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Abstract: Drug repurposing strategy, proposing a therapeutic switching of already approved drugs
with known medical indications to new therapeutic purposes, has been considered as an efficient
approach to unveil novel drug candidates with new pharmacological activities, significantly reducing
the cost and shortening the time of de novo drug discovery. Meaningful computational approaches
for drug repurposing exploit the principles of the emerging field of Network Medicine, according to
which human diseases can be interpreted as local perturbations of the human interactome network,
where the molecular determinants of each disease (disease genes) are not randomly scattered, but
co-localized in highly interconnected subnetworks (disease modules), whose perturbation is linked
to the pathophenotype manifestation. By interpreting drug effects as local perturbations of the
interactome, for a drug to be on-target effective against a specific disease or to cause off-target adverse
effects, its targets should be in the nearby of disease-associated genes. Here, we used the network-
based proximity measure to compute the distance between the drug module and the disease module
in the human interactome by exploiting five different metrics (minimum, maximum, mean, median,
mode), with the aim to compare different frameworks for highlighting putative repurposable drugs
to treat complex human diseases, including malignant breast and prostate neoplasms, schizophrenia,
and liver cirrhosis. Whilst the standard metric (that is the minimum) for the network-based proximity
remained a valid tool for efficiently screening off-label drugs, we observed that the other implemented
metrics specifically predicted further interesting drug candidates worthy of investigation for yielding
a potentially significant clinical benefit.

Keywords: network medicine; drug repurposing; network theory

1. Introduction

Drug repurposing is a drug development strategy used to identify novel uses for
drugs approved by the US Food and Drug Administration (FDA) outside the scope of
their original medical indication [1]. Establishing if an ‘old drug’ can be reused for new
therapeutic purposes could represent a faster and cheaper alternative to the de novo drug
discovery process that generally takes 2–3 billion dollars and 12–15 years to be completed
(from production to approval, passing through the various phases of preclinical and clin-
ical trials) [1]. In the development of meaningful computational approaches for drug
repurposing, very promising insights comes from the newly emerging field of Network
Medicine [2,3], which applies tools and concepts from network theory to elucidate the
relation between perturbations on the molecular level and phenotypic disease manifesta-
tions. According to the Network Medicine paradigm, the efficacious treatment of complex
diseases can come up only from the knowledge of the broader network context of the
molecular determinants of diseases (named disease genes) in the human interactome (i.e., the
cellular network of all physical molecular interactions) [4]. It is becoming increasingly clear
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that the disease genes have a high propensity to interact with each other and agglomerate in
locally dense and topologically well-defined regions of the interactome known as disease
modules, whose perturbations may contribute to the pathobiological phenotype [3,5–11].
Following the Network Medicine perspective, even the action of a drug can be interpreted
as a local perturbation of the interactome, and thus, for a drug to be on-target effective
against a specific disease or to cause off-target adverse effects, its target proteins should
be within or in the immediate vicinity of the corresponding disease module. In recent
years, several network-based approaches marrying this philosophy have been developed
to aid the identification of the specific interactome neighborhood that is perturbed in a
certain disease [12–16] and/or for the effect of a certain drug, and guide the search for
therapeutic targets, identify comorbidities, as well as rapidly detect drug repurposing can-
didates [17–24]. In order to quantify the interplay between drug targets and disease-specific
proteins in the human interactome, in [17], the authors used a network-based drug-disease
proximity measure, which prioritized associations between drugs and diseases located in
the same network neighborhoods based on the average shortest paths.

Here, we exploited the network-based drug-disease proximity measure proposed
in [17] by using four different metrics (i.e., maximum, mean, median, mode) to compute
the distance between the drug module and the disease module of four diseases of interest
(i.e., liver cirrhosis, malignant breast neoplasm, schizophrenia, and prostate neoplasm).
Then, we compared the obtained candidate drugs with respect to those ones obtained by
using the standard metric (i.e., minimum) [17]. Our outcomes confirmed that the original
network-based proximity metric remained a valid tool for screening off-label drugs, but
we also observed that the additional here-implemented metrics specifically highlighted
some interesting drug candidates, with clues of potential in silico-efficacy, which were thus
worthy of further investigation. These results suggested that this network-based approach
can be generalized to other diseases and drugs, and this is the reason why we published
the R-code along with this study, freely available at https://github.com/giuliafiscon/
GeneralizedProximity.git (accessed on 27 March 2022).

