
����������
�������

Citation: Wei, H.; Lu, H.; Zhao, H.

Inferring Time-Lagged Causality

Using the Derivative of Single-Cell

Expression. Int. J. Mol. Sci. 2022, 23,

3348. https://doi.org/10.3390/

ijms23063348

Academic Editors: Ronald Moura

and Sergio Crovella

Received: 2 December 2021

Accepted: 11 January 2022

Published: 20 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Inferring Time-Lagged Causality Using the Derivative of
Single-Cell Expression
Huanhuan Wei 1 , Hui Lu 1,* and Hongyu Zhao 2,*

1 SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, 800 Dong Chuan Road,
Shanghai 200240, China; weihh123@sjtu.edu.cn

2 Department of Biostatistics, Yale University, New Haven, CT 06520, USA
* Correspondence: huilu@sjtu.edu.cn (H.L.); honyu.zhao@yale.edu (H.Z.)

Abstract: Many computational methods have been developed to infer causality among genes using
cross-sectional gene expression data, such as single-cell RNA sequencing (scRNA-seq) data. However,
due to the limitations of scRNA-seq technologies, time-lagged causal relationships may be missed
by existing methods. In this work, we propose a method, called causal inference with time-lagged
information (CITL), to infer time-lagged causal relationships from scRNA-seq data by assessing
the conditional independence between the changing and current expression levels of genes. CITL
estimates the changing expression levels of genes by “RNA velocity”. We demonstrate the accuracy
and stability of CITL for inferring time-lagged causality on simulation data against other leading
approaches. We have applied CITL to real scRNA data and inferred 878 pairs of time-lagged causal
relationships. Furthermore, we showed that the number of regulatory relationships identified by CITL
was significantly more than that expected by chance. We provide an R package and a command-line
tool of CITL for different usage scenarios.

Keywords: causal inference; time-lagged regulation; gene regulatory network; single-cell data

1. Introduction

Single-cell RNA sequencing (scRNA-seq) is a technology capable of measuring the
expression level of RNA at the single-cell resolution [1]. Rapidly growing scRNA-seq
data open the door to a sufficiently powered inference of causality among genes. Several
computational methods have been developed for causal inference from cross-sectional data
(e.g., [2–4]) or time-series data (e.g., [5]). These methods have been applied with some
success to biological data [6–8].

With reference to the time factor in causal inference, causal relationships among genes
can be categorized into instant relationships and time-lagged relationships. In this study,
we focus on the second. A time-lagged relationship is illustrated in Figure 1. The expression
level of gene i at t0 will affect the expression level of gene j at t1, which is denoted by the
black arrow connecting gene i with gene j. Note that with a time-lagged relationship, the
expression level of gene i may not be related to the expression level of its target gene j at a
specific time t0.

There are two main challenges to inferring time-lagged causality for scRNA-seq data:
the collection of longitudinal data and the presence of latent variables. First, it is difficult to
continuously monitor the whole transcriptome within one cell. Of note, even when cells can
be sequenced at different time points [9], such data cannot be considered as real time-series
data because they capture different cells instead of the same set of cells. In Figure 1, the
connections between time points are broken because distinct cell populations are studied.
That is, we are not able to trace the evolutions of cells across different time points. We refer
to such data as multi-trace data, where cells are collected from different time points. We will
investigate whether such data may help us infer causality among genes through simulation
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studies. The reason why continuous measures matter is that there are natural confounders
when inferring time-lagged causality for cross-sectional scRNA-seq data. For every cell,
only the expression levels of genes (the colored circles in the bottom part of Figure 1) at time
point t1 can be obtained from sequencing. For time-lagged relationships, the expression
levels of the causal genes at the previous time point, i.e., t0, act as confounders between the
current expression levels of the causal genes and their targets’ expression levels. As shown
in Figure 1, the time-lagged causal gene pairs are not linked directly. If the expression
levels of causal genes at previous time points are not considered, the association between
the current expression levels of the causal genes and their targets can be low or even in
the opposite direction. Throughout this paper, we refer to such confounders as natural
confounders (red rectangle in Figure 1). This problem was noted previously [10] but has
not been well addressed in the existing literature.

Gene i

Gene j

t0
(previous)

t1
(current)

t2
(subsequent)

......

......

...... ......

......

......

Δt
（changing）

Figure 1. Illustration of a time-lagged relationship across three time points. The gray rectangles
represent different individual cells. Multi-trace measurements of three cells (top) and one cell’s
continuous measurements (bottom) are shown. The colored circles represent measurable gene
expression levels, while the grey circles represent unmeasurable gene expression levels. The triangle
represents the changing expression level of gene j in ∆t. The blue and black arrows represent true
causal relationships between genes across time. The green bar represents the causality between the
current and changing expression levels. The red dotted line represents the relationship between the
current expression levels of genes, confounded by the previous expression level of gene i framed by
the red rectangle.

