical engineering

1. Introduction

Macromolecules composed of numerous repeating subunits are called polymers, which
are similar to biomaterials, such as hydrogels [1], silicone elastomers [2], and polycaprolac-
tone (PCL) [3], and play a key role in applications with biological interfaces, including soft
robotics [4,5], flexible electronics [6], and biomedical engineering.

3D printing, which is also called additive manufacturing, has become a popular tech-
nique to fabricate complex 3D structural matters from various materials, such as metals,
ceramics, and polymers [7]. Unlike traditional methods that require molds or stencils, this
3D printing assembly method can convert digital designs into complex 3D products causing
little material wasting [8]. In addition, 3D printing technology makes the rapid manufac-
ture of products possible [9], greatly advancing industrial production and academic study.
Today, more than 50 kinds of 3D printing technologies based on different principles have
been developed for different materials, speed, and precision requirements [10]. Due to
the diversity of materials and printing methods [11], 3D printing technology has evolved
into a universal and powerful technology for advanced manufacturing in the future plat-
form [12]. Especially in soft polymer materials with various polymeric properties [13], the
development of 3D printing technology has made it possible to directly construct complex
functional soft systems [14].

Electromechanical engineering, chemical engineering, and sensor engineering are
the foundations of the rapid development of soft robots [15–17]. However, high-level
applications are usually inspired by biology [18,19]. Invertebrates of varying body com-
plexity, from worms [20] to octopuses [21], provide inspiration in soft robot design. For
example, humans have the feedback provided by the special receptors and afferent neurons
that make up the somatosensory system, as well as the deformation, self-healing, and
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diversity-dependent dexterous hands and movements of animal muscle tissue and sensory
network [22–24]. A new area of soft robotics seeks to replicate these features in a myriad of
applications. This review mainly introduces recent progress in 3D-printing soft materials
to build functional soft matters, especially those in biologically-related fields.

2. 3D Printing Method
2.1. Fused Deposition Modelling

Fused Deposition Modeling (FDM) additive manufacturing technology currently occu-
pies about 6% of the 3D printer market, which is a promising printing method (Figure 1a).
At the same time, FDM printers have high printing efficiency and no merits—polluting
odor and little deformation after molding have gradually expanded the user group of
FDM, which has wide commercial value. The FDM 3D printer consists of a wire extrusion
device, a heating block, a nozzle, a printing platform, and a movement mechanism. Its
molding process is based on a prefabricated shape, with the molten material in the form of
a filament on the printing platform, and finally you obtain the target pattern which can be
easily divided into four levels of dotted line and surface integration, which has obvious
advantages over traditional 3D printing technology in the mold making process. FDM
involves repeating the melting and cooling process, which limits its use in thermo-sensitive
polymers. Soft robots made of thermoplastic polyurethane by the Ninjaflex series have been
considered the most successful FMD fabrications, which can withstand strain γult more
than 500% and a Young’s modulus of 10 Mpa [25]. The nozzle diameter limited the resolu-
tion of FDM, and heterogeneity, defects, or voids can be introduced in the printing process.
In addition, to avoid voids, the temperature must be controlled to make sure that the wire
melts completely in the nozzle [26]. The construction time is directly proportional to the
construction volume and inversely proportional to the resolution and nozzle size. FDM
printers with particle hoppers or multiple nozzles can selectively deposit different kinds
of thermoplastic materials in the same layer, paving the way for the complex mechanical
programming required for multi-material printing and advanced robotic equipment.
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2.2. Direct Ink Writing

Direct Ink Writing (DIW) is currently one of the most flexible 3D printing technologies
available (Figure 1b). The basic principle is to precharge the ink material into the printhead
and use the power source, such as an electric drive or high pressure gas, to power the
vitality so that, even though the oil is extruded from the nozzle, the extruded ink is solidified
through vulcanized [28], phase change [29], gelation [30], solvent evaporation [31], and
other methods, then stacked layer by layer. With DIW technology, the rheological properties
of the paint material determine the extrusion performance and shape accuracy to a certain
extent, and the curing speed of the paint after extrusion also determines the properties of
the horizontal structure and size.