2. Results

We evaluated the extent to which a given drug could be repositioned to treat a given
disease by exploiting the network-based proximity measure relying on the distance between
drug modules and disease modules in the human interactome network.

In order to topologically quantify this distance, we used four different metrics (i.e.,
maximum, mean, median, mode) and then compared the results with the standard met-
ric based on the average shortest paths between drug targets and disease genes. The
study design is depicted in Figure 1. In particular, the input data of our analysis were
the human interactome, the list of disease-associated genes, and the drug-targets inter-
actions. In the present study, the human interactome was downloaded from Cheng and
co-authors [17], which is an integrated version of 15 different databases of protein–protein
interactions; disease-associated genes were downloaded from DisGeNET [25], which is a
knowledge-based platform integrating and standardizing data about disease-associated
genes and variants from multiple sources; and drug-target associations were obtained
from DrugBank [26], which collects a huge amount of drug-related data, recently enabling
the discovery and repurposing of a relevant number of existing drugs to treat rare and
newly identified diseases [1,17]. We assembled target information for a total of 1222 FDA-
approved drugs, and we applied our algorithm to four diseases with the highest number
of disease-associated genes (i.e., liver cirrhosis, malignant neoplasm of breast, prostate
neoplasm, and schizophrenia). The complete lists of the analyzed diseases and drugs are
provided in Supplementary Table S1.

https://github.com/giuliafiscon/GeneralizedProximity.git
https://github.com/giuliafiscon/GeneralizedProximity.git
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Figure 1. Workflow of the analysis. Input data are the human interactome network, the disease-gene
associations from DisGeNET and the drug-targets interactions from DrugBank. The proximity mea-
sure between drug-targets and disease genes is computed by using five different metrics, including
the standard minimum and the other here-proposed ones (i.e., maximum, mean, median, mode).
The resulting candidate drugs are then compared among each metric, and metric-specific drugs are
then discussed.

Following the Network Medicine principles, for a drug to be effective against a specific
disease, its associated targets (drug module) and the disease-specific associated genes
(disease module) should be nearby in the human interactome [17]. To quantify the vicinity
between a given drug module T and a given disease module S, we used the network
proximity measure p defined as:

p(T, S) =
1
‖T‖ ∑

tεT
f (

sεS
d(t, s) )

where f function refers to five different metrics, including the standard minimum mea-
sure [17] and the other here-proposed ones (i.e., maximum, mean, median, mode), which
we implemented to summarize the distance between drug targets t in the drug module T
and the disease genes s in the disease module S, and thus to prioritize the predicted off-label
drug indications for a given disease. For each metric, we complemented the computation
of the proximity measure with a measure of statistical significance (p-value) by applying a
degree-preserving randomization procedure (see Section 4). Thus, we considered eligible
candidates’ drugs to be repositioned for a given disease those drugs whose targets were
nearby in the interactome to the disease-associated genes more than expected by chance
(p-value ≤ 0.05).

The results obtained for each disease are summarized in Figure 2a, whereas the
complete lists of candidate repurposable drugs predicted by each metric are reported in
Supplementary Table S2.
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Figure 2. Number of off-label predicted drugs according the five different metrics for each ana-
lyzed disease. (a) The table reports, for each disease and each metric, the total number of predicted
drugs, the number of predicted drugs that already have a known medical indication according to
TTD database, and their ratio in terms of percentage (appearing in bold). (b) The bar plot shows the
percentage of predicted drugs with already known medical indications grouped by metric for each
disease reported in the legend. Only the metric predicting a total number of drugs greater than five
for a specific disease are plotted.

