
����������
�������

Citation: Ting, C.-T.; Chen, B.-S.

Repurposing Multiple-Molecule

Drugs for COVID-19-Associated

Acute Respiratory Distress Syndrome

and Non-Viral Acute Respiratory

Distress Syndrome via a Systems

Biology Approach and a DNN-DTI

Model Based on Five Drug Design

Specifications. Int. J. Mol. Sci. 2022,

23, 3649. https://doi.org/10.3390/

ijms23073649

Academic Editor: Adel Nefzi

Received: 25 February 2022

Accepted: 23 March 2022

Published: 26 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Repurposing Multiple-Molecule Drugs for
COVID-19-Associated Acute Respiratory Distress Syndrome
and Non-Viral Acute Respiratory Distress Syndrome via a
Systems Biology Approach and a DNN-DTI Model Based on
Five Drug Design Specifications
Ching-Tse Ting and Bor-Sen Chen *

Laboratory of Automatic Control, Signaling Processing and Systems Biology, Department of Electrical
Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; rich870811@gmail.com
* Correspondence: bschen@ee.nthu.edu.tw

Abstract: The coronavirus disease 2019 (COVID-19) epidemic is currently raging around the world
at a rapid speed. Among COVID-19 patients, SARS-CoV-2-associated acute respiratory distress
syndrome (ARDS) is the main contribution to the high ratio of morbidity and mortality. How-
ever, clinical manifestations between SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated
ARDS are quite common, and their therapeutic treatments are limited because the intricated patho-
physiology having been not fully understood. In this study, to investigate the pathogenic mechanism
of SARS-CoV-2-associated ARDS and non-SARS-CoV-2-associated ARDS, first, we constructed a
candidate host-pathogen interspecies genome-wide genetic and epigenetic network (HPI-GWGEN)
via database mining. With the help of host-pathogen RNA sequencing (RNA-Seq) data, real HPI-
GWGEN of COVID-19-associated ARDS and non-viral ARDS were obtained by system modeling,
system identification, and Akaike information criterion (AIC) model order selection method to
delete the false positives in candidate HPI-GWGEN. For the convenience of mitigation, the prin-
cipal network projection (PNP) approach is utilized to extract core HPI-GWGEN, and then the
corresponding core signaling pathways of COVID-19-associated ARDS and non-viral ARDS are
annotated via their core HPI-GWGEN by KEGG pathways. In order to design multiple-molecule
drugs of COVID-19-associated ARDS and non-viral ARDS, we identified essential biomarkers as drug
targets of pathogenesis by comparing the core signal pathways between COVID-19-associated ARDS
and non-viral ARDS. The deep neural network of the drug–target interaction (DNN-DTI) model
could be trained by drug–target interaction databases in advance to predict candidate drugs for the
identified biomarkers. We further narrowed down these predicted drug candidates to repurpose
potential multiple-molecule drugs by the filters of drug design specifications, including regulation
ability, sensitivity, excretion, toxicity, and drug-likeness. Taken together, we not only enlighten the
etiologic mechanisms under COVID-19-associated ARDS and non-viral ARDS but also provide novel
therapeutic options for COVID-19-associated ARDS and non-viral ARDS.

Keywords: COVID-19; SARS-CoV-2; HPI-GWGEN; host-pathogen RNA-Seq data; non-viral ARDS;
biomarkers; etiologic mechanism; DTI model; deep neural network; systems biology

1. Introduction

The coronavirus disease 2019 (COVID-19) is a novel pandemic caused by the new
coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since mid-
July 2021, there have been more than 183 million cases and 3.9 million deaths around
the world due to the rapid spread of COVID-19 [1]. SARS-CoV-2-infected patients have
demonstrated a wide spectrum of clinical manifestations. Although the majority (81%)
of COVID-19 patients experienced mild symptoms (e.g., asymptomatic, flu-like symptoms,
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or mild pneumonia), 14% of cases experienced severe symptoms (e.g., dyspnea or hypox-
emia), around 5% of COVID-19 patients were critically ill (e.g., multiple organ failure or
septic shock), and about 20% of COVID-19 patients required hospitalization [2–5].

Acute respiratory distress syndrome (ARDS), the severe form of acute lung injury
(ALI), is an acute respiratory failure syndrome resulting from noncardiogenic lung edema
and hypoxemia [6]. Common causes of ARDS developments can be infective (viral or bac-
terial pneumonia) or non-infective (e.g., pancreatitis and trauma). ARDS is also a frequent
complication in COVID-19. Among hospitalized COVID-19 patients, about 30~40% of
patients develop ARDS, 26% require intensive care unit (ICU) facilities, and 16% receive
intermittent mandatory ventilation (IMV). Furthermore, for the ICU COVID-19 patients,
75% have ARDS. The mortality rate of COVID-19-associated ARDS patients approximately
ranges from 26% to 61.5% [7–10]. The high incidence and mortality ratio observed among
COVID-19-associated ARDS cases indicate that there is an urgent need to develop relative
pharmaceutical therapies. Comparisons of clinical characteristics and pathophysiology be-
tween COVID-19-associated ARDS and classical ARDS (not associated with SARS-CoV-2)
are still under debate. Most of the recent evidence suggest that there is no significant
difference regarding respiratory compliance, lung morphology, and myocardial injury [11].
Some studies have also indicated that COVID-19-associated ARDS has higher coagulation
potential and thromboembolic complications risk [12,13]. However, their corresponding
molecular pathogenetic mechanisms and the role of epigenetics and genetic factors between
COVID-19-associated ARDS and classical ARDS (not associated with SARS-CoV-2) are not
fully understood.

The microRNAs (miRNA) are short, non-protein-coding, and single-stranded RNA
with 18–25 nucleotides in length. After binding to the 3′-untranslated region (3′UTR)
or 5′-untranslated region (5′UTR) of mRNA transcripts, microRNAs can post-transcriptionally
control gene expression either by mRNA degradation or directly inhibiting the translation
process [14,15]. Given that miRNAs can control some biological activities in multi-levels
such as cell proliferation, apoptosis, and even immune responses during virus infection,
several studies have been dedicated to elucidating the complicated pathogenesis and
epigenetic interplay between SARS-CoV-2 and humans. Several dysregulated miRNAs
observed in differential gene analysis results have also been identified as biomarkers and
proposed as therapeutic targets for COVID-19. In addition, the discovery of SARS-CoV-2
encoded miRNAs that can target human genes has also been investigated, although it is
controversial because RNA viruses are mainly replicated in the cytoplasm and miRNA
production may interfere with the replication of the viral genome. Several machine-learning-
based bioinformatics tools and databases have been developed to predict virus-encoded
miRNA and possible targets of human genes [16–18].

Long noncoding RNAs (lncRNAs) are another type of functional, non-protein-coding
RNA longer than 200 nucleotides. By interacting with mRNA, DNA, or transcription
factors, lncRNAs engage in versatile biological events such as modulating gene expres-
sion, epigenetic modification [19,20]. Increasing evidence has shown that lncRNAs play
important roles during SARS-CoV-2 infection. For example, recent studies indicated that
lncRNAs NEAT1 and MALAT1 are associated with immune responses in SARS-CoV-2
infected cells [21,22].

In traditional drug discovery, the average period of new drug development pipelines
takes at least 12 years from the initial discovery to the marketplace [23]. Although the
pharmaceutical industry invested 83 billion USD worldwide on research and develop-
ment (R&D) expenditures in 2019 [24], the success rate of a drug candidate starting from
clinical trial to marketing approval was approximately 10~20%, which has not changed
for the past few decades [25]. On the contrary, drug repurposing (also known as drug
repositioning), which aims to identify new therapeutic uses of approved or investigational
drugs, is a feasible and advantageous strategy with a lower development risk and time cost.
To this end, numerous approaches for drug repurposing have been developed, including
experimental models, retrospective clinical analysis, virtual screening, signature-based
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methods, pathway mapping, etc. [26]. Additionally, combination therapies deployed with
repurposed drugs have also been considered as therapeutic interventions for COVID-19.
At present, thousands of repurposed clinical trials are being tested for COVID-19 [27–29].
Although most of them are monotherapy, the importance of accelerating the evaluation
efficacy should not be neglected.

In this study, we established a workflow, shown in Figure 1, which utilizes a systems
biology approach to investigate pathogenetic mechanisms to identify essential biomarkers
as drug targets, and selected potential compounds as multiple-molecule drugs for the
therapy of COVID-19 by the training of a deep neural network as a drug–target inter-
action (DTI) model and through the filtering of drug specifications. First of all, a candi-
date host-pathogen interspecies genome-wide genetic and epigenetic interaction network
(HPI-GWGEN) was constructed by big data mining from molecular interaction databases.
Secondly, with the information collected from candidate HPI-GWGEN and host-pathogen
RNA-Seq datasets of COVID-19-associated ARDS and non-viral ARDS, we built system
models describing all possible interaction conditions for each gene, protein, and epigenetics
to simultaneously identify the best model’s parameters to obtain real HPI-GWGENs by
Akaike Information Criterion (AIC) system order detection method. Thirdly, by applying
the principal network projection (PNP) method and based on the ranking projection value
calculated for each gene protein and epigenetics, we extracted core HPI-GWGENs from real
HPI-GWGENs. By the denotation of KEGG pathways, we could obtain the core signaling
pathways from the corresponding core HPI-GWGEN. Meanwhile, by investigating the mal-
functions in the core pathways and downstream cellular functions, the essential biomarkers
of COVID-19-associated ARDS and non-viral ARDS could be identified as drug targets,
respectively. Then, a deep neural network (DNN) is trained as the drug–target interaction
(DTI) model by drug target interaction databases for these essential biomarkers (drug
targets) to predict candidate drugs. Finally, based on drug design specifications including
drug regulation ability, high sensitivity, adequate excretion, low toxicity, and drug-likeness
as selection criteria, we narrowed down candidate drugs predicted by the DNN-DTI model
and proposed the multiple-molecule drugs as the therapeutic recommendation for clinical
trials of COVID-19-associated ARDS and non-viral ARDS, respectively.
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Figure 1. The flowchart for constructing candidate HPI-GWGEN, real HPI-GWGEN, core HPI-
GWGEN, and core signaling pathways for biomarker identification for systems drug discovery and
design of potential multiple-molecule drugs for therapeutic treatment of COVID-19-associated ARDS
and non-viral ARDS.
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2. Results
2.1. Overview of Core HPI-GWGEN Construction and Drug Discovery Design for
COVID-19-Associated ARDS and Non-Viral ARDS by Systems Biology Approach