The second challenge is that unmeasured variables, also referred to as latent variables,
are common in scRNA-seq experiments. scRNA-seq can capture the expression levels from
2000 to 6000 genes in a cell, where many genes with low-expression levels may not be
captured. Additionally, the causal path from one gene to another often involves many
biological molecules which cannot be detected by scRNA-seq, such as proteins, metal ions,
and saccharides. Together with low-expression genes, these latent variables are common
for scRNA-seq data. However, many existing methods for causal inference assume the
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absence of latent variables, and as a result, may have difficulty in inferring causality from
scRNA-seq data.

Here, we propose CITL (causal inference with time-lagged information), a method
to infer the time-lagged causal relationships among genes in scRNA-seq data capable of
overcoming the two challenges mentioned above. CITL uses RNA velocity information
inferred from scRNA-seq data to estimate the changing expression levels of genes. By
assessing the conditional independence between the changing and current expression
levels, CITL reduces the interference by natural confounders. CITL can more accurately
infer time-lagged relationships than a commonly used cross-sectional causal inference
algorithm, the PC-stable algorithm [4] in simulations. Compared with [8], which also
uses RNA velocity to infer causality, CITL is more stable in simulation studies and may
better identify time-lagged causality from extensive real data. On real scRNA-seq data,
we show the concordance between the time-lagged causal relationships inferred by CITL
and regulatory pathways curated from the literature. Our results suggest that time-lagged
causality may represent the relationships involving multi-modal variables.

2. Results
2.1. The Time-Lagged Assumption Helps Overcome the First Challenge

CITL focuses on the causal relationship without natural confounders. As shown in
Figure 1, the natural confounder (the red rectangle) disrupts the relationships between the
current gene expression levels (red dotted line). However, the green bar, representing the
relationship between the current and changing gene expression levels, is not influenced
by the red rectangle. The changing expression level of gene j (the triangle in Figure 1),
unlike the current or subsequent gene expression levels, inherits information from the red
rectangle only through its cause, the current expression level of gene i. In this situation, the
red rectangle is no longer a natural confounder for the green bar. That means the “strong
correlation” described in the Time-lagged assumption will not be influenced by natural
confounders. Given this property, CITL assesses the dependency between the current
and changing gene expression levels to reduce the influence of natural confounders. The
following simulation results prove this. The elucidation of the simulation set-ups and the
approaches for comparison was in Section 4.

2.1.1. Simulation Results of Approach 0

The performance of Approach 0 largely depends on the threshold of Pearson’s cor-
relation coefficient. We tested its performance at 18 thresholds from 0.1 to 0.9 through
500 simulations for each setting. Figure 2 summarizes the performance of Approach 0 in
single-trace simulations (top row in Figure 2) and multi-trace simulations (bottom row in
Figure 2). In single-trace simulations, the precision increased, and the recall decreased,
as the threshold increased for both finding edges and determining causal directions. The
more stringent the threshold was, the more accurate Approach 0 was, but the fewer edges
Approach 0 could find. When the threshold was around 0.2, Approach 0 achieved the
highest F-measure in single-trace simulations. In contrast, the highest F-measure of Ap-
proach 0 in multi-trace simulations was achieved when the threshold was around 0.75. The
overall performance of Approach 0 in multi-trace simulations was much worse than that in
single-trace simulations. This suggests that multiple traces cause many false positives for
both finding edges and determining causal directions in Approach 0.
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Figure 2. Results of Approach 0 for single-trace simulations (top row) and multi-trace simulations
(bottom row) at different thresholds of “the strong correlation”.

2.1.2. Comparisons CITL with PC-Stable and Its Variant Approaches

The simulation results for the single-trace scenario for the other approaches are sum-
marized in Table 1. For finding edges, Approach 1 achieved the lowest precision, which
is expected as PC-stable applied to current expression levels will miss time-lagged causal
edges via single-trace data. The recall of Approach 2 was lower than others, which suggests
that the natural confounders in Approach 2 clearly influenced the discovery of casual edges.
Approach 3 and CITL derived the same UG, which performed the best in both recall and
F-measure, demonstrating that changing information is useful when identifying edges
between causal pairs from single-trace data. When determining the causal direction, CITL
performed the best, and Approach 1 had the worst performance. Both Approach 1 and
Approach 2 performed worse than Approach 3 in recall and F measure, indicating that
natural confounders influence the determination of causal directions. CITL was better
than Approach 3 for all three metrics, demonstrating that CITL was the most effective
in determining causal directions than the assumptions of PC-stable. As for multi-trace
simulations, we obtained similar results, as shown in Table S1. Additionally, CITL was
more stable than other approaches in simulations for different combinations of Cvariance and
Ivariance (Figure S3–S6). In summary, CITL had the best performance among the approaches
and was less sensitive to the type of data applied.