Overall, computing the proximity values by using the minimum metric produced
the largest number of statistically significant predicted drugs for each disease, while no
compounds were predicted in a statistically significant way by using the maximum metric
(Figure 2a). Yet, by retrieving from the Therapeutic Target Database (TTD) [27] the original
medical indications for each predicted drug, we observed that the mode metric allowed to
identify the highest percentage of predicted drugs with an already established indication,
greater than 60% for all the four analyzed diseases (ranging from 60% for malignant breast
neoplasm to 95% for prostate neoplasm), immediately followed by the minimum, median,
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and mean metrics with a percentage greater than 60% for 3 out of 4 analyzed diseases
(Figure 2b and Supplementary Table S3).

2.1. In Silico Efficacy: Two Case Studies

In order to further investigate the repurposable drugs predicted by using each metric
and pointing out those ones that could counteract the disease effect, we performed a gene
set enrichment analysis (GSEA) for two case studies (i.e., malignant breast neoplasm and
prostate neoplasm) detailed in the following sections.

2.1.1. Malignant Breast Neoplasm

For studying the effect of eligible drugs on human breast cancer, we exploited:

(i) The drug-treated human breast adenocarcinoma cell line (i.e., MCF7) is available from
the Connectivity Map (CMap) database as drug signature;

(ii) The differentially expressed genes for breast invasive carcinoma dataset are available
from The Cancer Genome Atlas (TCGA) repository as disease signature (see Materials
and Methods).

We also investigated the subtypes distribution of the cohort of TCGA breast cancer
patients. In particular, by retrieving the clinical information, we obtained the HER2+/−,
ER+/−, and PR+/− status for 77 (out of 113) patients, corresponding to the 68% of the
total number of analyzed breast cancer patients. Among the 77 classified patients, we
observed 81% (62/77) characterized by a less aggressive subtype (i.e., luminal A/B/B-like)
and 19% (15/77) by a more aggressive subtype (i.e., HER2+ and triple negative) (Table 1).
This observation strongly supports the usage of MCF7 cell line available from CMap, that
is a poorly aggressive and non-invasive breast cancer cell line.

Table 1. Classification of breast cancer patients (pz) retrieved from TCGA based on ER, PR, HER
receptors status.

Receptor/Classification Luminal A Luminal B-Like Luminal B-Like Luminal B HER2-Enriched Triple Negative

ER positive positive positive positive negative negative

PR positive positive negative negative negative negative

HER2 negative positive positive negative positive negative

number of pz 38 15 2 7 4 11

less aggressive (81%) more aggressive (19%)

Then, we calculated a GSEA score as an indication of the possible counteraction of each
drug to the gene expression perturbations caused by the breast cancer pathophenotype.
In particular, we selected drugs whose signatures were negatively correlated with the
breast cancer signature, according to the CMap query tool [28–30], as drugs able to have a
potential treatment effect against genes that are a hallmark of breast cancer phenotype (see
Section 4).

Overall, the GSEA analysis confirmed that the minimum metric specifically predicted
the highest percentage equal to 22% of the candidate drugs with potential in silico efficacy
able to counteract the disease effect (i.e., with GSEA score > 0), immediately followed by
the mode metric with a percentage of GSEA confirmed drugs equal to 18%. (Figure 3,
Supplementary Table S4—first sheet).
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Figure 3. In silico efficacy of candidate repurposable drugs for malignant breast neoplasm. (a–c) Venn
diagrams of the candidate drugs predicted by using mean, median, mode metrics with respect to
the standard minimum one for malignant breast neoplasm treatment. (d) Bar plot showing the
percentage of metric-specific candidate drugs that have a GSEA score greater than zero.

2.1.2. Prostate Neoplasm

For studying the effect of eligible drugs on human prostate cancer, we used:

(i) The drug-treated human prostate adenocarcinoma cell line (i.e., PC3) from CMap
database as drug signature;

(ii) The differentially expressed genes for prostate adenocarcinoma dataset available from
TCGA repository as disease signatures (see Section 4).

Then, we calculated a GSEA score as an indication of the possible counteraction of each
drug to the gene expression perturbations caused by the prostate cancer pathophenotype.
In particular, we selected drugs whose signatures were negatively correlated with the
prostate cancer signature, according to the CMap query tool [28–30], as able to have a
potential treatment effect against genes that are a hallmark of prostate cancer phenotype
(see Section 4).