The research flowchart, as shown in Figure 1, is used to summarize how to con-
struct candidate HPI-GWGEN, real HPI-GWGEN, core HPI-GWGEN, and core signal-
ing pathways of COVID-19-associated ARDS and non-viral ARDS. Sample groups and
statistics of the node of COVID-19-associated ARDS and non-viral ARDS are described
in Table 1. Essentially, the candidate HPI-GWGEN we integrated by database mining
is a data structure of binary matrix to represent if there is any interaction (edge) be-
tween two arbitrary genes/proteins (nodes), which can be encoded from either human or
virus. According to the edge’s types, candidate HPI-GWGEN can be further subdivided
into HPI-PPI (host-pathogen interspecies protein–protein interaction between two nodes)
and HPI-GRN (host-pathogen interspecies gene regulation between two nodes). Since
these databases we integrated only recorded the existence between two nodes, such infor-
mation may depend on actual detection expression levels and be different from person to
person. Thus, there are false positive interactions among the interactions within candidate
HPI-GWGEN which needs to be trimmed off by the real host/pathogen RNA-Seq data.
To deal with this issue, assisting with the integrated RNA-Seq datasets, as shown in Table 1,
and candidate HPI-GWGEN, for each node, we simultaneously constructed all possible
regression system models. Each model represents the potential interaction relationships
of each node with other nodes and the fitting interaction parameters of HPI-GWGEN can
be estimated by the constrained least-square parameter identification method by the real
host/pathogen RNA-Seq data. Real HPI-GWGEN can be obtained by trimming off the
false positive interactions out of the system order of each node identified by the Akaike
information criterion (AIC). We used system matrix A of real HPI-GWGEN in Equation (25)
to store these evaluated parameters of each node. Statistic information of candidate HPI-
GWGEN, i.e., real HPI-GWGEN of COVID-19-associated ARDS and non-viral ARDS are
shown in Tables 2 and 3, respectively. Real HPI-GWGENs of COVID-19-associated ARDS
and non-viral ARDS were also visualized by Cytoscape software (version 3.8.2) [30], as
shown in Figures S1 and S2. One could find that the total nodes and edges in real HPI-
GWGEN from both groups are significantly smaller than the candidate HPI-GWGEN,
indicating that false positive interactions of each protein/gene were trimmed successfully.
The real HPI-GWGENs of COVID-19-associated ARDS and non-viral ARDS are still very
complex and not easy for further analysis. For the convenience of analysis, we further
extracted core HPI-GWGENs of COVID-19-associated ARDS and non-viral ARDS to reduce
network size via selecting significant nodes by applying the principal network projection
(PNP) method in Equations (27)–(29). The core HPI-GWGENs based on 4000 significant
nodes of COVID-19-associated ARDS and non-viral ARDS visualized by Cytoscape soft-
ware (version 3.8.2) [30] are shown in Figures 2 and 3, respectively. In the meantime,
for the top 4000 nodes in core HPI-GWGENs of COVID-19-associated ARDS and non-viral
ARDS, we also utilized DAVID Bioinformatics Resources (2021 update) [31] to obtain the
enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
annotation and correlative cellular functions, as shown in Tables S2 and S3, respectively.
On the basis of referencing literature surveys and the KEGG signaling pathways annotation,
we obtained core signaling pathways of COVID-19-associated ARDS and non-viral ARDS.
Then, through investigating the common and specific core signaling pathways between
COVID-19-associated ARDS and non-viral ARDS in Figure 4, we identified common spe-
cific biomarkers of infection pathogenesis as drug targets, which were TNF, NFκB, HIF1A,
GRP78, FTO, and BECN1 (in Table 6) for COVID-19-associated ARDS and TNF, NFκB,
HIF1A, and FOXA1 (in Table 7) for non-viral ARDS.
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Table 1. Sample groups and statistics of nodes in integrated datasets collected from RNA-Seq datasets
of Gene Expression Omnibus (GEO) database (accession nos. GSE156063 and GSE163151).

Sample

Datasets
GSE163151 GSE156063 Integrated Group Definition

COVID-19-associated
ARDS 138 93 231 ARDS patients caused by SARS-CoV-2 infection

Non-viral ARDS 82 100 182 ARDS patients not caused by viral infection
(including SARS-CoV-2)

Nodes

Datasets
GSE163151 GSE156063 Integrated Node Description

Protein 17055 12929 18225
Nodes with unknown functions (excluding Rcp,
TF, miRNA, LncRNA, and Virus) are assumed to

express protein.

Rcp 2484 1700 2500 Receptor

TF 1502 1216 1519 Transcription factor

RcpTF 105 89 105 Nodes with both Rcp and TF function

miRNA 1378 0 1378 miRNA

LncRNA 2781 35 2784 LncRNA

Virus 0 13 13 SARS-CoV-2 nodes (please refer to Table S1 for
detail)

Total 24309 15982 26524

NOTE: Nodes are proteins/genes that have at least 1 interaction with others in the network. For the convenience
of analysis, nodes are classified into 7 classes (Protein, Rcp, TF, RcpTF, miRNA, LncRNA, Virus) in this study.

Table 2. Comparison of numbers of nodes in candidate HPI-GWGEN, real HPI-GWGEN of COVID-
19-associated ARDS, and real HPI-GWGEN of non-viral ARDS after system identification.

Nodes
Candidate

HPI-GWGEN
Real HPI-GWGEN
(Non-Viral ARDS)

Real HPI-GWGEN
(COVID-19-Associated ARDS)

HPI-PPI HPI-GRN HPI-PPI HPI-GRN HPI-PPI HPI-GRN

Proteins 18,225 18,225 15,287 11,055 18,111 12,027

Rcp 2500 2500 2228 1859 2469 1959

TF 1519 1519 1374 1120 1511 1191

RcpTF 105 105 96 93 103 95

miRNA 0 1378 0 809 0 799

LncRNA 0 2784 0 1934 0 2116

Virus 11 13 0 0 11 13

Total 22,360 26,524 18,985 16,870 22,205 18,200

NOTE: Nodes are proteins/genes that have at least 1 interaction with others in the network. For the convenience
of analysis, nodes are classified into 7 classes in this study.
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Table 3. Comparison of numbers of edges in candidate HPI-GWGEN, real HPI-GWGEN of COVID-
19-associated ARDS, and real HPI-GWGEN of non-viral ARDS after system identification.

Edges
Candidate

HPI-GWGEN
Real HPI-GWGEN
(Non-Viral ARDS)

Real HPI-GWGEN
(COVID-19-Associated ARDS)

HPI-PPI HPI-GRN HPI-PPI HPI-GRN HPI-PPI HPI-GRN

Proteins ↔ Proteins 3,013,811 222,665 1,400,482 128,900 1,445,193 124,144

Proteins ↔ Rcp 828,208 48,644 360,024 26,382 375,835 25,551

Proteins ↔ TF 455,807 20,823 219,681 12,044 234,620 11,616

Proteins ↔ RcpTF 21,098 2763 12,461 1642 12,905 1673

Proteins ↔ miRNA 0 34,039 0 9094 0 8458

Proteins ↔ LncRNA 0 60,640 0 28,705 0 27,298

Proteins ↔ Virus 200,475 236,925 0 0 117,139 1999

Rcp ↔ Rcp 56,203 1088 22,761 520 24,157 491

Rcp ↔ TF 62,965 537 28,875 267 31,100 247

Rcp ↔ RcpTF 2977 73 1679 38 1766 35

Rcp ↔ miRNA 0 2585 0 404 0 365

Rcp ↔ LncRNA 0 3559 0 1256 0 1265

Rcp ↔ Virus 27,500 32,500 0 0 14,958 306

TF ↔ TF 15,427 18 7983 11 8893 12

TF ↔ RcpTF 1677 9 1093 5 1229 7

TF ↔ miRNA 0 1218 0 164 0 197

TF ↔ LncRNA 0 1476 0 546 0 629

TF ↔ Virus 16,709 19,747 0 0 10,003 203

RcpTF ↔ RcpTF 9 1 6 1 6 1

RcpTF ↔ miRNA 0 132 0 14 0 20

RcpTF ↔ LncRNA 0 145 0 50 0 58

RcpTF ↔ Virus 1155 1365 0 0 750 14

miRNA ↔ miRNA 0 1039 0 36 0 36

miRNA ↔ LncRNA 0 3340 0 803 0 586

miRNA ↔ Virus 0 17,914 0 0 0 28

LncRNA ↔ LncRNA 0 2633 0 1139 0 1109

LncRNA ↔ Virus 0 36,192 0 0 0 383

Virus ↔ Virus 66 91 0 0 4 0

Total
(PPI/GRN) 4,704,087 752,161 2,055,045 212,021 2,278,558 206,762

Total (PPI+GRN) 5,456,248 2,267,066 2,485,320

NOTE: Edges are defined as interactions between 2 nodes and expressed with” node1↔ node2”, where “node1”
and “node2” are gene/protein names from one of the 7 classes we defined.
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Figure 4. The common and specific core signaling pathways between COVID-19-associated ARDS
and non-viral ARDS. This figure summarizes the genetic and epigenetic progression mechanism of
COVID-19-associated ARDS and non-viral ARDS. The blue color background covers specific sig-
naling pathways in non-viral ARDS. Overlapping core signaling pathways of COVID-19-associated
ARDS and non-viral ARDS, namely common core signaling pathways, are covered in pink back-
ground. The skin color background covers specific signaling pathways in COVID-19-associated ARDS.
The arrowheads in circle shapes indicate downregulation. The arrowheads in triangular shapes indi-
cate upregulation. The solid lines indicate protein–protein interaction. The green nodes indicate high
expression of protein/gene. The red nodes indicate low expression of protein/gene.

Afterward, we trained a DTI model of DNN by drug–target interaction data in advance.
By the use of the DNN-DTI model, we obtained a binary classifier, with a high probability
to predict potential candidate drugs for these drug targets of COVID-19-associated ARDS
and non-viral ARDS, through holding higher probability values of interactions with drug
targets. Given these candidate drugs (in Table 4), we further narrowed them down by
considering drug specifications (i.e., regulation ability, sensitivity, excretion, toxicity in
Table 4, and drug-likeness in Table 5). Consequently, with these candidate drugs and
their corresponding drug targets, we suggested two multiple-molecule drugs composed
of nicorandil, isoliquiritigenin, eugenol, and omeprazole for COVID-19 and nicorandil,
bortezomib, and olaparib for non-viral ARDS, as shown in Tables 6 and 7, respectively.
Detailed discussions of the above results are described in the following subsections.
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Table 4. Potential small molecule compounds selected for each identified biomarker based on the
drug design specifications.