Table 1. Comparisons of different approaches based on PC-stable.

Edges Approach 1 Approach 2 Approach 3/CITL

Precision 0.651 (0.279) 0.975 (0.049) 0.974 (0.033)
Recall 0.434 (0.275) 0.262 (0.081) 0.597 (0.104)
F-measure 0.540 (0.264) 0.407 (0.099) 0.734 (0.081)

Directions Approach 1 Approach 2 Approach 3 CITL

Precision 0.201 (0.154) 0.838 (0.180) 0.573 (0.247) 0.859 (0.143)
Recall 0.137 (0.132) 0.224 (0.084) 0.334 (0.137) 0.512 (0.104)
F-measure 0.213 (0.124) 0.348 (0.113) 0.420 (0.169) 0.636 (0.108)
The average values from 500 single-trace simulations are shown with standard deviation values in parentheses.



Int. J. Mol. Sci. 2022, 23, 3348 5 of 16

As for the results for inferring instant causality, the type of simulation affected the de-
termination of directions. Compared with the results of single-trace simulations (Table S2),
the F-measure for determining the directions of Approach 1 decreased, while that of CITL
increased in multi-trace simulations (Table S3). This suggests that natural confounders,
the previous expression levels of causes, could have a larger effect on instant causal rela-
tionships for multi-trace data. In this case, CITL was still a good choice for identifying
instant causality.

2.1.3. Comparisons with Scribe under Different Simulation Settings

We also evaluated the performance of Scribe. In our 50-node simulations, Scribe ran
much slower (about 1470 s) than single-threaded CITL (less than 10 s). Consequently, we
only applied Scribe to one replicate of each simulation. The edges discovered by CITL were
compared with the top-RDI edges of the same number (Table 2). Besides, we evaluated
Scribe with the area under the receiver operating characteristic curve (AUROC) and the
area under the precision-recall curve (AUPR). Scribe needs an appropriate threshold of RDI
to discover causal edges in the single-trace simulation. In addition, Scribe and Approach 0
performed similarly in both single-trace and multi-trace simulations (Figure S1). Compared
with Scribe, CITL was more stable and correctly oriented more edges in the multi-trace
simulation.

We further compared Scribe with CITL through simulations conducted as previously
described by [8]. In the simulation, the noise in the differential equations was set to three
levels as mentioned in Section 4.3; this represented the randomness of the causal effect,
the temporal fluctuation, and random error. The results are shown in Table S4. Under the
low-noise and high-deviation setting, both Scribe and CITL performed well. Similarly, both
approaches were affected by the high-mean noise. Considering the results in Qiu’s and our
simulation set-up, CITL’s performance was more stable, and its runtime was much shorter.

Table 2. Comparisons between CITL and Scribe in single-trace and multi-trace simulations.

Single-Trace CITL Scribe (Top) Scribe (AUROC) Scribe (AUPR)

Discovered edges 21 21
0.984 0.864Real edges 21 21

Correct directions 21 21

Multi-trace CITL Scribe (top) Scribe (AUROC) Scribe (AUPR)

Discovered edges 22 22
0.820 0.534Real edges 22 22

Correct directions 22 18
sd: standard deviation.

2.1.4. CITL with Asynchronous Regulations

The asynchronous regulations are time-lagged regulations with different extrapolation
time steps. Therefore, the changing expression level of each asynchronous gene should
be its reaction velocity multiplied with its corresponding extrapolation time step if the
velocity is stable. However, the extrapolation time steps of all regulations are not available.
CITL used RNA velocity to estimate the changing expression levels of all genes, assuming
that the extrapolation time step used in RNA-velocity estimations is constant across cells
and genes (same as [8]). The assumption could lead to a bias estimation of the changing
expression levels of asynchronous genes. To evaluate the impact of asynchronous regula-
tions on CITL, we designed simulations where the amount and degree of asynchronous
regulations varied. As shown in Figure 3, in all 25 set-ups of asynchronous simulations,
none of the metrics were significantly different from those of the control. This shows
that the asynchronous regulations had less impact on the performance of CITL for both
discovering time-lagged relationships and determining causal directions. Under such a bias
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estimation of the changing gene expression, CITL maintains its ability to infer time-lagged
causal relationships.
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Figure 3. Comparisons of different set-ups of asynchronous simulations. (a–c) The results of discov-
ering causal pairs. (d–f) The results of determining causal directions. d indicates the range of the
random bias.