In this case, the GSEA analysis highlighted that the candidate drugs with an in silico
efficacy able to counteract the disease effect were those ones specifically predicted by the
median metric with the highest percentage of 41%, followed by those ones specifically
predicted by the mode and minimum metric with a percentage of 24% and 21%, respectively
(Figure 4, Supplementary Table S4—second sheet).
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Figure 4. In silico efficacy of candidate repurposable drugs for prostate neoplasm. (a–c) Venn
diagrams of the candidate drugs predicted by using mean, median, mode metrics with respect to
the standard minimum one for prostate neoplasm treatment. (d) Bar plot showing the percentage of
metric-specific candidate drugs that have a GSEA score greater than zero.

3. Discussion

In this work, we proposed a comparison between different metrics used to compute
the network-based proximity between the drug module and the disease module in the
human interactome. In particular, we tested the standard minimum, maximum, mean, me-
dian, and mode metrics when applied to four diseases (i.e., liver cirrhosis, malignant breast
neoplasm, schizophrenia, and prostate neoplasm), and we complemented the computation
of the proximity value with a measure of statistical significance (p-value), obtained by
applying a degree-randomization procedure. For each disease, the predicted compounds
were those showing a statistically significant proximity value computed with each metric
(p-value ≤ 0.05). No drugs were found statically significant by using the maximum met-
ric. All the statistically significant drugs obtained with the other four metrics were then
compared among each other in order to search for metric-specific drugs (Figure 5). From
this comparison, our analysis highlighted some potentially interesting drugs specifically
predicted by the other newly introduced metric, deepened in the next subsections.
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Figure 5. Venn diagram of the predicted repurposable drugs for each disease (a–d) according to the
different exploited metrics. Metric-specific drugs with an already known relevant medical indication
according to the TTD database and discussed in the text are highlighted in red.

3.1. Metric-Specific Off-Label Drugs: Mean

Among the drugs specifically predicted by using mean metric, amrinone emerged as a
candidate repurposable drug for liver cirrhosis treatment (Figure 5a); whereas arzoxifene,
bazedoxifene, ingenol mebutate, methyltestosterone, and conjugated estrogens emerged as
candidate repurposable drugs for malignant neoplasm of breast (Figure 5b).

Amrinone is a type 3 pyridine phosphodiesterase inhibitor used for congestive heart
failure treatment. However, some studies suggested that amrinone may play a significant
role in the protection of liver against ischemia-reperfusion injury enhanced in cirrhotic
patients, and that may be a pharmacological agent for safe and efficient liver surgery [31,32].

Arzoxifene is a selective estrogen receptor modulator (SERM) that antagonizes estro-
gen in mammary and uterine tissue and is investigated for treatment in breast cancer [33].
Several preclinical, phase I-II clinical studies showed that arzoxifene could be a promising
endocrine therapy, demonstrating an ability to inhibit breast cancer cell growth in both
in vitro and in vivo models, even if there is no evidence with phase III [34]. In addition,
a network-meta analysis study showed that arzoxifene significantly reduced the risk of
breast cancer [35]. Bazedoxifene is a SERM as well, which received approval alone or in
combination with conjugated estrogens for treatment of moderate to severe vasomotor
symptoms associated with menopause and prevention of postmenopausal osteoporosis.

Ingenol mebutate is a selective small molecule activator of protein kinase C approved
for the topical treatment of actinic keratosis, but its application was also revealed as being ef-
fective for human and murine melanoma in mouse models, murine lung carcinoma, human
prostate cancer, and human cervical carcinoma, and additional in vitro studies demon-
strated that the drug could kill human breast cancer cells and T-leukemia cells [36,37].

Methyltestosterone is an anabolic steroid hormone used to treat men with a testos-
terone deficiency, but also used to treat other solid tumors, including breast cancer [38].
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The conjugated estrogens are noncrystalline mixtures of purified female sex hormones
obtained either by its isolation from the urine of pregnant mares or by synthetic generation
from vegetal material and are indicated for the treatment of moderate to severe vasomotor
symptoms due to menopause. In addition, the use of conjugated estrogens for a median of
5–9 years in postmenopausal women with hysterectomy was associated with a significant
reduction in the incidence of invasive breast cancer based on a Women’s Health Initiative
(WHI) randomized trial, where, with the estrogen use, a significant reduction was observed
in breast cancer-related mortality and all-cause mortality after breast cancer diagnosis [39].