TNF (+)

Drug
Regulation

Ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50,

mol/kg)

Clearance
(CL,

mL/min/kg)

Drug-Likeness

Lipinski
Rule

Pfizer
Rule

GSK
Rule

Golden
Triangle

Nicorandil −0.077 0.039 3.316 8.271 Accepted Accepted Accepted Accepted

Eugenol −0.321 −0.067 3.926 14.042 Accepted Accepted Accepted Rejected

Omeprazole −0.132 −0.050 3.570 5.938 Accepted Accepted Accepted Accepted

Niclosamide −0.264 0.213 5.631 1.681 Accepted Accepted Rejected Accepted

Nimodipine −0.228 −0.349 4.584 12.024 Accepted Accepted Rejected Accepted

NFkB (+)

Drug
Regulation

ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50,

mol/kg)

Clearance
(CL,

mL/min/kg)

Drug-likeness

Lipinski
Rule

Pfizer
Rule

GSK
Rule

Golden
Triangle

Nicorandil −0.330 0.039 3.316 8.271 Accepted Accepted Accepted Accepted

Isoliquiritigenin −0.304 −0.139 6.091 14.805 Accepted Accepted Accepted Accepted

Omeprazole −0.180 −0.050 3.570 5.938 Accepted Accepted Accepted Accepted

Calcipotriol −0.273 −0.309 5.777 1.110 Accepted Accepted Rejected Accepted

Sitagliptin −0.220 −0.102 2.704 5.894 Accepted Accepted Rejected Accepted

HIF1A (+)

Drug
Regulation

ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50,

mol/kg)

Clearance
(CL,

mL/min/kg)

Drug-likeness

Lipinski
Rule

Pfizer
Rule

GSK
Rule

Golden
Triangle

Nicorandil −0.876 0.039 3.316 8.271 Accepted Accepted Accepted Accepted

Isoliquiritigenin −0.548 −0.139 6.091 14.805 Accepted Accepted Accepted Accepted

Naftopidil −0.377 0.407 4.735 11.276 Accepted Rejected Rejected Accepted

Valsartan −0.253 0.132 3.149 0.314 Accepted Accepted Rejected Accepted

Alvocidib −0.173 −4.405 5.608 5.810 Accepted Accepted Rejected Accepted

HSPA5 (+)

Drug
Regulation

ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50,

mol/kg)

Clearance
(CL,

mL/min/kg)

Drug-likeness

Lipinski
Rule

Pfizer
Rule

GSK
Rule

Golden
Triangle

Isoliquiritigenin −0.493 −0.139 6.091 14.805 Accepted Accepted Accepted Accepted

Metformin −0.496 0.371 2.039 3.504 Accepted Accepted Accepted Rejected

Phenformin −0.317 −0.415 2.622 8.273 Accepted Accepted Accepted Accepted

Losartan −0.289 0.084 6.961 10.673 Accepted Accepted Rejected Accepted

Purvalanol-b −0.159 0.178 3.465 6.333 Accepted Accepted Rejected Accepted
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Table 4. Cont.

FTO (+)

Drug
Regulation

ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50,

mol/kg)

Clearance
(CL,

mL/min/kg)

Drug-likeness

Lipinski
Rule

Pfizer
Rule

GSK
Rule

Golden
Triangle

Mefenamic-
acid −0.980 −0.145 4.109 1.419 Accepted Rejected Rejected Accepted

Omeprazole −0.361 −0.050 3.570 5.938 Accepted Accepted Accepted Accepted

Tozasertib −0.284 −0.364 3.773 2.528 Accepted Accepted Rejected Accepted

Dicloxacillin −0.194 0.006 4.353 1.829 Accepted Accepted Rejected Accepted

Lovastatin −0.103 0.796 3.792 17.025 Accepted Accepted Rejected Accepted

BECN1 (+)

Drug
Regulation

ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50,

mol/kg)

Clearance
(CL,

mL/min/kg)

Drug-likeness

Lipinski
Rule

Pfizer
Rule

GSK
Rule

Golden
Triangle

Eugenol −0.283 −0.067 3.926 14.042 Accepted Accepted Accepted Rejected

Omeprazole −0.136 −0.050 3.570 5.938 Accepted Accepted Accepted Accepted

Tacedinaline −0.135 −0.681 3.772 1.313 Accepted Accepted Accepted Accepted

Pevonedistat −0.109 −1.667 6.855 8.914 Accepted Accepted Rejected Accepted

Danusertib −0.091 −2.448 2.357 3.461 Accepted Accepted Rejected Accepted

FOXA1 (+)

Drug
Regulation

ability
(L1000)

Sensitivity
(PRISM)

Toxicity
(LC50,

mol/kg)

Clearance
(CL,

mL/min/kg)

Drug-likeness

Lipinski
Rule

Pfizer
Rule

GSK
Rule

Golden
Triangle

Olaparib −1.109 0.012 2.976 3.522 Accepted Accepted Rejected Accepted

Bortezomib −0.018 −2.783 2.474 2.742 Accepted Accepted Accepted Accepted

Carvedilol −0.015 0.389 5.014 8.419 Accepted Accepted Rejected Accepted

Desoxypeganine −0.014 −0.081 2.952 6.957 Accepted Accepted Accepted Rejected

Valsartan −0.004 0.132 3.149 0.314 Accepted Accepted Rejected Accepted

Ipsapirone −0.003 −0.235 2.823 2.248 Accepted Accepted Rejected Accepted

(+), abnormal overexpression; (−), abnormal low expression.

Table 5. Details information of drug-likeness filters.

Description Note

Lipinski rules MW ≤ 500,
logP ≤ 5,

H-bound acceptors ≤ 10,
H-bound receptors ≤ 5

If more than 2 properties are out of range, poor absorption
or permeability may occur.

Pfizer rules logP > 3,
TPSA < 75

Compounds satisfying the Pfizer rules imply that they are
more likely to be toxic.

GSK rule MW ≤ 400,
logP ≤ 4

In general, compounds satisfying the Golden Triangle and
GSK rule usually have a favorable ADMET (absorption,
distribution, metabolism, excretion, toxicity) profile

Golden Triangle 200 ≤MW ≤ 50,
−2 ≤ logD ≤ 5

Abbreviations: MW, molecular weight (unit, Da); logP, distribution coefficient P; logD, n-octanol/water distribu-
tion coefficients; TPSA, topological polar surface area.
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Table 6. Selected drugs and their corresponding drug targets in the multiple-molecule drug therapy
for COVID-19-associated ARDS.

Drugs

Targets
TNF NFkB HIF1A GRP78 FTO BECN1

Nicorandil l l l

Isoliquiritigenin l l l

Eugenol l l

Omeprazole l l l l

Chemical structures of multiple-molecule drug

Nicorandil Isoliquiritigenin
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2.2. The Common Pathogenic Molecular Mechanism between COVID-19-Associated ARDS and
Non-Viral ARDS

From the first common signaling pathway related to inflammation, as shown in Figure 4,
after interacting with microenvironment factor TNFa, receptor TNFR1 can activate TAK1
by signaling through TRADD and TRAF2. Among all the transcription factors in the down-
stream pathways of TAK1, TF NFκB stood out to be the most pivotal component governing
the inflammation. Initiated by the Ikkβ/Ikkγ, IκBα undergoes phosphorylation-induced
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degradation, resulting in the translocation of TF NFκB into the nucleus to induce its target
genes TNF, IL6, and FAS. The target genes TNF and IL6 both encode critical proinflamma-
tory cytokines eliciting inflammation and innate immune responses [32,33]. Upregulated
by TF NFκB, TF HIF1α can induce target genes CD274, TNF, and IL6. The target genes
CD274 and FAS both contribute to the inhibition of T lymphocyte proliferation and promote
apoptosis [34–36]. Adequate amounts and differentiated lymphocytes are prerequisites for
activating the adaptive immune response. Triggering apoptosis in activated lymphocytes is
commonly used as a means of controlling the ongoing inflammation. Exhausted and low
levels of lymphocytes often lead to a condition known as lymphopenia, which has been re-
ported in ARDS [37]. Especially in the COVID-19-associated ARDS cases, the development
of lymphopenia might derive from multiple mechanisms that work together and several
hypotheses have been proposed. Observations from several basic studies have supported
that dysregulated expression of proinflammatory cytokines including tumor necrosis factor
(TNFα) and interleukin (IL-6) might lead to lymphocyte apoptosis [38–42]. Apart from that,
high-level expressions of FAS (CD95) and CD274 could contribute to the exhaustion and
depletion of T cells [43,44]. Furthermore, viruses might also directly infect lymphocytes
expressing ACE2 [45]. Upregulated TF HIF1A is a critical indicator in response to cellular
hypoxia conditions. The inflammation role of TF HIF1α has also been investigated in ARDS
caused by different agents, suggesting that silencing HIF1 depends on NFκB and could be
a possible strategy for preventing the aggravation of inflammation in ARDS [46–49].

Additionally, TAK1 can also stimulate the MAPK signaling pathway comprised of
MKK6/MAPK13. Typically, androgen receptor (AR) belongs to the nuclear receptor family
that has the dual role of functioning as transcription factors. Apart from being activated
through steroids-mediated induction, transcription factor AR can also be phosphorylated
by kinases involved in the signaling transduction pathway and provoke the expression of
cytokine-related target genes TNF and IL6, such behavior has been commonly described in
several cancer researches [50,51]. In this study, transcription factor AR links with MAPK13
(p38 delta) and contributes to inflammation.

Lack of negative regulator of immune response may also contribute to the hyperin-
flammation of cytokine. From the core common signaling pathways, as shown in Figure 4,
we demonstrated that TNF alpha induced protein 8 like 2 (TIPE2), a negative regulator
considered to modulate the NFKB and MAPK signaling pathways, can inhibit Ras sig-
naling effector Ras2 to downregulate PI3KCB. One study indicated that PRKCD could
be phosphorylated by PI3KCB, confirming this downstream interactor of PI3KCB [52].
PRKCD can further interact with transcription factor FLI1 to induce the target genes CCL5
and IL6 [53–55]. CCL5(RANTES), encoded by gene CCL5, is a chemokine contributing to
leukocyte recruitment in innate immune responses [56]. It is noticed that there is a rela-
tively lower expression of TIPE2, whereas relative higher expressions of its downregulated
proteins were observed, signifying that the inhibitory effect of TIPE2 may be attenuated.
Since there also exists an upstream interaction between TAK1 and TIPE2 in this study,
it is reasonable to suppose that TIPE2 ubiquitination may contribute to the loss-of-control
cytokine production [57].

Collectively, the common molecular mechanisms in COVID-19-associated ARDS and
non-viral ARDS are leukocyte recruitments, inflammation, innate immune responses,
apoptosis, and T cell inhibition. Based on the results of core signaling analyses and consid-
ering relative protein/gene expression levels as compared with normal nasopharyngeal
tissues [58], we choose TNF, NFkB, and HIF1A as common biomarkers (drug targets)
of infections pathogenesis in both COVID-19-associated ARDS and non-viral ARDS.

2.3. The Specific Pathogenic Molecular Mechanism of COVID-19-Associated ARDS

The early stage of the SARS-CoV-2 life cycle begins from the attachment of the host
cellular receptor and the membrane fusion between virus and host cell. Accomplish-
ments of both events are required for releasing viral RNA into the cytoplasm for the
subsequent replication and translation. Although, currently, it has been effectively estab-
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lished that angiotensin-converting enzyme 2 (ACE2) is the main receptor for SARS-CoV-2
cell entry [59], there is no stop to identifying novel receptors that may potentiate the
SARS-CoV-2 infectivity.