2.3. Direct Inkjet Printing

Direct inkjet printing (Figure 1c) includes hot melt printing, powder bed inkjet print-
ing, multi-inkjet printing, etc. The specific process is to spray the molten material onto
the substrate before it hardens. The entire process is divided into three steps. The small
water droplets form an ink jet (volume V = 1–100 pl and diameter, d = 10–150 µm) and
are deposited directly on the substrate, which leads to the interaction between neighbor-
ing droplets, followed by the vitrified, vaporized, or polymerized ink solidifying. The
thermosetting polymer droplets also contain photopolymers which are crosslinked when
irradiated with ultraviolet light. Eventually, the material is accumulated through repeated
production of two-dimensional layers.

2.4. Vat Photopolymerization

Reductive polymerization techniques, generally referred to as stereolithography (SLA)
(Figure 1d), including double photon polymerization [32], micro-photolithography (µ-SL),
digital mask projection three-dimensional photolithography [33], digital light treatment [34],
and continuous liquid interface production [35], can be used to polymer in a liquid resin.
The density medium provides a buoyancy that can support the soft and compliant structure,
which can be printed and have a slope structure. The reduced polymerization printer
produces selectively photocatalytic substantial layers by controlling the space and time of
light. Different light sources are needed according to the difference in technology. A high
resolution [35] is maintained while making a plurality of parts (stretching speeds to 1 m/h)
at a rapid parallel resin system. Therefore, SLA provides an efficient and commercial
technology for constructing soft robots with microscale features.

2.5. Selective Laser Sintering

Selective laser sintering (SLS) (Figure 1e) refers to building matters from powder
particles. When printing, the laser rasterizes over the powder bed. The small particle
melts as soon as the local temperature is above Tm, and the materials cool down when the
radiation stops. Then, the next layer of powder is applied along the print bed. The entire
structure is built up as the process is repeated.

2.6. Summary

3D printing of soft polymer materials is a process of molding and curing in three-
dimension space. Different 3D printing techniques work on different principles and materi-
als, such as selective laser compaction and stereolithography, which selectively solidifies
slices in a material tank based on the patterns. Ink-jet printing and extrusion printing move
the material through the nozzle to the specified position, which is then cured. Therefore, a
change in printing material can be achieved by changing the nozzle, which is difficult for
SLS and SLA. Three-dimensional printing of soft materials mainly includes thermoplastic
polymer, thermosetting polymer, photoinduced polymer, and physical cross-linked poly-
mer. Thermoplastic polymers and photoinduced polymers are suitable for SLS and SLA.
The nozzle-based printing method can print almost all materials with rheological properties
and also has the ability of multi-material printing. SLS has significant advantages in print-
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ing large structures since it prints one layer at a time. Table 1 shows a comparison of these
3D printing methods. All in all, these 3D printing technologies have no absolute advantages
and disadvantages, and appropriate printing methods should be selected according to
actual requirements.

Table 1. Comparison of different 3D printing methods.

Methods Resolution Relative Build Speed NNN Raw Materials Multi-Material
Printing Ability NNN

Fused deposition modelling >100 µm [36] N
thermoplastic

polymers NN

Direct ink writing 1~100 µm [37] N
Curable

pseudoplastic
polymer fluids

NNN

Direct ink printing >10 µm [38] NN
Low viscosity
polymer fluids NNN

Stereolithography >5 µm [39,40] NN
Photopolymers

with low viscosity NN

Selective laser sintering >100 µm [41] NNN
Thermoplastic

polymers N

3. Applications of 3D Printed Soft Materials
3.1. Bio-Inspired Structures

The evolution of nature over millions of years to develop high-performance biological
structures provides ideas for human design of high-strength and tough materials [42]. They
typically consist of hard and soft phases arranged in complex hierarchies with feature sizes
ranging from nanoscale to macroscale [43]. The resulting materials are lightweight and
often exhibit unique combinations of strength and toughness, but they are difficult to imitate
synthetically, thus hindering the development of biomimetic designs. The fabrication of
biomimetic complex structures is a great challenge for the industry because it involves
multiscale, multi-material binding, and multifunctional integration [44,45]. The rapid
development of multi-material 3D printing technology in recent years provides a new
solution to this problem [46,47].