3.2. Metric-Specific Off-Label Drugs: Median

Among the drugs specifically predicted by using median metric, nesiritide was found
as a candidate repurposable drug for liver cirrhosis (Figure 5a); while moclobemide and
vinblatine were predicted for prostate neoplasm treatment (Figure 5d) and both were also
confirmed by the GSEA analysis as they could counteract the gene expression perturbations
caused by the prostate adenocarcinoma pathophenotype (Supplementary Table S4).

Nesiritide is a 32 amino acid recombinant human B-type natriuretic peptide used for
the intravenous treatment of patients with acutely decompensated congestive heart failure
who have dyspnea at rest or with minimal activity [40,41]. Although there are no clinical
trials available, the mutual interaction between the heart and the liver dysfunctions has
been investigated [42].

Moclobemide is a reversible monoamine oxidase inhibitor (MAO-I) selective for iso-
form A used to treat major depressive disorder. Recent reports indicated that high activity
of MAO isozymes was associated with many neurodegenerative disorders, and showed
elevated levels in several cancer types, including prostate cancers, and thus antidepressant
MAO-Is could show anti-prostate cancer properties [43].

Vinblastine is a vinca alkaloid antineoplastic agent, with antitumor activity, targeting
the microtubules of tumor cells, commonly applied for the treatment of several solid
tumors and cancers, including breast cancer, testicular cancer, ovarian cancer, gastric
cancer, and lung cancer, neuroblastoma, Hodgkin’s and non-Hodgkin’s lymphomas, and
osteosarcoma [44–46].

3.3. Metric-Specific Off-Label Drugs: Mode

For what concerns drugs specifically predicted by using mode metric, we pointed out
procarbazine as candidate repurposable for both malignant neoplasm of breast (Figure 5b)
and prostate (Figure 5d); triamterene for treatment of schizophrenia (Figure 5c); and
pargyline for prostate neoplasm (Figure 5d).

Procarbazine is an antineoplastic in the class of alkylating agents, which stop tumor
growth by cross-linking guanine bases in DNA double-helix strands—directly attacking
DNA [47]. It is primarily used in combination with mechlorethamine, vincristine, and
prednisone for the treatment of stage III and stage IV Hodgkin’s disease, but it is also a
type of chemotherapy drug in clinical trials for the treatment of other forms of cancers,
including brain and central nervous system tumors [48].

Triamterene is a potassium-sparing diuretic that is indicated for the treatment of
edema associated with congestive heart failure, cirrhosis of the liver, and nephrotic syn-
drome; also in steroid-induced edema, idiopathic edema, and edema due to secondary
hyperaldosteronism [49]. Triamterene allows the maintenance of potassium balance, and
hypokalemia is an identifiable, clinically important, and often overlooked condition in
psychiatric patients [50].

Pargyline belongs to the monoamine oxidase inhibitors class with antihypertensive
properties, thus it is indicated for the treatment of moderate to severe hypertension. How-
ever, it has been shown that in human prostate carcinoma cells, the proliferation of cells
exposed to pargyline decreased in a dose- and time-dependent manner, the treatment with
pargyline significantly induced cell cycle arrest at the G1 phase compared to the control
samples, and also induced an increase in the cell death rate by promoting apoptosis [51].
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4. Materials and Methods
4.1. Human Protein–Protein Interactome

The human protein–protein interactome was downloaded from Cheng and co-authors [17],
where the authors merged their own systematic human protein–protein interactome and
15 commonly used databases with several types of experimental evidence (e.g., binary PPIs
from 3-dimensional protein structures; Y2H, and/or literature-derived low-throughput
experiments; signaling networks from literature-derived low-throughput experiments;
kinase-substrate interactions from literature-derived low-throughput and high-throughput
experiments; literature-curated PPIs identified by affinity purification followed by mass
spectrometry). This version of the human interactome was composed of 217,160 protein–
protein interactions (edges or links) connecting 15,970 unique proteins (nodes).