Several cell receptors are identified to interact with the Spike protein of SARS-CoV-2
in Figure 4. Firstly, ITGB3, an integrin protein thought to contain an LC3-interacting region
(LIR), can bind to LC3 and contribute to autophagy upon activation [60]. In agreement
with the previous studies that the toll-like receptor (TLR) signaling pathway can be trig-
gered by structural proteins of SARS-CoV-2 [61–63]. After recognizing the Spike protein of
SARS-CoV-2, receptor TLR4 could transmit the signal to TRAF6 by recruitment of adaptor
proteins either IRAK4 or TRAM/TRIF. TRAF6 could promote proinflammatory cytokines
expression by activating downstream pathways of TAK1 and NFκB as aforementioned.
TF STAT2, phosphorylated by TBK1, can promote innate immune response by activating
its target gene IFNA1 [64]. However, ORF7a of SARS-CoV-2 has been found to interact
with STAT2 as well. A recent study showed that attenuation of this type-I interferon
(IFN-I) signaling pathway may be attributed to the ubiquitination of ORF7a [65]. NRP-1,
a receptor widely expressed in nasal and olfactory tissue, was intended to interact with the
Spike protein of SARS-CoV-2, coinciding with the current studies [66,67]. On top of that,
the Spike protein was also found to interact with cathepsin H (CTSH). Functional cleavage
of the Spike protein of SARS-CoV-2 by endosomal protease cathepsin is a necessary process
for membrane fusion. In contrast to thoroughly studied CTSL and CTSB, there are few
studies in the literature that refer to the relation between CTSH and SARS-CoV-2 [68].
GRP78 (Bip), a chaperone originally resident in the endoplasmic reticulum (ER) lumen,
can not only ensure protein proper folding but also be a major stress sensor maintaining
the homeostasis of ER folding capacity by triggering unfolded protein responses (UPR).
In Figure 4, upon interacting with structural proteins of SARS-CoV-2, GRP78 was identified
to stimulate IRE1α and TF XBP1. TF XBP1 can promote transcription of GRP78 encoded
by gene HSPA5. Under the stress caused by the accumulation of unfolded viral proteins,
one measure to resolve the stress is to further promote chaperone production in the down-
stream signaling pathways of UPR. Emerging research has reported that high expression
levels of GRP78 and apoptosis are observed in SARS-CoV-2 infected cells [69–71]. Overex-
pressed GRP78 has been observed to translocate to the cell membrane, further facilitating
virus entry by interacting with S proteins of coronaviruses, including SARS-CoV-2 [72,73].
The positive feedback loop of GRP78 production established by virus infection may eventu-
ally lead to the sustained UPR and subsequent apoptosis. Moreover, IRE1α also contributes
to inflammation by transmitting the signal through MKK7 and MAPK10.

The higher expression level of lncRNA metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1/NEAT2) has been considered to have a critical role in inflammation
and cytokine production. Similar results were also observed in saliva and nasopharyn-
geal swabs of COVID-19 patients [74], however, details of the mechanisms of MALAT1
upregulation and the cytokine production mediated by MALAT1 in COVID-19 have not
been well illustrated. Herein, we identified TF XBP1 as one of the upstream nodes of
lncRNA MALAT1. A previous bioinformatic analysis has indicated that TF XBP1 binding
site exists within the MALAT1 gene promoter region [75], suggesting that MALAT1 upreg-
ulation may be due to endoplasmic reticulum (ER) stress and unfolded protein response
(UPR) induction [76]. MALAT1 has been confirmed to downregulate miRNA MIR144 [77],
and miRNA MIR144 has been shown to suppress the expression of cytokines and chemokines,
including TNFα, IL6, and CXCL11 [78–80]. It can also suppress the TRAF6 level post-
transcriptionally [81]. Notably, the lower expression of MIR144 is also observed, which is
consistent with the differential expression analysis in the peripheral blood of COVID-19
patients [82]. It is possible that MALAT1 can promote cytokine production through MIR-
144. By acting as a transcriptional coactivator, YAP1 can induce the expression of MALAT1
and also stabilize TF HIF1α [83,84]. Furthermore, YAP1 can interact with dual-specificity
phosphatase 10 (DUSP10/MKP5) [85]. Dual-specificity phosphatases are well known to be
negative regulators of YAP1 on p38 and MAPK pathways [86].
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Additionally, YAP1 can serve as a node connecting inflammation and the N6-methyladenosine
(m6A) modification system in COVID-19-associated ARDS. m6A is one of the host RNA
modifications commonly used for epitranscriptomic control of cellular mRNAs. Recent
studies have identified m6A in SARS-CoV-2 RNA, implying that the virus may utilize this
machinery for its own benefit [87–89]. Several studies in the literature have reported the
m6A inhibitory effect on SARS-CoV-2 replication. These modifications mediated by m6A
“writer” protein METTL3 not only have an influence on the SARS-CoV-2 replication but also
interfere with RIG-I binding, which is the key regulator of the cytosolic pattern recognition
receptor (PRR) system [90]. However, conflicting results have also been observed, different
from the well-documented results currently focused on the relationship between METTL3
and SARS-CoV-2. In Figure 4, the METTL5–TRMT112 complex was identified to interact
with N and ORF7 genes in the core signaling pathway of COVID-19-associated ARDS.
In addition, fat mass and obesity-associated protein (FTO), a m6A eraser protein, was also
involved in the GRN interaction between N and ORF7 and found with higher expression
levels as compared with normal nasopharyngeal tissues datasets. Interestingly, previous
studies have shown that silencing the catalytic ability of demethylase FTO and ALKBH5
can drastically inhibit SARS-CoV-2 infection [89,91]. Furthermore, the depletion of fat mass
and obesity-associated protein (FTO) can facilitate YAP1 mRNA degradation [92]. Overall,
these results suggest that targeting m6A modification could be a potential therapeutic
modality fighting against SARS-CoV-2.

Autophagy is an auto-degradative process conserved across eukaryotes and essential
for maintaining intracellular homeostasis, which is characterized by forming autophago-
some and later fusing with lysosome for degradation (known as autolysosome) [93]. Au-
tophagosomes can also break down an invading pathogen by uptaking endosome after
virus entry, thereby, contributing to part of the antiviral responses. It is known that double-
membrane vesicles (DMVs) are a prerequisite for the replication of coronaviruses. Recently,
it has been documented that SARS-CoV-2 infection induces the accumulation of autophago-
somes [94]. Moreover, other reports have also observed that targeting autophagy led to
the attenuation of SARS-CoV-2 replication [95,96]. Given that autophagosomes are double-
membrane cellular compartments and the fact that nsp6 proteins of other coronaviruses
family members colocalize with LC3 [97,98], it has been postulated that SARS-CoV-2 may
also exploit the autophagy pathway for their life cycle [99]. In Figure 4, we showed that
Beclin-1 (BECN1), which plays a critical role in the initiation of autophagy, can be acti-
vated by PPI interaction with TRAF6. The activation effect of TRAF6 on BECN1 has been
confirmed in a previous study [100]. The relatively higher expression levels of BECN1
and its downstream protein LC3B can both be observed as compared with normal tissue
datasets, which is consistent with several studies. Aside from that, SARS-CoV-2 can estab-
lish a more favorable intracellular environment by interfering with the autophagy process.
For example, it has been reported that ORF8 was related to immune evasion by autophagy-
mediated degradation of MHC-1 class family proteins, which was implicated in antigen
processing and presentation [101]. As expected, BECN1-linked ORF8 was found to interact
with HLA-A in this study. As a part of the RLRs (RIG-like receptors) pathogen recognition
system, LGP2 (DHX58) has been thought to positively regulate MDA5/MAVS signaling.
It has been documented that ectopic expression of SARS-CoV-2 ORF8 can suppress DHX58
basal level [102]. Herein, we speculate that the degradation of DHX58 mediated by ORF8
may partly contribute to this observation. Intriguingly, RAB9a, a GTPase mainly located in
the late endosome and correlated with alternative autophagy, has been shown to interact
with ORF7, implying that SARS-CoV-2 may interfere with autophagosome-lysosome fusion
and reshape the morphology of trans-Golgi network (TGN) [103,104].

For the final core signaling pathway of COVID-19-associated ARDS, as shown in
Figure 4. PGC1α, deacetylated by SIRT1, can activate TF NRF1 [105]. TF NRF1 can
upregulate target gene HMOX1 by interacting with its ARE element [106]. The heme
oxygenase-1 (HO-1) encoded by HMOX1 plays a protective role in oxidative tissue damage
and its anti-inflammation effect in ARDS has been reported [107,108]. TF NRF1 can also
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target gene TFAM, which encodes TFAM that regulates the homeostasis of mitochondria.
Similarly, previous studies have reported that downregulated SIRT1 and PGC1α were
observed in COVID-19 patients [109–111]. We observed the lower expression level of SIRT1,
which could be due to the inhibitory effect of MALAT1 [112]. Knockdown of target gene
TFAM promotes reactive oxygen species (ROS) production and apoptosis [113]. Inhibition of
TFAM in COVID-19 patients is not just limited to the transcriptional level. TFAM requires
TOMM70 to translocate into mitochondria. A recent study observed that SARS-CoV-2
ORF9b interacted with TOMM70 [114]. The crystal structure of the complex of TOMM70
and SARS-CoV-2 ORF9b has also been resolved (PDB iD: 7KDT) [115], thereby, further
inhibiting TFAM translocation into mitochondria. This may further dampen the result of
absent TFAM.

In summary, according to the specific pathogenic pathways of COVID-19-associated
ARDS, SARS-CoV-2 can hijack host factors to facilitate cell entry and modify the virus
genome to promote virus protein transcription in the cytoplasm. Although innate immune
systems such as interferon, sensor, or antigen-presenting protein system can be induced
in response to virus invasion, their antiviral effects could be abrogated either by the virus
proteins translated in the cytoplasm or autophagy-mediated degradation. ER signaling
triggered by SARS-CoV-2 leads to abnormal cellular functions including leukocyte recruit-
ments, inflammation, apoptosis, and ROS production, which are all critical driven factors
for cytokine storm and the subsequent tissue damage in ARDS patients. Based on the
results of core signaling analyses and considering relative protein/gene expression levels of
COVID-19-associated ARDS as compared with normal nasopharyngeal human tissues [58],
we selected GRP78, FTO, and BECN1 as essential biomarkers (drug targets) of specific
etiologic mechanisms for COVID-19-associated ARDS.

2.4. The Specific Pathogenic Molecular Mechanism of Non-Viral ARDS

The core signaling pathways of non-viral ARDS are shown in Figure 4. Once stimulated
by ligand S100A1 in the microenvironment, receptor TLR4 recruited adaptor protein MYD88
and promoted cytokine production by transmitting the signal through MAPK/NFKB axis,
as previously described. S100A1 has been reported to contribute to hypoxia-induced inflam-
mation in an earlier study. Although predominantly expressed in cardiomyocytes, S100A1
is also present in lung endothelium and its increased serum level has been documented in
several pulmonary diseases [116–119]. The other ligand found to stimulate receptor TLR4
also includes lipopolysaccharide (LPS), which is the most studied molecule that constitutes
the outer membrane of Gram-negative bacteria.