2.1.5. CITL with Latent Variables

The second challenge has less impact on causal orientation when adopting the Time-
lagged assumption. As shown in Figure 1, both the red dotted line and the green bar are
undirected. For the former, the relationship between the current gene expression levels
can be oriented only by PC-stable’s assumptions, including causal sufficiency assumption,
which requires that all variables are measured. However, the causal sufficiency assumption
is violated as described in the second challenge. For the latter, the relationship between
the current and changing gene expression levels can be oriented according to the Time-
lagged assumption. Since the current gene expression level precedes the changing gene
expression level in time, the temporal order of these two types of gene expression levels is
defined as the causal direction in the Time-lagged assumption. It enables CITL to orient
causal edges without causal sufficiency, which releases the disturbance derived from the
second challenge.

To evaluate the impact of latent variables on CITL to infer time-lagged causality, we
performed single-trace simulations by randomly removing 0%, 10%, 30%, and 50% of the
total genes. As illustrated in Figure 4a,b, as the number of latent variables increased, the
performance of all approaches reduced for both finding causal edges and determining
causal directions. This showed that latent variables had a negative effect on all approaches
as expected. CITL performed the best across all the simulation settings. We used ADD
to evaluate how well an approach inferred the causal directions in the presence of latent
variables. The distribution of ADD in the simulations is shown in Figure 4c. The ADD
of CITL concentrated at a higher level, while other approaches were not stable. This
shows that CITL is more robust than other approaches. Similar results were obtained for
multi-trace simulations (Figure S2).
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Figure 4. Results of single-trace simulation with latent variables. (a) The performance of discovering
edges of all approaches with different proportions of latent variables. (b) The performance of
determining directions of all approaches with different proportions of latent variables. (c) The ADD
of all approaches with different proportions of latent variables.

2.2. Applications to Real Data Sets
2.2.1. Evaluation of the Information in RNA Velocity for Inferring Causal Relationships

For real data sets, we estimated the changing expression levels and the subsequent
expression levels by RNA velocity. Before adopting the estimated Xcha to infer causality,
we investigated how much information it contained. First, we observed that using the
estimated Xcha to calculate the correlation led to different correlated pairs than when using
Xcur in data set 1 (Figure 5a) and data set 2 (Figure 5b). This suggests that the information
for the estimated Xcha was different from that of Xcur. A similar method recently developed
drew the same conclusion [11]. Second, we applied Approach 0 to both data sets, and the
resulting networks showed that the distributions of indegree and outdegree were very
different (Figure S7). In addition, the molecular function of low-outdegree genes was
associated with gene regulation (Figure S7). Taken together, the unique information of
the estimated Xcha suggests that CITL could use RNA velocity to estimate the changing
expression levels.
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Figure 5. The distribution of intersections as measured by different methods in two data sets.
We compared the most correlated genes derived from Xcur, Xcha, and Xsub. Pearson’s correlation
coefficient is used to describe three different correlations: (i) correlation between Xcur

i and Xcur
j

(denoted as cur_cur), (ii) correlation between Xcur
i and Xsub

j (denoted as cur_sub), and (iii) correlation

between Xcur
i and Xcha

j (denoted as cur_cha). For each gene, 100 genes with the largest (50 positive
and 50 negative) cur_cur, cur_sub, or cur_cha values were collected into three gene sets Scc, Scs, and
Sch, respectively. We recorded the number of genes in the intersections between the three sets. In
addition, we recorded the intersection between Scc and 100 randomly selected genes as controls.
(a) The distribution in data set 1. (b) The distribution in data set 2.

2.2.2. Causal Inference Using CITL on Real Data Sets

We applied CITL to data set 1 and data set 2 with 2508 and 878 time-lagged causal
pairs (TLPs) inferred, respectively. We also applied PC-stable on the data sets with current-
only expression data and compared the gene pairs inferred by PC-stable to TLPs. For
computational efficiency, the value of k for both CITL and PC-stable was equal to the square
root of the number of genes for each data set. A total of 3998 and 4459 pairs were inferred
by PC-stable from data set 1 and data set 2, respectively. In data set 1, only four gene pairs
were found by both approaches, and there was no overlap for data set 2. These results
suggest that CITL infers different types of causality from previous methods that only used
the current expression level of genes.