4.2. Disease-Gene Associations

Disease-associated genes were downloaded from DisGeNET [25], which is one of
the largest publicly available collections of genes and variants associated with human
diseases coming from GWAS, animal models, or scientific literature. The updated version
of DisGeNET (v7.0) collects 1,134,942 gene-disease associations, between 21,671 genes and
30,170 diseases, disorders, traits, and clinical or abnormal human phenotypes. Among them, we
selected a panel of 4 diseases of interest with their associated genes (Supplementary Table S1).

4.3. Drug-Target Interactions and Drug Medical Indications

Drug-target interactions were acquired from DrugBank [26], which is a compre-
hensive, freely accessible, online database containing information on drugs and drug
targets. The updated version of DrugBank (version 5.1.6, released 22 April 2020) con-
tains 13,563 drug entries, including 2627 approved small molecule drugs, 1373 approved
biologics (proteins, peptides, vaccines, and allergenics), 131 nutraceuticals, and over
6370 experimental drugs. For our analysis, we selected a total of 1222 FDA-approved drugs
with at least 2 annotated targets (Supplementary Table S1). The target Uniprot IDs were
mapped to Entrez gene IDs by using BioMart—Ensembl tool (https://www.ensembl.org/,
accessed on 27 March 2022).

The known drug medical indications were obtained from Therapeutic Target Database
(TTD) [27], whose last version was released on 11 November 2019.

4.4. The Network-Based Proximity Measure

In order to investigate the extent to which the disease and drug modules were close in
the human interactome, we used the standard network-based proximity measure defined
in [17] as:

p(T, S) =
1
‖T‖∑tεT min

sεS
d(t, s) (1)

Which represents the average of the shortest path length d between drug targets t in
the drug module T and the nearest disease genes s in the disease module S. We computed
the proximity measure by also using the other 4 different metrics (i.e., maximum, mean,
median, and mode) to summarize the distances between drug module and disease module,
defined as follows (Figure 6):

pmax(T, S) =
1
‖T‖∑tεT max

sεS
d(t, s) (2)

pmean(T, S) =
1
‖T‖∑tεT mean

sεS
d(t, s) (3)

pmedian(T, S) =
1
‖T‖∑tεT median

sεS
d(t, s) (4)

pmode(T, S) =
1
‖T‖∑tεT mode

sεS
d(t, s) (5)

https://www.ensembl.org/
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To evaluate the statistical significance of each observed network proximity value
between the 2 modules T and S, we built a reference distance distribution corresponding to
the expected distance between 2 randomly selected groups of proteins with the same size
and degree distribution of the original sets of disease proteins and drug targets in the human
interactome. This procedure was repeated 1000 times, and the z statistics, together with the
corresponding p-value, was computed by using the mean and the standard deviation of
the reference distance distribution. We expected a p-value ≤ 0.05 for proximal drug and
disease modules.

Figure 6. Network-based proximity measures. Schematic representation of the proximity measures
computed between target proteins t of drug module T and disease genes s of disease module S
according to five different metrics (a–e) described by Equations (1)–(5).

4.5. Gene Set Enrichment Analysis

In order to test whether the candidate repurposable drugs for malignant breast and
prostate neoplasm predicted by applying the different metrics for proximity computation
could counteract the gene expression perturbations caused by the pathophenotype (i.e., if
they could up-regulate genes down-regulated by the disease or vice versa), we performed
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a gene set enrichment analysis (GSEA). We first collected from The Cancer Genome At-
las (TCGA) [52] RNA-sequencing expression data of (i) breast invasive carcinoma from
113 patients and (ii) prostate adenocarcinoma from 52 patients, for which the complete
sets of tumor and matched-normal profiles were available. RNA sequencing data corre-
sponded to normalized expression data from RNASeq Version 2 created using MapSplice
to conduct the alignment and RSEM to perform the quantification and normalization. For
each disease, data were processed by applying a logarithmic (log2) transformation of the
expression values, and by conducting a preprocessing analysis via the computation of the
Inter Quartile Range (IQR) for each gene. IQR is a measure of data variability around the
median that is equal to the difference between the 75th and 25th percentiles of the data
distribution. Those genes with an IQR value smaller than the 10th percentile of the IQR
distribution (corresponding to those genes less scattered around the median) were filtered
out. Then, we performed a paired t-student test, and we adjusted the obtained p-values
for multiple hypotheses testing by using the Benjamini–Hochberg procedure [53]. In order
to select statistically significant differentially expressed genes, we set a threshold of 0.01
on the adjusted p-values. We used the so-defined lists of differentially expressed genes of
breast cancer and prostate cancer as disease signatures.