Another specific core signaling pathway of non-viral ARDS is shown in Figure 4.
As soon as the microenvironment molecule TGFB2 binds the receptor TGFBR2, it can
activate the SMAD2/SMAD3 complex. SMAD2/SMAD3 can activate TF EGR2 to promote
the inhibitory cytokine target gene IL10 and also transmit the activation signal to TF
ZEB1 [120–122]. MicroRNA MIR183 is the upstream node of TF FOXA1, however, TF ZEB1
can downregulate the transcription level of MIR183 [123]. In Figure 4, several downstream
pathways of TF FOXA1 are shown to incorporate with the TGFβ signaling pathway. First,
it has been validated that TF FOXA1 can induce the expression of target genes CD274
and IL8 by directly binding to their promoter region [124,125]. It is worth noting that
the MIR183/FOXA1/CXCL8 pathway activated by HDAC2 has been investigated in a
previous study [126]. In Figure 4, we show that this pathway is, instead, mediated by TF
ZEB1 and incorporated with the downstream of the TGFβ signaling pathway. Secondly,
in coordination with TF AR, TF FOXA1 can also induce the target genes VEGFA, TNF,
and IL6. TF FOXA1 has been thought to be a pioneer protein to facilitate the target genes
of TF AR by chromatin remodeling [127]. VEGFA encodes VEGF-A to increase vascular
permeability and leukocyte recruitment [128,129]. It is also a direct target of TF HIF1α,
and its expression can be inhibited by miRNA MIR29a [130,131]. Thirdly, TF FOXA1
has been found to bind to E1 enhancer of gene H19 and correlates with lncRNA gene
H19 activation [132]; lncRNA H19 has been shown to suppress miRNA MIR29a [133].
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Remarkably, in an ARDS mouse model induced by LPS, both expressions of FOXA1 and
H19 were upregulated. Moreover, the knockdown of lncRNA H19 has been reported
to attenuate inflammation and fibrosis by decreasing the mRNA level of TNF-α, IL-6,
and VEGF [134]. Moreover, TF HOXB13 has also been identified to be upregulated by
FOXA1. It has been demonstrated that HOXB13 can be upregulated by FOXA1, and the
overexpression of HOXB13 has been shown to upregulate the expression of its target
gene NAMPT [135,136]. The inflammation role of NAMPT has been investigated in an
LPS-induced ALI mouse model [137].

In brief, the specific molecular mechanisms in non-viral ARDS are leukocyte recruit-
ments, innate immune response, and inflammation. Based on the results of core signaling
analyses and considering relative protein/gene expression levels of non-viral ARDS as
compared with normal nasopharyngeal tissues [58], we additionally selected TF FOXA1 as
an essential biomarker (drug target) of specific etiologic mechanisms for non-viral ARDS.

2.5. The Construction of Deep Neural Network as Drug–Target Interaction Model and Drug
Specification Filters to Select Potential Small Compounds for Multiple-Molecule Therapies

For the purpose of proposing potential multiple-molecule drugs to target identified
biomarkers, we followed the design workflow, as shown in Figure 5, to train, in advance,
a DNN-DTI model by drug–target interaction data. Drug–target interaction data for train-
ing a DNN-DTI model were collected from databases DrugBank [138], BindingDB [139],
ChEMBL [139], UniProt [140], and PubChem [141]. There are two classes of drug-target
pairs in our training datasets: 80,291 known drug–target interaction pairs (labeled with
1) and 100,024 unknown drug–target interaction pairs (labeled with 0). It is noted that
the imbalanced datasets often cause a poor predictive performance, especially for the
minority class. Therefore, the number of negative classes were randomly down sampled
from 100,024 to 80,291. Moreover, each feature in the drug-target pairs is defined in dif-
ferent scales. Here, to make the DNN-DTI model learn well, we perform feature scaling
by standardization. The data in high dimension space are often sparse such that model
training is computationally intractable. Principal component analysis (PCA) [142] was
adopted to reduce the number of features for each drug-target pair from 1359 to 1000. We
split three-fourth of the datasets as training set and one-fourth as testing set. The training
set was further subdivided five-fold with four-fifth for training and one-fifth for validation
during model training.

The architecture of the DNN-DTI model is composed of one input layer followed by
four hidden layers and one output layer, as shown in Figure 5. Corresponding neuron
numbers of inputs, hidden and output layer are 1000, 521, 256, 128, 64, 1, respectively.
For each neuron of the hidden layer, ReLU was set as the activation function, while the
sigmoid function was used for the output layer. We set the Adam learning algorithm [143]
as an optimizer (learning rate 0.001, epoch 100, and batch size 100) and used binary cross-
entropy as the loss function. To counter the overfitting, the early stopping strategy was
employed to monitor the validation error at each epoch and stop model training once
the error started to increase. Moreover, we set the dropout as 0.5 for each hidden layer.
To avoid the bias caused by the particular combination of the dataset, we evaluated the
DNN-DTI model performance by five-fold cross-validation. The learning curves of accuracy
and loss are, respectively, shown in Figures S3 and S4. The average scores of validation
loss, validation accuracy, testing loss, and testing accuracy were also calculated, when the
training process of the DNN-DTI model automatically stopped at epoch 52, as presented
in Table S4. Moreover, the receiver operating characteristic (ROC) curve of the DNN-DTI
model with the area under the curve of ROC (AUC-ROC) score 0.982 is also provided in
Figure S5.
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Figure 5. The flowchart for multiple-molecule drug design of COVID-19-associated ARDS and
non-viral ARDS. In the right column, the drug–target interaction data are obtained from drug–target
interaction databases to construct drug-target pair data. After data preprocessing, these data are
divided into training data and testing data to train the DNN-DTI model for the trained DNN-DTI
model in the left column. In the left column, the feature vectors of biomarkers and the feature vectors
of drugs from drug–target interaction databases consist of drug-target feature pairs and are mounted
into the trained DNN-DTI model to predict potential drugs for these biomarkers (drug targets). Then,
these potential drugs are filtered by five drug design specifications to obtain candidate drugs as
multiple-molecule drugs for COVID-19-associated ARDS and non-viral ARDS.
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2.6. Discovery of Multiple-Molecule Drug Therapy of COVID-19-Associated ARDS and
Non-Viral ARDS

The candidate drugs of drug targets predicted by the DNN-DTI model were further
filtered by the following five drug design specifications. For drug regulation ability, we
downloaded Phase I L1000 level 5 datasets (GSE92742) from the Broad Institute Library
of integrated Cellular Signatures (LINCS) [144,145]. This dataset includes the moderated
Z-scores (MODZS) from differential gene analysis of 12,328 genes for 19,811 perturbagens
(small molecule) treatments across 76 human cell lines corresponding with 45,956 ex-
pression signatures. The negative value of small molecules implies that abnormal gene
overexpression in the cell line we choose can be downregulated under drug treatment,
and vice versa. For each identified biomarker, the top five candidate drugs with suitable
regulation ability, as mentioned above, are presented in Table 4.

Afterward, we checked drug sensitivity. The corresponding dataset was obtained from
DepMap Primary PRISM Repurposing datasets [146], consisting of chemical-perturbation
viability screens for 4518 compounds across 578 human cell lines. We preferred to choose
the compounds with sensitivity values around zeros, which meant that the cell line was not
sensitive to the chemical perturbation. In addition, clearance (CL, mL/min/kg), toxicity
(LC50, mol/kg), and drug-likeness were considered and evaluated using the web tool
ADMETlab 2.0 [147]. Higher clearance (CL) indicates the drugs could be excreted easily
and have fewer adverse effects on normal metabolism in the human body. Moreover, we
preferred the drugs with higher LC50, implying the drug possessed a lower acute toxicity
toward the body. Meanwhile, we also considered several drug-likeness rules commonly
used in R&D to narrow down candidate drugs, based on a qualitative concept to determine
whether compounds were similar to known drugs by evaluating their structural and
physicochemical properties, including Lipinski rule [148], Pfizer rule [149], GSK rule [150],
and Golden Triangle [151] from ADMETlab 2.0. Definitions of these drug-likeness rules and
their corresponding principle of choosing candidate drugs are listed in Table 5. Eventually,
we proposed two multiple-molecule drugs for COVID-19-associated ARDS and non-viral
ARDS, as shown in Tables 6 and 7.

3. Discussion
3.1. Multiple-Molecule Drugs for COVID-19-Associated ARDS and Non-Viral ARDS

We investigated the core HPI-GWGENs of COVID-19-associated ARDS and non-viral
ARDS with KEGG annotations, and described the common and distinctive core signaling
pathways in detail (shown in Figure 4) in terms of the abnormal cellular functions and
the interspecies cross-talk pathways that SARS-CoV-2 interfered with in the infectious
process. With the application of a supervised-learning-based DNN-DTI model, we could
predict interactions between candidate drugs and the identified drug targets. Meanwhile,
considering drug design specifications including regulation ability, sensitivity, toxicity,
and drug-likeness, we suggested multiple-molecule drugs for COVID-19-associated ARDS
and non-viral ARDS, as shown, respectively, in Tables 6 and 7. Among them, nicorandil
(Ikorel®) is nicotinamide commonly used for the management of ischemia and angina
pectoris due to its multi-pharmacological mechanism [152]. A recent in vivo study revealed
that nicorandil could relieve oxidative stress, apoptosis, and inflammation in LPS-induced
acute lung injury (ALI) mice by modulating the MAPK and NFkB pathways [153]. Nico-
randil can suppress the release of TNFα from the immune cell line [154]. Another study
also observed reduced HIF1A levels in palmary fibrosis rats after nicorandil treatment [155].
Isoliquiritigenin is a phytochemical flavonoid compound derived from licorice. Emerging
evidence has suggested that isoliquiritigenin could suppress inflammasome and apopto-
sis by attenuating the NFkB pathway in a mouse model [156,157]. Isoliquiritigenin also
demonstrated its efficacy to inhibit cell proliferation and migration of breast cancer by
promoting HIF1A proteasome degradation [158,159]. Moreover, it has been reported that
isoliquiritigenin can directly target GRP78 [160]. This observation was further supported
by one molecular study, which indicated that isoliquiritigenin could fit into the ATPase
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domain of GRP78 [161]. Eugenol has been shown to reduce the TNFα expression in human
macrophages induced by lipopolysaccharide (LPS) [162,163]. It has been documented that
eugenol administration inhibited the accumulation of autophagosomes [164]. Omepra-
zole (Losec®, Prilosec®, Zegerid®, and others), a proton pump inhibitor, is commonly
used to reduce gastrointestinal (GI) ulcers induced by nonsteroidal anti-inflammatory
drugs (NSAIDs). It also exerts anti-inflammatory properties, as reported in a previous
research [165]. Administration with omeprazole has been shown to decrease FTO level and,
in turn, enhance the transcription level of the mechanistic target of rapamycin complex
1(mTORC1), which is a protein complex that regulates autophagy induction [166]. Borte-
zomib (Velcade), an anticancer drug commonly used as the standard treatment of multiple
myeloma (MM), has been demonstrated to suppress NFκb activation owing to its ability of
proteasome inhibition [167]. It can inhibit the FOXA1 stability by elevating the O-GlcNAc
modification in the host cell [168]. Olaparib, a poly ADP ribose polymerase (PARP) in-
hibitor, has been used in the first-line treatment of patients with advanced ovarian cancer.
Targeting PARPs could interrupt the interaction between TF FOXA1 and TF AR [169]. Over-
all, we proposed two multiple-molecule drugs: (1) nicorandil, isoliquiritigenin, eugenol,
omeprazole for COVID-19-associated ARDS and (2) nicorandil, bortezomib, and olaparib
for non-viral ARDS.