When a synthetic material is molded into a particular shape, its dimensions and
mechanical properties are permanently fixed. Structural shrinkage due to component
extraction and structural expansion due to solvent addition often lead to weakening effects
such as disintegration and destruction [48,49]. In contrast, natural living tissues, such
as skeletal muscle, become stronger with a continuous supply of water and amino acids
after repeated growth cycles, forming new components within the original tissue [50,51].
The researchers exploited this self-growth and self-reinforcing phenomenon to design
smart materials with dynamic and programmable properties. Scholars in Japan used
mechanical free radicals generated by chain scission to achieve repairable and strengthened
double-network hydrogels [52]. Adding additional monomers to a partially damaged
hydrogel can form a new polymer network, improving strength and toughness. Wu et.al.
encapsulated dispersed diazide-based crosslinkers in a single hydrogel network with a
deformable barrier [53]. After swelling in water, the cross-linking agent is released from the
capsule, forming an additional second network that increases the strength and modulus
of the hydrogel (Figure 2a). Thus far, self-grown materials with simple shapes have been
developed, and how to break through the limitations of network types and enhancers is
the key. Drawing on the continuous biological self-growth process, Wu et.al. proposed a
solvent-free photocurable elastomer system which successfully fabricated high-precision
and high-complexity shapes [54]. Self-growth of printed structures can be achieved without
changing the chemical structure by sequentially dipping the structures into the same
type of monomer without the addition of a crosslinking agent (Figure 2b). On-demand
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enhancement of the modulus and strength of the printed structure can be obtained with an
adjustable growth cycle. Due to changes in network stretch during the growth cycle, 3D
printed multinetwork (MN) can also be used as a waterproof structure.
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Figure 2. (a) Diffusion-inspired transport across synthetic liposome membranes by biological mem-
branes. Reproduced with permission from ref. [53]. Copyright 2020, Springer Nature. (b) Self-grown
multinetwork (MN) complex structures composed of Mobius shells, Kagome lattices, and octet
lattices were fabricated by 3D printing. Reproduced with permission from ref. [54]. Copyright 2022,
Elsevier. (c) Light-curable silicone inks have variable stiffness; multi-materials 3D printing with
different stiffness in a single print with seamless combines can be obtained via precise programming.
Reproduced with permission from ref. [55]. Copyright 2018, Springer Nature. (d) The left two
columns are hydrogel–elastomer combined multi-material structures, and the right two columns are
artificial cactus shapes. Reproduced with permission from ref. [56]. Copyright 1969, Elsevier.

Manuel Schaffner et.al. reported a 3D printing platform for seamless digital manu-
facturing of pneumatic silicone actuators with programmable biomimetic structures and
movements [55]. The actuator is made of elastomer and its surface is decorated with rein-
forcing strips with clear chamfers. Similar to the fiber structure of muscle hydrostats, the
lead angle can be varied to achieve elongation, contraction, or twisting motion (Figure 2c).
The design principles for digital fabrication of silicon-based soft actuators are based on a
quantitative model of stacking theory. The functional response of the material can be pro-
grammed based on its properties and structure. By exploring this programmable potential,
3D printing of various soft deformable structures will be possible.

The two developmental models (Figure 2d) explored by Anil K. Bastola et al. [56]
suggest that there is much to learn about plant ecology, development, and adaptive behav-
ior. These biological systems provide a ready source of information for designing artificial
systems with developmental intelligence and adaptability. This controllable movement
(bending) and shape change can be used to monitor, for example, changes in humidity and
to develop humidity-based actuators for plant-inspired ecorobotic systems. Anil K. Bastola
et al. proposed multiple soft robotic schemes based on the growth and development of a
climbing cactus, Selenicereus setaceus, in the seasonally arid Brazilian Atlantic Forest. In
its natural habitat, the cactus stem develops striking changes in cross-sectional geometry,
adaptively performing different functional roles in response to external cues and environ-
mental constraints. Anil K. Bastola et al. demonstrated the inspiration and cactus-based



Int. J. Mol. Sci. 2022, 23, 3790 6 of 13

structural configuration of a multi-material, hydrogel-elastomer, and biphasic soft robotic
system.