2.2.3. CITL Accurately Infer Time-Lagged Causal Pairs

Because we do not know the ground truth for time-lagged causality, we investigated
the biological relationships of TLPs to evaluate the performance of different methods.
Pathway Studio (http://www.pathwaystudio.com/ (accessed on 20 October 2020)) enables
searching interactions between molecules, cell processes, and diseases from the literature.
Almost any pair of two genes could be related, directly or indirectly, through Pathway
Studio. Each interaction is annotated by a sentence from the literature. Not all interactions
are regulatory, such as binding. We reviewed the annotation of every searched interaction
to find TLPs with regulatory interactions. For the regulatory interactions, we divided
them into two categories. The “PROT” type refers to interactions that only involve pro-
teins, such as increasing or reducing protein activity, co-activating or antagonizing, and
phosphorylating or dephosphorylating. The “TRSC” type refers to interactions relating to
proteins regulating the transcription of specific genes, including activation and repression.
Considering manually filtering interactions taking considerable time, we only investigated
the biological functions of a subset of the pairs.

In the following, we describe how we chose the subset of TLPs to consider. The
single-trajectory developmental cells in data set 2 make it easier to visualize time-lagged
relationships than multi-trajectory differentiating cells in data set 1. Therefore, we focus on
the TLPs in data set 2, where 37 transcription factors were involved in 68 TLPs. Transcrip-
tion factors (TFs) were taken from the TRRUST database, a repository of curated TF–target

http://www.pathwaystudio.com/
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relationships of human and mouse [12]. We investigated these 68 TLPs in Pathway Studio
and manually checked the interactions of each TLP.

All the 68 pairs had indirect relationships, forming paths with one or more intermedi-
ates. Most of the interactions among these paths were “non-regulatory”. We focused on the
regulatory paths that ended with a TRSC interaction, since the causality among genes’ tran-
scripts, rather than proteins, was of interest in scRNA-seq. In total, 14 TLPs with regulatory
relationships (rTLPs) and their regulatory paths are shown in Table 3. The interaction types
are listed from the left of the corresponding path to the right. CITL achieved an accuracy
of 0.93 (13/14) for correctly inferring the causal directions of rTLPs. The regulatory effect
(activation or repression) of 11 pairs was correctly described. Only one rTLP was assigned
an inconsistent direction with its path (the cur_cha of MAGED1—EOMES was −0.19).

Table 3. Detailed paths of the causal pairs with regulatory relationships.

rTLP Path cur_cur cur_cha cur_sub Type of Each Step

TCF7L2→ FTH1 TCF7L2→ RELA→ FTH1 −0.98 0.96 −0.98 PROT, TRSC
YBX1→ EPS8 YBX1→ NF-κ-B signaling→ EPS8 0.04 0.95 0.54 PROT, TRSC
NFIA 9 EIF4A2 NFIA 9 ERK pathways 9 PPARGC1A 9 EIF4A2 0.81 −0.98 0.81 PROT, TRSC, TRSC
SATB2 9 TUBB2B SATB2 9 MAPK7→ NEUROG2→ TUBB2B 0.71 −0.95 0.71 PROT, PROT, TRSC
VHL 9 ABCD2 VHL 9 WNT→ AMPK→ ABCD2 0.63 −0.58 0.51 PROT, PROT or TRSC, TRSC
VHL 9 PCDH9 VHL→ TP53 9 PCDH9 0.39 −0.88 −0.26 TRSC, TRSC
TSC22D1 9 PTPRD TSC22D1 9 MTOR 9 MYCN 9 PTPRD 0.03 −0.92 −0.94 PROT, PROT, TRSC
TSC22D1 9 ZBTB18 TSC22D1→ TGFB1 9 ASCL1→ ZBTB18 0.01 −0.84 −0.0031 PROT or TRSC, PROT, TRSC
MLLT3 9 FLRT3 MLLT3→ E2F1 9 WNT→ FLRT3 −0.19 −0.99 −0.65 PROT, PROT, TRSC
NFKB1→ HSPA8 NFKB1→MYB→ HSPA8 0.69 0.99 0.95 TRSC, TRSC
SFPQ 9 JUND SFPQ 9 PGR→ JUND −0.67 −0.96 −0.69 PROT, TRSC
HDAC2 9 HSP90AA1 HDAC2 9 MIR15A 9 HSP90AA1 −0.80 −1.00 −0.84 TRSC, TRSC
TSC22D1 9 KDM5B TSC22D1→ transforming growth factor→ KDM5B 0.40 −0.82 0.35 PROT, TRSC
EOMES→MAGED1 EOMES← ERK1/2←MAGED1 −0.03 0.97 0.29 TRSC, PROT

cur_cur: the Pearson’s correlation coefficient between the current expression levels of the cause and the target;
cur_cha: the Pearson’s correlation coefficient between the current expression level of the cause and the changing
expression level of the target; cur_sub: the Pearson’s correlation coefficient between the current expression level
of the cause and the subsequent expression level of the target. →: up-regulation. 9: down-regulation.