Currently, conventional medications for the treatment of ARDS such as statins and cor-
ticosteroids have been recommended for ARDS patients infected by SARS-CoV-2 [170,171].
However, several cohort studies and observational data suggest that the efficacy and
safety of these drugs are controversial [172–174]. Questions regarding optimal dosage,
treatment initiation, the time point of administration in the disease stage of COVID-19-
associated ARDS patients have not reached a consensus and should be further discussed in
clinical studies.

As compared with de novo drug design, drug repurposing aided with a systems
biology approach seems to be a more promising proposition. It is worth noting that the
multiple-molecule compounds that were selected for drug targets in this study are mainly
U.S. Food and Drug Administration (FDA) approved drugs. On the one hand, repurpos-
ing FDA-approved drugs can greatly reduce the bottleneck during the development of
traditional drugs, particularly, for emergency use to keep up with the pace of emerging out-
breaks. On the other hand, by selecting multiple drugs with synergistic effects, the effective
dosage of individual drugs can be reduced to prevent the possibility of toxicity. Although
further clinical studies need to be validated, it is anticipated that COVID-19-associated
ARDS and non-viral ARDS patients could benefit from multiple-molecule drug therapy.

3.2. The Limitations and Advantages to the Proposed Systems Medicine Design Procedure for
COVID-19-Associated ARDS and Non-Viral ARDS

To the best of our knowledge, this is the first systematic study to discuss pathogenetic
differences of host-pathogen interactome between COVID-19-associated ARDS and non-
viral ARDS from the systems biology perspective by leveraging both human and virus
transcriptome data. The development of new treatments relies on an improved understand-
ing of the underlying pathogenic mechanism of COVID-19-associated ARDS and non-viral
ARDS. With more and more relative studies being conducted, significant efforts have been
made to find more accurate treatments to attenuate virus replication and pathogen-derived
complications. Nonetheless, most SARS-CoV-2-related datasets known from the GEO
database have limited sample sizes and only focus on the host transcriptomic responses.
To date, effective technology that measures the genome-scale protein expression profile of
both humans and SARS-CoV-2 has not been established. Increasing evidence has shown
that cellular protein abundance can be estimated by their corresponding mRNA, implying
that RNA-Seq data can substitute protein expressions and provide sufficient information for
solving the constrained least-squares problem in system identification method [175–178].
Thanks to the availability of RNA-Seq data of both humans and SARS-CoV-2, we can inte-
grate these two-side datasets into a systems drug discovery design procedure to identify
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essential biomarkers, and then search for the plausible drug combination for the treatment
of COVID-19-associated ARDS and non-viral ARDS patients. The systematic workflow in
this study can also be applied to investigate other infectious diseases from the viewpoint of
systems biology. Along with the expandability of public access data, it is also feasible to
integrate additional databases via the proposed workflow, revealing a more comprehensive
genetic and epigenetic network.

There are some drawbacks of the two RNA-Seq datasets we integrated in this study.
Recently, outbreaks of SARS-CoV-2 variants have been raging around the globe at an
increasing speed. However, due to the original study design of the RNA-Seq datasets, we
only aligned RNA-Seq raw datasets on SARS-CoV-2 reference sequence (Ref-Seq) genome
(NC_045512.2) to obtain virus gene count data. Hence, a discussion about the relationship
between ARDS and SARS-CoV-2 variants is beyond the scope of this study. Furthermore,
it is noted that ORF1ab transcripts are polyprotein precursors, which will be further
cleaved by viral proteinases to produce 16 non-structural proteins (NSPs). However, only
the ORF1ab transcripts level can be estimated from RNA-Seq data. Therefore, we only
consider ORF1ab polyprotein rather than 16 NSPs to be one of the “Virus” protein names
in HPI-PPI. How to estimate the proportions of each expression level of NSPs by ORF1ab
transcripts remains to be a question.

4. Materials and Methods
4.1. Preprocessing of Host-Pathogen RNA-Seq Datasets and Construction of Candidate
HPI-GWGEN by RNA-Seq Pipeline and Big-Data Mining

In this study, both human and virus gene count data of multiple studies from the
GEO database were integrated before systematic model construction. After evaluating the
overall design and availability of data, two GEO datasets (accession nos. GSE156063 [179]
and GSE163151 [180]) were retrieved according to the following screening criteria in this
study: (1) Samples of datasets can be classified as COVID-19-associated ARDS and non-
viral ARDS; (2) at least one study provides RNA-Seq raw data, RNA-Seq raw data of
GSE156063 (PRJNA633853) can be accessed and batch downloaded from the European
Nucleotide Archive (ENA) database; (3) nasopharyngeal (NP) swab sample specimens;
(4) identical sequencing platform (GPL24676).

Technical details of the RNA-Seq process pipeline to obtain GSE156063 virus gene
count data are as follows: (1) Trim adapters and filter low-quality reads by fastp tool [181],
(2) align reads on the SARS-CoV-2 reference sequence (Ref-Seq) genome (NC_045512.2)
by HISAT2 tool [182], (3) assemble alignments and gene count calculation by StringTie
tool [183]. Tools are all included in the Subio Software (version 1.24.5849) and default
options were used to perform the automatic process.

Since two selected datasets were tabular format (gene names in rows and samples in
columns), we classified gene names in each dataset into seven classes according to their
functions (Table 1). Data integration is mainly considered in two aspects: (1) gene names of
integrated data in each class are the union of two selected datasets of the corresponding
sets, (2) integrated data samples are the union of two selected datasets of the corresponding
groups. For each original dataset we selected, if gene count data in the sample group were
not provided for integrated gene names, the missing value were estimated from the distri-
bution across the corresponding sample group in the other dataset. Data distributions were
fitted by kernel density estimation (KDE) with normal kernel and the optimal bandwidth
that minimized the mean integrated squared error (MISE). Finally, the integrated gene count
data were normalized to transcripts per million units (TPM) for downstream analysis.

Among the candidate HPI-GWGEN, candidate human protein–protein interactions
(HPI-PPIs) were obtained from the Database of Interacting Proteins (DIP) [184], the Biomolec-
ular Interaction Network Database (BIND) [185], the Biological General Repository for
Interaction Datasets (BIOGRID) [186], IntAct [187], and the Molecular INTeraction Database
(MINT) [188]. Candidate human gene-regulation networks (HPI-GRNs) were obtained from
the Human Transcriptional Regulation Interactions database (HTRIdb) [189], the Integrated
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Transcription Factor Platform database (ITFP) [190], the Target Scan Human database [191],
StarBase2.0 [192], CircuitDB [193], and the TRANScription FACtor database (TRANS-
FAC) [194]. Considering that the information of host-pathogen PPI and GRN current
databases may not be fully discovered and sufficient for the constructions of candidate
host-virus PPIs, candidate host-virus GRNs, candidate virus PPIs, and candidate virus
GRNs, we assumed each virus protein/gene could interact with each other in default to
prevent false negative interactions at first, and then trimmed false positive interactions
by host-pathogen RNA-Seq data via the proposed system model identification and AIC
system order detection.

4.2. Systematic Model Construction for the Candidate HPI-GWGEN of COVID-19-Associated
ARDS and Non-Viral ARDS Patients

The ith host protein PPI interaction model can be described by the following equation:
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protein in the nth sample;Ki, Vi indicate the total number of host proteins and pathogen
proteins interacting with the ith host protein, respectively; I indicates the total number of
the ith host protein in candidate PPI; N denotes sample number in candidate PPI, either in
COVID-19-ARDS or Non-Viral-ARDS group.

The qth pathogen protein PPI interaction model can be described by the following equation:
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the interaction ability between the qth pathogen protein and κth host protein and between
the qth pathogen protein and the νth pathogen protein, respectively; βH
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basal level of the qth pathogen protein in the nth sample; εH

q,PPI [n] indicates the stochastic
noise of the qth host protein in the nth sample; Kq ,Vq indicate the total number of host
proteins and pathogen proteins interacting with the qth pathogen protein, respectively; Q
indicates the total number of the qth pathogen protein in the candidate PPI; N denotes the
sample number in the candidate PPI, either in COVID-19-ARDS or Non-Viral-ARDS group.

For the host HPI-GRNs in HPI-GWGEN, the jth host gene GRN interaction model can
be described by the following equation:
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respectively; TH

jτ , LH
uλ, MH

jµ indicate the regulation ability of the τth host TF, the λth host

lncRNA gene and the µth host miRNA gene on the jth host gene, respectively; βH
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indicates the basal level of the jth host gene in the nth sample; εH
j,GRN [n] indicates stochastic

noise of the jth host gene in the nth sample; Tj, Lj, Mj indicate the total number of host TF,
host lncRNA gene and host miRNA gene interacting with the jth host gene, respectively; J
indicates the total number of the jth host gene in candidate GRN; N denotes sample number
in candidate GRN, either in COVID-19-ARDS or Non-viral-ARDS group. Similar concept of
systems modeling on miRNAs and lncRNAs could be found in Supplementary Materials.

Numerous studies have suggested that SARS-CoV-2 proteins affect host gene expres-
sion mainly by inhibiting upstream human TFs. To regulate host genes by direct association
(binding) with DNA, pathogen proteins should possess a nucleic acid binding domain and
be able to enter the nucleus. Although one study showed that SARS-CoV-2 RNA-binding
proteins (RBPs) could be detected in nuclear and colocalized with SC35 [195], the study
was conducted by viral transfection which may be different from viral infection. More
experimental evidence should be provided to support that SARS-CoV-2 RBPs can bind to
the host gene. Therefore, we excluded the regulation between the host gene and pathogen
proteins in Equation (3).

The uth pathogen gene GRN interaction model can be described by the following equation:
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where gP
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λ [n], mH
µ [n] indicate the expression level of the uth pathogen

gene, the fth pathogen TF, the τth host TF, the lth host lncRNA gene, and the µth host
miRNA gene in the nth sample, respectively; FP

u f , TP
uτ , LP
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uµ indicate the regulation

ability of the fth pathogen TF,τth host TF, the λth host lncRNA gene and the µth host
miRNA gene on the uth pathogen gene, respectively; βP

u,GRN indicates the basal level of
the uth pathogen gene in the nth sample; εH

u,GRN [n] indicates the stochastic noise of the
uth pathogen gene in the nth sample; Fu, Tu, Lu, Mu indicate the total number of pathogen
TF, host TF, host lncRNA gene, and host miRNA gene interacting with the uth pathogen
gene, respectively; U indicates the total number of the uth host gene in candidate GRN; N
denotes sample number in candidate GRN, in either the COVID-19-associated ARDS or
non-viral ARDS group.