3.2. Soft Robots

The somatosensory system provides feedback for humans to achieve manual dexterity
and control of various movements of the human body. Ryan L. Truby et.al. report on how
to create soft body-sensitive actuators (SSAs) via embedded 3D printing that are controlled
by multiple conductive functions and enable tactile, proprioceptive, and thermal sensations
at the same time [57]. This new manufacturing method seamlessly integrates multiple
ionic and fluid features into the elastic matrix to produce SSAs with the desired biomimetic
sensing and working functions. Each printed sensor consists of an ionic conductive gel
that provides long-term stability and hysteresis-free performance. For example, combining
multiple SSAs with a soft robot gripper provides proprioceptive and tactile feedback
through embedded curvature, expansion, and contact sensors such as depth and fine touch
contact sensors (Figure 3a). The multi-material manufacturing platform makes it easy to
integrate complex sensing patterns into soft actuation system. Xie et al. fabricated a soft
finger robot with adjustable stiffness, which can work without an external power [58].
Figure 3d,e shows the schematic of this soft finger robot with low power sensor which can
provide sense and energy absorption, and thus can interact with the environment safely.
By way of a properly designed sensor, a tunable-stiffness soft robot can have the ability to
interact with objects. This is a necessary step to achieve closed-loop feedback control for
soft robots, machines, and haptic devices.

Afaque Manzoor Soomro et al. [59], inspired by the relatively simple morphology of
aneurids such as Rana Esculenta (a semi-aquatic frog), proposed a shape memory alloy
(SMA)-based multilayer structure design and ultra-flexible material for the design, fabrica-
tion, and characterization of a flexible biomimetic robotic frog. A dual-thrust generation
method using four SMA myofilaments to realize synchronous swimming of frogs was
proposed. The frog robot, named “Exploring Frog”, is made with a multi-head 3D printing
system. The robot is designed based on mathematical modeling, simulation, and fluid
dynamics analysis of real frogs. This soft biological frog robot (EXPOG) is able to swim
synchronously underwater.

First, the synchronous swimming motion of frogs was analyzed by TRACKER software.
Subsequently, the model was proposed with the motion control equation as the focus, and
an in-depth theoretical analysis was carried out (Figure 3b). In addition, Fluidic-Solid
Interactions (FSI) simulations were performed in COMSOL to verify the design of the frog
stroke, the surface velocity, and the generation of vortices in the water. Based on the model
and simulation results, a multi-head 3D printer was used to make the robot (Figure 3c).
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Figure 3. (a) Images of an interaction process between a ball and a soft robotic gripper comprised of
SSAs. Reproduced with permission from ref. [57]. Copyright 2018, John Wiley and Sons. (b) Schematic
diagram of the working mechanism; the left image shows the dual method of generating thrust,
and the right image shows synchronized swimming. Reproduced with permission from ref. [59].
Copyright 2021, Elsevier. (c) EXPOG manufacturing process flow diagram. A fully functional frog
robot is printed and assembled step by step. First, one half of the limb was printed with ultraflex
filament, the second joint was used to place the muscle wires pre-soldered for connection, then the
second half of the limb and flippers were printed of the same material, while the predecessor robot
was printed with ABS filament, and finally all the parts were printed connected. Reproduced with
permission from ref. [59]. Copyright 2021, Elsevier. (d) Schematic of the soft robotic finger. (e) The
three-finger gripper for practical grasping. Reproduced with permission from ref. [58]. Copyright
2021, Elsevier.