To evaluate the significance of the accuracy of CITL, we first investigate how likely it
is that a random gene will be the target of a TF. We randomly chose 11 TFs from the 37 TFs
and investigated their regulatory relationships with randomly selected genes. For each
TF, a randomly selected gene was assigned as its effect. Then, the functional connection
between the gene pair, referred to as randomly selected-and-direction-assigned pair (RAP),
was searched using Pathway Studio. Like the TLPs inferred by CITL, most RAPs did not
have regulatory relationship. To find a gene that had a regulatory relationship with each
TF, we searched 35 RAPs. In the 11 RAPs with regulatory relationships (rRAPs), only two
rRAPs’ assigned directions were consistent with their known causal directions. Therefore,
we speculate that, for a TF, there are more upstream genes than downstream ones after
excluding non-regulatory genes. We compared the accuracy of CITL to the accuracy of
random selection using Fisher’s exact test. The p-value of the test was 0.00024, suggesting
the excellent performance of CITL.

2.2.4. A Example of Time-Lagged Causal Pair

We highlight a time-lagged causal pair, “MLLT3→ FLRT3” in Figure 6. “MLLT3→
FLRT3” is a gene pair with a small negative cur_cur correlation (−0.19) and a large negative
cur_cha correlation (−0.99). Though the correlation between the current expression levels
was weak, this gene pair showed a strong negative correlation in terms of time-lagged
association. The inconsistency can be explained as follows. The decrease in FLRT3 in
stages 5 and 6 is due to the high expression level of MLLT3 in stages 3 and 4 (Figure 6c).
We further investigated whether this pair had a transcriptional causal relationship. MLLT3
participated in the activity of E2F1 protein [13], which could repress WNT signaling [14].
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WNT signaling could control the expression of FLRT3 [15]. In short, MLLT3 could repress
the expression of FLRT3, which is consistent with the result of CITL.

Figure 6. MLLT3→ FLRT3. (a) Scatter plot of the current expression levels of MLLT3 and FLRT3.
(b) Scatter plot of the current expression level of MLLT3 and the changing expression level of FLRT3.
(c) Box plots of the normalized current expression levels of MLLT3 and FLRT3 at eight stages, which
was identified by pre-defined markers.

2.2.5. CITL Overcomes the Limitations of scRNA-seq

Indirect regulations involved more biological reactions than direct regulations, making
it more reasonable to consider time-lagged relationships. Due to technical limitations, some
intermediates in the indirect regulations were difficult to detect by scRNA-seq. Therefore,
researchers often have to deal with indirect relationships. Here, the only path in which
all genes were detected was “YBX1→ NF-κ-B→ EPS8”. The protein encoded by YBX1
can activate NF-κ-B signaling [16], which then induces the transcription of EPS8 [17]. The
cur_cur correlations between “YBX1–NFKB1”, “NFKB1–EPS8”, and “YBX1–EPS8” were
−0.72, −0.70, and 0.04, respectively. None of these could explain the relationship between
YBX1 and EPS8 in the literature. On the other hand, the cur_cha correlation between
“YBX1–EPS8” was 0.95, which is consistent with the relationship between the genes. The
results demonstrates that indirect relationships can be time-lagged relationships and that
CITL is a better way of discovering these relationships.

Furthermore, some intermediates were not RNA at all. As shown in Table 3, most
paths involved PROT steps. The best way to describe “YBX1→ EPS8” would be through
the expression level of YBX1, the protein activity of NF-κ-B and the expression level of
EPS8. Although many single-cell multi-omics technologies have been developed, none of
these can ensure that all of the necessary molecules in each cell are quantified. However,
CITL accurately inferred indirect relationships without any protein-level information.
Consequently, the CITL, discovering time-lagged relationships, was more practical than
previous methods which focused on instant interactions in scRNA-seq data.

3. Discussion

The changing expression levels of genes are crucial to CITL. Thus, the approach
used to estimate these levels can have major impact on the results. There are two main
challenges to correctly estimate the changing expression levels with RNA velocity. First,
scRNA-seq technologies have limitations on quantifying transcripts. The quality of raw
data is of great importance to results. Second, there is no gold standard to evaluate the
estimated changing expression levels. Recently, another method was developed to infer
RNA velocity [18]. The estimation of RNA velocity depends on the method to use and its
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tuning parameters [18,19]. The more accurate the estimation of the changing expression
levels of genes are, the more reliable CITL will be. Despite the two obstacles, RNA velocity
has proved its usefulness in estimating the transcriptional changes of genes in many
applications [20–22]. Our simulations with multiple combinations of the variances and
asynchronous regulations show the robustness of CITL. Additionally, Qiu et al. investigated
three approaches to derive single-cell time-series data and concluded that RNA velocity
was the most appropriate way to estimate real time-series data through simulations [8].