4.3. Parameter Estimation of Real HPI-GWGENs of COVID-19-Associated ARDS and Non-Viral
ARDS by System Identification, System Order Detection Methods, and RNA-Seq Data

To identify interactive parameters of HPI-PPI and HPI-GRN in the real HPI-GWGEN
for COVID-19-associated ARDS and non-viral ARDS, respectively, we applied the system
identification method to estimate parameters of HPI-GWGEN by host-pathogen RNA-Seq
data after stochastic model construction. Equations (1)–(4) can be expressed as the following
regression form, respectively:

pH
i [n] =

[
pH

i [n]pH
1 [n] · · · pH

i [n]pH
Ki
[n] pH

i [n]pp
1 [n] · · · pH

i [n]pp
Vi
[n] 1

]
×



KH
i1

...
KH

iKi
VH

i1
...
VH

iVi
βH

i,PPI


+ εH

i,PPI [n]

= ϕHP
i [n]θHP

i + εH
i,PPI [n], f or i = 1 ∼ I, n = 1 ∼ N

(5)
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pP
q [n] =

[
pP

q [n]pH
1 [n] · · · pP

q [n]pH
Kq
[n] pP

q [n]p
p
1 [n] · · · pp

i [n]p
p
Vi
[n] 1

]
×



KP
q1
...

Kp
qKq

Vp
q1
...

Vp
qVq

β
p
q,PPI


+ εP

q,PPI [n]

= ϕPP
q [n]θPP

q + εP
q,PPI [n], f or q = 1 ∼ Q, n = 1 ∼ N

(6)

gH
j [n] =

[
tH
1 [n] · · · tH

Tj
[n] gH

J [n]m
H
1 [n] · · · gH

j [n]mH
Mj

[n] lH
1 [n] · · · lH

Lj
[n] 1

]
×



TH
j1
...

TH
jTJ

−MH
j1

...
−MH

jMj

LH
j1
...

LH
jLj

βH
j,GRN



+ εH
j,GRN [n]

= ϕHG
j [n]θHG

j + εH
j,GRN [n], f or j = 1 ∼ J, n = 1 ∼ N

(7)

gP
u [n] =

[
tH
1 [n] L tH

Tu
[n] tP

1 [n] L tP
Fu
[n] gP

u [n]mH
1 [n] L gP

u [n]mH
Mu

[n] lH
1 [n] L lH

Lu
[n] 1

]
×



TP
u1
...

TP
uTu

FP
u1
...

FP
uFu
−MP

u1
...

−MH
uMu

LP
u1
...

LP
µLµ

βP
u,GRN



+ εP
u,GRN [n]

= ϕPG
u [n]θPG

u + εP
u,GRN [n], f or u = 1 ∼ U, n = 1 ∼ N

(8)

where the superscripts H, P, HP, PP, HG, and PG denote abbreviations of the host, pathogen, host pro-
tein, pathogen protein, host gene, and pathogen gene, respectively; ϕHP

i [n], ϕPP
q [n], ϕHG

j [n], ϕPG
u [n]

denote the regression vectors which can be obtained from the corresponding expression
data we integrated; θHP

i , θPP
q , θHG

j , θPG
u are corresponding unknown parameter vectors of

the ith host protein, the qth pathogen protein, the jth host gene, and the uth pathogen
gene, respectively.

Equations (5)–(8) can be further augmented for N samples as follows:
pH

i [1]
pH

i [2]
...

pH
i [N]

 =


ϕHP

i [1]
ϕHP

i [2]
...

ϕHP
i [N]

θHP
i +


εH

i,PPI [1]
εH

i,PPI [2]
...

εH
i,PPI [N]

 f or i = 1 ∼ I (9)
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
pP

q [1]
pP

q [2]
...

pP
q [N]

 =


ϕPP

q [1]
ϕPP

q [2]
...

ϕPP
q [N]

θPP
q +


εP

q,PPI [1]
εP

q,PPI [2]
...

εP
q,PPI [N]

 f or q = 1 ∼ Q (10)


gH

j [1]
gH

j [2]
...

gH
j [N]

 =


ϕHG

j [1]
ϕHG

j [2]
...

ϕHG
j [N]

θHG
j +


εH

j,GRN [1]
εH

j,GRN [2]
...

εH
j,GRN [N]

 f or j = 1 ∼ J (11)


gP

u [1]
gP

u [2]
...

gP
u [N]

 =


ϕPG

u [1]
ϕPG

u [2]
...

ϕPG
u [N]

θPG
u +


εP

u,GRN [1]
εP

u,GRN [2]
...

εP
u,GRN [N]

 f or u = 1 ∼ U (12)

Equations (9)–(12) above can be simply represented as follows:

PH
i = ΦHP

i θHP
i + ΩHP

i , f or i = 1 ∼ I (13)

PP
q = ΦPP

q θPP
q + ΩPP

q , f or q = 1 ∼ Q (14)

GH
j = ΦHG

j θHG
j + ΩHG

j , f or j = 1 ∼ J (15)

GP
u = ΦPG

u θPG
u + ΩPG

u , f or u = 1 ∼ U (16)

For each parameter vector θHP
i , θPP

q , θHG
j , θPG

u in Equations (13)–(16), we can individu-
ally estimate by solving the constrained least-square problem as follows:

θ̃HP
i = argmin

θHP
i

1
2
‖ΦHP

i θHP
i − PH

i ‖
2
2 (17)

θ̃PP
q = argmin

θPP
q

1
2
‖ΦPP

q θPP
q − PP

q ‖
2
2

(18)

θ̃HG
j = argmin

θHG
j

1
2‖Φ

HG
j θHG

j −GH
j ‖

2

2
, subject to AHG

j θ̃HG
j ≤ BHG

j

where AHG
j =

[
OMj×Tj

IMj×Mj
OMj×Lj

OMj×1

]
, BHG

j =
[
OMj×1

] (19)

θ̃PG
u = argmin

θPG
u

1
2‖Φ

PG
u θPG

u −GP
u‖

2
2, subject to APG

u θ̃PG
u ≤ BPG

u

where APG
u =

[
OMu×Fu OMu×Tu IMu×Mu

OMu×Lu OMu×1
]
, BPG

u =
[
OMu×1

] (20)

where O and I denote zero matrix and identity matrix, respectively.
It is noted that in the parameter fitting process for the regression model of each

protein/gene, what candidate HPI-GWGEN provided is all the possible binding molecules,
and therefore our model needs further parameter trimming process. However, such a
model parameter identification process in Equations (17)–(20) will often result in overfitting
conditions with a finite sample of the dataset at hand. Therefore, the AIC detection method
was employed to detect the system order (i.e., the number of interactions of each protein
with other proteins or the number of regulator TFs on each gene by the fact that system
order can minimize the corresponding AIC) [196,197]. For each model in HPI-GWGEN, the
AIC values of the ith host protein in Equation (1), the qth pathogen protein in Equation (2),
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the jth host gene in Equation (3), and the uth pathogen gene in Equation (4) are defined as
follows:

AICHP
i (θ̃HP

i , ΦHP
i , PH

i ) = log(
‖ΦHP

i θ̃HP
i − PH

i ‖
2
2

N
) +

2dim(θ̃HP
i )

N
, f or i = 1 ∼ I (21)

AICPP
q (θ̃PP

q , ΦPP
q , PP

q ) = log(
‖ΦPP

q θ̃PP
q − PP

q ‖
2

2
N

) +
2dim(θ̃PP

q )

N
, f or q = 1 ∼ Q (22)

AICHG
j (θ̃HG

j , ΦHG
j , GH

j ) = log(
‖ΦHG

j θ̃HG
j −GH

j ‖
2

2
N

) +
2dim(θ̃HG

j )

N
, f or j = 1 ∼ J (23)

AICPG
u (θ̃PG

u , ΦPG
u , GP

u ) = log(
‖ΦPG

u θ̃PG
u −GP

u‖
2
2

N
) +

2dim(θ̃PG
u )

N
, f or u = 1 ∼ U (24)

where dim(θ̃HP
i ), dim(θ̃PP

q ), dim(θ̃HG
j ), anddim(θ̃PG

u ) denote the parameter vector dimen-
sion of each model, respectively. In general, increasing parameter number (system order)
will result in good model fit, such that log residual error in the first term of AIC will
decrease and the second term of AIC will increase, and vice versa. Therefore, there should
be exact parameter numbers as system order to achieve the minimum AIC among all
possible binding combinations for each protein/gene. Considering practical computational
efficiency for implementation, for each protein/gene, forward and backward stepwise
algorithms were both adopted to find the minimum AIC in Equations (21)–(24), with the
corresponding parameter numbers to achieve the minimum AIC in Equations (17)–(20)
with the help of lsqlin function in 2021 MATLAB optimization toolbox. Therefore, we
trimmed the insignificant parameters in candidate HPI-GWGEN out of system order de-
tected by AIC to obtain real HPI-GWGEN of COVID-19-associated ARDS and non-viral
ARDS. Likewise, system identification and system order selection method were applied
to the miRNAs regulatory model and lncRNA regulatory model, which can be found in
Supplementary Materials.

4.4. Extracting Core HPI-GWGEN from Real HPI-GWGEN by Using the PNP Approach

After trimming the false positives of candidate HPI-GWGEN to obtain the real HPI-
GWGENs of COVID-19-associated ARDS and non-viral ARDS by the above systems biology
method, it is still not easy to investigate the infections of COVID-19-associated ARDS
and non-viral ARDS because their real HPI-GWGENs are still very complex. Therefore,
the principal network projection (PNP) method was employed to extract their core HPI-
GWGENs from the corresponding real HPI-GWGENs.