3.3. Flexible Electronics

The rapid development of 3D printing has provided a new technique for fabricating
flexible electronics, which enables the application of conductive biomaterial. The design
of bio-ink with printability, conductivity, and that is harmless to the body is crucial for
bio-electronics [60–62]. Laminated modeling of electrically responsive soft actuators has
important implications for the design and construction of new soft robots and machines.
However, the options for soft materials that are 3D printable and electrically responsive
are very limited. Wang et.al. report an electrically controllable 3D printing strategy for
polyvinyl chloride (PVC) gel actuators [63]. An actuator similar to a jellyfish is printed
with PVC ink (Figure 4a) and can be bent 130◦ in less than 5 s. As a proof-of-concept
demonstration, a 3D-printed PVC gel-based smart window will show that its transparency
can be changed when a voltage is applied (Figure 4b). The 3D printing strategy developed
in this paper has the potential to expand the potential use of electrically responsive soft
materials in a variety of engineering disciplines.
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specific time during the heating process. Reproduced with permission from ref. [64]. Copyright 2021,
Elsevier. (d) Self-power LED when tapped by bare hand and a NBR-covered hand. Reproduced with
permission from ref. [65]. Copyright 2021, Elsevier.

Sanghun Shin et al. succeeded in manufacturing a heat-responsive soft actuator
using 3D printing technology, demonstrating its application as a switch for electrical
applications [64]. PLA filaments are printed directly on commercially available paper
(paperboard) to form a two-layer composite structure. This will program the reversible
actuator. PLA is not soft at room temperature due to its high hardness, but it is soft and
elastic due to thermal stimulation exceeding the glass transition temperature (Figure 4c).
Finally, a simple additional electrical connection allows the device to provide a time
interval signal in response to stable heat transfer. During operation, the manufactured
switch is connected to the heat source (heating component) of a commercially available
DC-DC converter module. The system consists of two switches; the distance between
the 3-STA and the pin header controls the time gap and provides step input voltage to
other equipment, including the cooling system. Therefore, the wind speed (or flow rate)
of the cooling fan can be adjusted according to the bottom temperature of the switch.
Simply put, when the electronics under the switch become hot, the system supplies more
power and provides more airflow for proper cooling. Sanghun Shin et al. demonstrate
efficient/easy manufacturing and transient analysis of electrical switches consisting of soft
polymer actuators for electrical applications.

A fully flexible single-electrode TENG (FFTENG) was fabricated by Wang et al. via
direct ink writing 3D printing method with complex pattern [65]. A silicone elastomer
shell is used as the triboelectric layer and an inner silicone/carbon black (CB) core as the
flexible electrode. Figure 4d shows this self-power LED, which was lighted by continuously
tapping the FFTENG using a bare hand and an NBR-covered hand. The electron affinity
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of NBR is lower than bare skin, thus, when tapped by the NBR-covered hand, the LED is
brighter.

Due to the flexibility of 3D printing methods, various flexible electronics can be
fabricated to meet actual need such as LED sensors, actuators, and switch, which offers a
useful solution for next generation human–machine interaction device.

3.4. Biomedical Engineering

3D bio-printing offers an advanced method for fabricating living tissues, which will
change the field of surgery [66]. Bio-materials science, mechanical science, and surgical
science are the basic elements of nature. Having a good command of producing tissue in
three-dimensions is the critical basis for regenerative treatment [67,68]. Inspired by the
biological function of the skin to protect the body from the invasion of microorganisms,
the artificial creation of human skin with anti-infection and skin regeneration capabilities
in vitro is an urgent need for wound repair. Zhan et al. developed printable inks composed
of natural biopolymers such as gelatin (Gel), alginate (Alg), hyaluronic acid (HA), and
photoactive cationic conjugated polyphenylene vinyl derivatives (PPV) to make a 3D
printed artificial skin patch [69]. Compared to other dressings based on the hydrogel
system, the skin patch developed by Zhan et al. has comprehensive antibacterial ability,
tissue regeneration promoting ability, and abundant microstructural patterns, and was
suitable as a skin equivalent when a skin trauma occurred (Figure 5a).
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and Sons. (c) Printing of personalized hydrogels in support media. Reproduced with permission
from ref. [71]. Copyright 2019, John Wiley and Sons. (d) Model design workflow and 3D-produced
surgical plan prototype. Reproduced with permission from ref. [72]. Copyright 2020, Elsevier.