Both Scribe and CITL used RNV velocity to infer causal gene regulatory networks.
There are two reasons that CITL is more applicable for the task. First, single-cell samples
in a real data set are likely from different populations or developmental stages, forming
multi-trace data. By using the changing gene expression levels rather than the subsequent,
CITL alleviates the influence of natural confounders. This could be why CITL is more
stable than Scribe in the multi-trace simulations, which is practical in real single-cell data.
Second, thousands of genes form a complicated network in a cell. CITL runs dozens of
times faster than Scribe so that it is capable of searching the complete network.

A drawback of CITL is that it cannot distinguish whether the type of a relationship
is time-lagged or instant. In biology, the relationships between genes can be a mixture of
time-lagged and instant relationships. If we can confirm the interactional type of each gene
pair and adapt CITL to the type, the overall accuracy may be greatly improved.

4. Materials and Methods
4.1. Causal Inference with Time-Lagged Information (CITL)

We make the following assumption for our causal inference:

Assumption 1. Time-lagged assumption: if the current expression level of gene i Xcur
i is strongly

correlated with the changing expression level of gene j Xcha
j , then gene i is inferred to be the cause of

gene j in a time-lagged manner.

A strong correlation means that Xcur
i and Xcur

j are dependent on other variables, which
can be assessed by the conditional independence (CI test). With this assumption, the
Xcha of a gene is not related to its Xcur value but is correlated with the Xcur of its causal
genes. Therefore, the Xpre

i , the natural confounder between Xcur
i and Xcur

j , does not directly

influence Xcha
j . Xpre

i can influence Xcha
j only through Xcur

i , which means it is not a natural

confounder for the correlation between Xcur
i and Xcha

j .
RNA velocity [19] offers a way to estimate gene expression changes based on spliced

mRNA and unspliced RNA information. CITL uses RNA velocity for a unit of time as
the changing expression level Xcha and the extrapolated expression levels in a unit of
time as the subsequent expression level Xsub. Note that we use a fixed unit time in this
manuscript as an approximation, although the length of time that different genes exert
effects on other genes may differ. For consistency, we used the same parameters described
in [19] to calculate RNA velocity.

To infer time-lagged causal relationships, CITL first constructs an undirected graph
(UG) through both Xcur and Xcha. Each node in the UG represents the Xcur or Xcha of a
gene. Each edge in the UG represents the dependency between the Xcur (or Xcha) of a
gene and that of another gene. The dependency is assessed by CI test conditional on at
most k (≤ the number of nodes n) genes. For the simulations and applications in this
article, the k was set at the square root of n, and the type one error (α) of the CI test was
set at 0.05. CITL then focuses on the edges linking the Xcur of some genes to the Xcha of
others. If the Xcur of a gene is linked to the Xcha of another in the UG, the former gene
is assigned as the cause of the latter gene. We note that the Xcur (or Xcha) of some genes
can be linked to each other. We assume that these connections do not represent time-
lagged relationships. Thus, they are not the focus of this work. We provide an R package
(CITL) at https://github.com/wJDKnight/CITL-Rpackage (accessed on 30 November 2021)

https://github.com/wJDKnight/CITL-Rpackage
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and an open-source command-line tool of CITL at https://github.com/wJDKnight/CITL
(accessed on 30 December 2021). Tutorials about data preparation and using CITL are also
provided in the repositories.

4.2. Comparisons with Other Methods

We compared the performance of CITL versus a commonly used causal Bayesian
network method, PC-stable [4], and a recently published causal inference method for
scRNA-seq data [8], Scribe. PC-stable first constructs a UG as well. Therefore, CITL adopts
the same strategy to construct the UG by using the bnlearn package [23]. The difference
is that after the UG was built, PC-stable used probabilistic dependency to determine the
causal direction under three assumptions: Causal Sufficiency, Causal Markov Assumption,
and Faithfulness [2,24]. We compare the performance of CITL with the PC-stable through
simulations under different approaches of analyzing scRNA-seq data, as detailed in the
following. The parameters (k and α) of these approaches and CITL for constructing the UG
are identical.

• Approach 1: PC-stable, using only Xcur. This is the simple adoption of the causal
inference methods to scRNA-seq data. As discussed above, it will not be able to infer
time-lagged relationships. We include this approach to assess the lack of power to
identify time-lagged relationships with only Xcur.