Before applying the PNP method to extract the core network from the real HPI-
GWGEN, it was necessary to integrate the interactive and regulatory parameters we
previously estimated into the system matrix. The system network matrix A of real HPI-
GWGEN can be described as follow:
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A =



AHP,HP AHP,PP 0 0
APP,HP APP,PP 0 0
AHG,HP 0 AHG,HM AHG,HL
AHM,HP 0 AHM,HM AHM,HL
AHL,HP 0 AHL,HM AHL,HL
APG,HP APG,PP APG,HM APG,HL



=



K̃H
11 · · · K̃H

1I ṼH
11 · · · ṼH

1Q 0 · · · 0 0 · · · 0
... K̃H

iκ

...
... ṼH
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...
... 0

...
... 0

...
K̃H

I1 · · · K̃H
II ṼH

IQ · · · ṼH
IQ 0 · · · 0 0 · · · 0

K̃P
11 · · · K̃P

1I ṼP
11 · · · ṼP

1Q 0 · · · 0 0 · · · 0
... K̃P

qκ

...
... ṼP

qv

...
... 0

...
... 0

...
K̃P

Q1 · · · K̃P
QI ṼP

Q1 · · · ṼP
QQ 0 · · · 0 0 · · · 0

T̃H
11 · · · T̃H

1I 0 · · · 0 −M̃H
11 · · · −M̃H

1M L̃H
11 · · · L̃H

1L
... T̃H

jτ

...
... 0

...
... −M̃H

jµ

...
... L̃H

jλ

...
T̃H

J1 · · · T̃H
I J 0 · · · 0 −M̃H

J1 · · · −M̃H
JM L̃H

J1 · · · L̃H
JL

T̃H
11 · · · T̃H

1I 0 · · · 0 −M̃H
11 · · · −M̃H

1M L̃H
11 · · · L̃H

1L
... T̃H

lτ

...
... 0

...
... −M̃H

lµ

...
... L̃H

lλ

...
T̃H

L1 · · · T̃H
LI 0 · · · 0 −M̃H

L1 · · · −M̃H
LM L̃H

L1 · · · L̃H
LL

T̃H
11 · · · T̃H

1I 0 · · · 0 −M̃H
11 · · · −M̃H

1M L̃H
11 · · · L̃H

1L
... T̃H

µτ

...
... 0

...
... −M̃H

µx

...
... L̃H

µλ

...
T̃H

M1 · · · T̃H
MI 0 · · · 0 −M̃H

M1 · · · −M̃H
MM L̃H

M1 · · · L̃H
ML

T̃P
11 · · · T̃P

1I F̃P
11 · · · F̃P

1Q −M̃P
11 · · · −M̃P

1M L̃P
11 · · · L̃P

1L
... T̃P

uτ

...
... F̃P

u f

...
... −M̃P

µu

...
... L̃P

uλ

...
T̃P

U1 · · · T̃P
UI F̃P

Q1 · · · F̃P
UQ −M̃P

U1 · · · −M̃P
UM L̃P

U1 · · · L̃P
UL



∈ R(I+Q+J+L+M+U)×(I+Q+M+L)

(25)

where H, P, HP, PP, HG, HL, HM, and PG denote the abbreviations of the host, pathogen, host
protein, pathogen protein, host gene, host lncRNA gene, host miRNA gene, and pathogen
gene, respectively; K̃H

iκ , ṼH
iv and K̃P

qκ , ṼP
qv in Equation (25) can be obtained by solving θHP

i
in (17), θPP

q in (18), and AIC parameter selection criteria in Equations (21) and (22), re-

spectively;
{

T̃H
jτ ,−M̃H

jµ, L̃H
jλ

}
,
{

T̃H
lτ ,−M̃H

lµ, L̃H
lλ

}
,
{

T̃H
µτ ,−M̃H

µx, L̃H
µλ

}
,
{

T̃P
uτ , F̃P

u f ,−M̃P
µu, L̃P

uλ

}
in Equation (25) can be obtained by solving θHG

j in (19), θPG
u in (20), and AIC parameter

selection criteria in Equations (23)–(24), respectively.
The principal network projection (PNP) method is an application of principal compo-

nent analysis (PCA) to extract core elements in the system matrix A in Equation (25). System
matrix A of real HPI-GWGEN can be represented by the singular value decomposition
(SVD) as follows [198–200]:

A = USVT (26)

where U ∈ R(I+Q+J+L+M+U)×(I+Q+M+L), V ∈ R(I+Q+M+L)×(I+Q+M+L) and S = diag
(σ1, . . . , σs, . . . , σI+Q+M+L) ∈ R(I+Q+M+L)×(I+Q+M+L) is a diagonal matrix composed of
I + Q + M + L singular values of the system matrix A in nonincreasing order
(i.e., σ1 ≥ . . . ≥ σs ≥ . . . ≥ σI+Q+M+L). We also introduced expression fraction Ew to
normalize each singular value:

Ew =
σ2

w

∑I+Q+M+L
w=1 σ2

w

(27)

By selecting the minimum X such that ∑X
w=1 Ew ≥ 0.85 from the energy perspective, we

chose the top X singular values and corresponding X principal singular vectors composed
of 85% energy of real HPI-GWGEN as the principal structure of HPI-GWGEN. After that,



Int. J. Mol. Sci. 2022, 23, 3649 28 of 38

we introduced the projection value of each node (i.e., each real vector of A) in the real
HPI-GWGEN to the top X singular vectors, sequentially, as follows:

ProjR
(

Arow,i, VT∗
)
=

[
X

∑
k=1

(Arow,ivk)
2

] 1
2

, f or i = 1, . . . , I + Q + J + L + M + U (28)

where Arow,i denote the ith row vector of system matrix A; V∗andU∗ are vector spaces
spanned by the X principal singular vectors {v1, . . . , vX}, {u1, . . . , uX}, respectively.
The larger projection value in Equation (29) implies that the ith corresponding node is more
significant in the HPI-GWGEN. Conversely, as projection value approaches zero, it implies
that the ith corresponding node is not significant.

Next, the top 4000 nodes including human TFs, genes, miRNAs, lncRNAs, and pathogen
proteins ranked with higher projection values in Equation (29) were selected to construct
core HPI-GWGEN for COVID-19-associated ARDS and non-viral ARDS, respectively. We
also uploaded these nodes to the DAVID website [31] to obtain KEGG pathway annotation
for core signaling pathways of COVID-19-associated ARDS and non-viral ARDS, as shown
in Tables S2 and S3. Eventually, we scrutinized the molecular pathogenic mechanism of
COVID-19-associated ARDS and non-viral ARDS from their common and specific core
signaling pathways in Figure 4 and selected the potential biomarkers in the table for drug
discovery design.

4.5. Data Preprocess for the Deep Neuron Network-Based Drug–Target Interaction (DTI) Model in
Multiple-Molecule Drug Design

After choosing significant biomarkers as potential drug targets for COVID-19-associated
ARDS and non-viral ARDS, a systematic medicine design strategy was proposed to identify
potential multiple-molecule drugs, as shown in Figure 5. First, the drug–target interac-
tion data were integrated by mining databases from DrugBank [138], BindingDB [139],
ChEMBL [201], UniProt [140], and PubChem [141]. Molecular descriptors are mathemat-
ical representations used to describe the physicochemical and structural interpretation
of molecules. Since molecular descriptor can transform complicated molecule charac-
teristics into a numerical value, the molecular descriptor is widely used for convenient
and quantitative analysis in drug discovery such as molecular docking and quantitative
structure–activity relationship (QSAR) studies. In view of this, we employed the functions
of the PyBioMed [202] package to transform features of each drug and target into descriptor
under Python 2.7 environment, respectively. The drug features we considered included 2D,
3D structural fingerprints, atomic constitution, topology, charges, etc. For target features,
molecular descriptor calculated amino acid composition and sequence order, dipeptide
and tripeptide composition, etc. For more details about descriptor transformation, please
refer to PyBioMed documents [202].

Afterward, both descriptors of drugs and targets were concatenated into vector as
DNN model datasets and can be described by the following form [203]:

vDrug-Target =
[

D T
]
=
[

d1 d2 · · · di t1 t2 · · · tj
]

f or i = 1 ∼ I, j = 1 ∼ J (29)

where vDrug-Target represents the feature vector for each drug-target pair; D represents the
descriptor of the drug and T indicates the descriptor of corresponding target; di denotes
the ith drug feature and tj denotes the jth target feature; I is the total feature number of the
drug; J is the total feature number of the biomarker (drug targets).

4.6. Parameters Tuning Process and Prediction Quality Measurement of DNN-Based Drug Target
Interaction Model

Basically, the training process of the deep neuron network in each iteration involved
forward propagation and backpropagation steps. For the forward propagation step, each
input data are fed in the network to output their corresponding probability value by
sequential calculation from the input layer to the output layer. In the architecture of
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a deep neuron network, neuron calculations in each layer can be generalized by the
following function:

h̃n = δ
(

wTxn + b
)

wherew =


w1
w2
...

we

, b =


b1
b2
...

be

 (30)

where h̃n and xn represent the nth output and input vectors corresponding to the nth
drug-target feature vector, respectively; δ(.) denotes activation function (ReLU function in
hidden layer and Sigmoid function in output layer); w is weight vector and b is bias vector.

With the output probability value calculated, the loss value can be obtained and the
parameter set can be updated by computing the gradient of the loss function with respect
to each weight during the backpropagation step [204]. Since drug–target interaction is a
binary classification problem, we chose the cross-entropy function as the cost function to
calculate the loss:

L(y, ỹ) = − 1
N

N

∑
n=1
{yn log(ỹn) + (1− yn) log(1− ỹn)} =

1
N

N

∑
n=1

Cn(y, ỹ) (31)

where yn is the class label (1 for positive and 0 for negative); ỹn is the nth predicted
probability value; Cn(y, ỹ) is the loss of the nth sample. In practice, a commonly used
algorithm in the backpropagation step to find the gradient of the loss function and update
the parameter set is the gradient descent method. The definition of the parameter set,
and the update formulation are given as follows:

θ∗ = argmin
θ

L(θ) , whereθ =



w1
...

we
b1
...

be


(32)

θi = θi−1 − η∇L
(

θi−1
)

where∇L
(

θi−1
)
=



∂L(θi−1)
∂w1

...
∂L(θi−1)

∂we
∂L(θi−1)

∂b1
...

∂L(θi−1)
∂be


(33)

where i denotes the iteration number, and η is the learning rate parameter. By setting
the optimizer as Adam [143], we trained our DTI model with learning rate η = 0.001,
epoch = 100, and batch size = 100 samples. To counter overfitting, an early stopping
strategy was employed to monitor the validation error at each epoch and stop the model
training once errors started to increase. Moreover, we set the dropout layer after each
hidden layer in the DNN-based DTI model architecture and set 0.5 for the dropout rate. All
the DNN-based DTI model construction and training processes were conducted by using
Tensorflow and Keras package under the Python 3.7 environment on a computer with an
Intel i7-8550U 3.4 GHz processor and 32 GB memory.

The common method for evaluating the quality of a binary classifier is to plot the
receiver operating characteristic (ROC) curve and measure the area under the curve (AUC-
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ROC) [205]. The ROC curve can be created by plotting the true positive rate (TPR) against
the false positive rate (FPR) at every probability threshold. In general, the AUC-ROC
score of a perfect classifier will equal 1, whereas the AUC-ROC score of a purely random
classifier will equal 0.5. Therefore, measuring the AUC-ROC score can be used to compare
the performance of different classifiers. The formulas of the AUC-ROC curve are shown in
the following Equations

TruePositiveRate(TPR) = Sensitivity = Recall =
TruePositive(TP)

TruePositive(TP) + FalseNegative(FN)
(34)

TrueNegativeRate(TNR) = Speci f icity =
TrueNegative(TN)

TrueNegative(TN) + FalsePositive(FP)
(35)

FalsePositiveRate(FPR) = 1− Speci f icity =
FalsePositive(FP)

FalsePositive(FP) + TrueNegative(TN)
(36)

where true positive (TP) is the outcome model that correctly predicts value in the positive
class; true negative (TN) is the outcome model that correctly predicts value in the negative
class; false positive (FP) is the outcome model that incorrectly predicts actual value in the
positive class; false negative (FN) is the outcome model that incorrectly predicts actual
value in the negative class.
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