By assembling induced pluripotent stem cell (iPSC)-derived spinal neuronal progenitor
cells (sNPCs) and oligodendrocyte progenitor cells (OPCs), a bioengineered spinal cord
fabricated by multi-material 3D bioprinting can be achieved, placed at the precise location
of the 3D printed biocompatible scaffold (Figure 5b). Daeha Joung et al. created a 3D spinal
cord tissue-like platform via a one-pot 3D bioprinting method involving neuronal and
glial progenitor cells in a biocompatible scaffold [70]. Daeha Joung et al. created fully 3D
bioprinted neural progenitor cells with axonal propagation in engineered 3D biocompatible
scaffolds.

In cardiac tissue engineering, generating thick vascularized tissue that perfectly
matches the patient remains an unmet challenge. Nadav Noor et al. report a simple
method to 3D print thick, vascularized, perfusable cardiac patches that fully conform to the
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patient’s immune, cellular, biochemical, and anatomical properties [71]. To do this, biopsies
of omental tissue are taken from the patient. An artificial heart with cellularization was
successfully printed, verifying the feasibility of cellular programming. The extracellular
matrix consisted of personalized hydrogels and was bound to cardiomyocytes and endothe-
lial cells to form bio-inks for cardiac parenchyma tissue and blood vessels, respectively, as
shown in Figure 5c.

In the study of A. Tejo-Otero et al. [72], liver tissue was simulated and a prototype
surgical plan was fabricated (Figure 5d). Surgeons can rehearse it and confirm its benefits
in preoperative surgical planning. This liver phantom can be used for medical school and
patient education in addition to preoperative surgical planning. The latest results are still
far from in vitro organ functional tissue/organ reconstruction, but advances in 3D printing
and bioprinting technology have brought this goal one step closer and made the impossible
achievable. We summarized the applications of 3D printing soft matters, as shown in
Table 2.

Table 2. Summary of 3D printing applications.

Application Material Method Key Point Advantage

Bio-inspired structure

3D printable resin [54] Digital light processing
3D printing

Solvent-free elastomer
composite system

Self-growing
composites

Light-curable silicone
inks [55] DIW

Alike plant systems
and muscular
hydrostats

Programmable

TangoPlus [56] Object260 3D printer Multi-material biphasic
soft system

Does not require
additional sources of

energy

Soft robots

Conductive ionogel
and fugitive inks [57] DIW Embedded 3D printing Emulate the human

somatosensory system

Multi-material [58] Objet350 3D printing Built-in multifunctional
sensor

Self-powered, flexible
multifunctional sensor

ABS, ultraflex [59]
Custom-made
multiheaded 3D
printing system

Multilayer structural
design

Synchronous
swimming of frog

Flexible electronics

PVC ink [63] DIW Triggered by an electric
field

A facile way to print
PVC gel actuators

PLA [64] FDM-based 3D printer A bilayer composite
Without any

complicated control
systems

Silicone/carbon black
3D printing ink [65]

Coaxial DIW 3D
printing

Fully flexible
single-electrode TENG

Convert biomechanical
energy into electric

energy

Biomedical engineering

Phenylene vinylene and
gelatin/alginate/hyaluronic
acid ink [69]

A commercial 3D
printer Ink design principle

Dual biofunctions of
anti-infection and

promoting soft tissue
regeneration

Bio-inks [71]
A 3D printer, equipped
with extrusion-based
print heads

Bio-inks originated
from the same patient

Fully match any
individual

Polyamide, poly lactic
acid [72]

Selective laser sintering
and fused filament
fabrication

Viscoelasticity and
hardness

Allow the different
anatomical structures

to be replicated
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4. Conclusions

To sum up, remarkable progress has been made in 3D printing soft matters which are
inspired by natural beings. However, as an emerging field, there are still many challenges
in terms of equipment, materials, and design. This paper summarizes the 3D printing
technology of soft matters and the application of its products in the fields of bionics, soft
robotics, electronic sensing, and biomedical engineering. An effective method to fabricate
complex functional soft matters is by using multi-material 3D printing technology. In order to
improve the integration and function of the printed structures, advanced materials, equipment,
and computer technology play an important role, which would surely benefit the 3D printing
soft materials technology and thus improve human beings’ lives in the near future.
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