Then, we queried the Connectivity Map (CMap) database that collects high-throughput
reduced representation gene expression data obtained by using an L1000 assay [28,54]. The
L1000 profiling was performed in a variety of drug-treated human cell lines for which
there were well-established culture and treatment protocols. Thus, the CMap database
of cellular signatures cataloged transcriptional responses of human cells to chemical and
genetic perturbation. A total of 27,927 perturbagens were profiled in a core set of 9 cell lines
to produce 476,251 expression signatures. In particular, we selected the drugs-treated cells
lines available from the CMap database for human breast adenocarcinoma (i.e., MCF7 cell
line) and for human prostate adenocarcinoma (i.e., PC3 cell line) and we used them as
drug signatures.

By exploiting the CMap query tool, we evaluated the treatment effects of each drug
signature (i.e., differentially expressed genes of drugs-treated human cell lines included
in CMap database) on each disease signature (i.e., differentially expressed genes of breast
cancer or prostate cancer) [54]. The disease and the drug signatures were ranked by fold-
change, and then CMap computed an enrichment score (ES) that measured if the effect
of the drug could counteract the effect of the disease (ES < 0), or not (ES > 0) [28,29]. The
idea behind this was the following: 1 ordered disease signature was compared to 1 ordered
drug signature to determine whether the highest up-regulated (down-regulated) gene in
the disease signature was near the bottom (top) of the drug signature. This would mean
that the drug and disease have complementary expression profiles (ES < 0), and the drug
might be a possible treatment option for the disease of interest. Details on the computation
of this score were provided in [28–30]. In particular, a selected repurposing candidate drug
was considered to have a potential treatment effect against the analyzed disease if the drug
signature was negatively correlated with the disease signature. We stated that drugs and
disease were negatively correlated if the corresponding ES was negative, and we assigned
a score equal to 1 to that drug for that disease signature.

5. Conclusions

In this study, we implemented a computational analysis for identifying new uses for
approved drugs that were outside the scope of the original medical indication. Specifically,
we exploited the well-established network-based drug-disease proximity measure proposed
in [17] by using four different metrics (i.e., maximum, mean, median, mode), instead of
the standard minimum to compute the distance between the drug module and the disease
module in the human interactome. We complemented the computation of the proximity
value of each metric with a measure of statistical significance (p-value) corresponding to
the z-score normalization of the proximity obtained by applying a degree-preserving ran-
domization procedure. Thus, for each metric, the candidate proposed drugs as those ones
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showing a proximity value with a p-value ≤ 0.05. We then conducted a comparison study
of the candidate drugs predicted with these here-implemented metrics with respect to those
ones obtained by using the standard minimum when applied to four diseases of interest
(i.e., liver cirrhosis, schizophrenia, malignant breast neoplasm, and prostate neoplasm).

One limitation of this analysis is its computational nature. However, in order to have
a clue of the potential efficacy of the predicted repurposable molecules of each metric, we
also complemented the study with an in silico validation by exploiting CMap database,
which is a comprehensive collection of drug-treated cell lines (drug signature), and TCGA
repository, which is a collection of gene expression profiles for healthy and sick patients.
By computing the differentially expressed genes, we evaluated the effect of the disease
on gene modulation (disease signature). Then, studying the correlation between the drug
signature and disease signature, we evaluated those drugs that could potentially counteract
the disease effect (i.e., negative correlation between drug signature and disease signature).
Taken together, our findings confirmed that the original network-based proximity metric
based on the minimum distance between drug and disease module is the most reliable tool
for screening off-label drugs, but also some of the here-implemented metrics specifically
highlighted some interesting drug candidates worthy of further investigation.

Yet, another limitation of this approach is that our procedure does not implement
a method to estimate false positive values, and thus assigns a score to all compounds
available from DrugBank.
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