• Approach 2: PC-stable, using Xcur and Xsub, where Xsub is the extrapolated expression
levels at the subsequent time point. For this approach, PC-stable is applied to time-
lagged data. However, natural confounders may still exist between Xcur and Xsub.
Consequently, we consider this scenario to assess the effect of natural confounders on
causal inference.

• Approach 3: PC-stable, using Xcur and Xcha but without the Time-lagged assumption.
This approach infers causality by PC-stable itself based on three assumptions [4]. We
include this approach to investigate the usefulness of the Time-Lagged assumption.

We note that any method which can identify a strong correlation between Xcur and Xcha

may be suitable for the proposed framework. In addition to the above three approaches, we
also consider another approach, Approach 0, which is the simplest version of the proposed
framework using Pearson’s correlation coefficient to discover a strong correlation between
Xcur and Xcha. If the absolute value of Pearson’s correlation coefficient between Xcur

i and
Xcha

j is above a threshold, we infer gene i as the cause of gene j as baseline prediction.
We also consider a recently published causal inference method for scRNA-seq data [8],

Scribe. It uses restricted directed information (RDI) to evaluate the causal effect of the
current expression levels on the subsequent expression levels. Similar to Approach 2, Scribe
assumes that if the RDI of Xcur

i and Xsub
j is higher than a threshold, gene i is the cause of j.

The default values of the parameters of Scribe were used in simulation studies.

4.3. Simulation

Some experiments sequence cells at one time point while others sequence cells at
multiple time points. We refer to the former as single-trace data and the latter as multi-
trace data. We considered both scenarios in our simulations. For single-trace data, we
simulated 3000 cells. For multi-trace data, we simulated from three traces, with each trace
having 1000 cells. We carried out 500 simulations for each set-up. For each simulation, we
randomly generated a causal graph Gtrue that contained 50 nodes (genes) and 50 directed
edges on average. The probability of an edge between nodes was 4.1% (50 edges in total),
and its direction was randomly assigned. Time-lagged relationships were simulated in the
following manner:

Xcur
i = f1(Xpre

i ) + f2(causalpre(Xi)) + ecur

Xsub
i = f1(Xcur

i ) + f2(causalcur(Xi)) + esub

Xcha
i = Xsub

i − Xcur
i

(1)

https://github.com/wJDKnight/CITL
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For each cell, we simulated four values related to each of the 50 genes’ expression
levels, including previous Xpre

i , current Xcur
i , subsequent Xsub

i , and changing Xcha
i . Based

on the collected values of Xpre
i and the causal graph, Xcur

i , Xsub
i , and Xcha

i were generated
through Equation (1) using causalpre(Xi) (the previous values of the causes of Xi) and
causalcur(Xi) (the current values of the causes of Xi). ecur and esub represent standard
Gaussian noise N(0, 1). They are the primary sources of variation in our simulation,
referred to as Cvariance.

Here, we used linear functions to describe time-lagged relationships. The coefficient
of Xpre or Xcur in the linear function f1() was 0.8, simulating the transcripts of genes that
spontaneously degrade over time. The coefficients of all causal genes in f2() were set to
1, assuming all causal genes had the same effect on their effector genes. In addition, we
assumed that Xpre

i did not interact with causalpre(Xi), meaning there was no feedback,
and we could add f1(Xpre

i ) and f2(causalpre(Xi)).
For single-trace data, Xpre

i was assumed to follow a log-normal distribution with
a constant mean and standard deviation (ln(X) ∼ N(0, 0.04)). We chose a log-normal
distribution because RNA-sequencing data are often skewed rather than having a normal
distribution. For every run of the multi-trace simulation, we simulated three separate sets
of data (trace). In each trace, Xpre

i followed a log-normal distribution (ln(X) ∼ N(µ, 0.04))
with its mean (µ) randomly drawn from a uniform distribution between 0 and 2. It is
the second source of variation in our simulation, referred to as Ivariance. Then, the three
traces were merged into one data set, taking into no account of the trace information. For
simulations considering latent variables, we randomly removed a certain proportion of the
nodes (genes) after data generation.

In our simulations, we also investigated whether CITL can infer non-time-lagged
relationships, referred to as instant causal relationships. This assumes that the current ex-
pression level of a gene results from its previous expression level and the current expression
level of its causes. These data were generated in a similar manner as the time-lagged except
for the method used to generate Xcur

i and Xsub
i . For instant simulation, we considered

Equation (2), where causalsub(Xi) is the subsequent value of the causes of Xi.

Xcur
i = f1(Xpre

i ) + f2(causalcur(Xi)) + ecur

Xsub
i = f1(Xcur

i ) + f2(causalsub(Xi)) + esub
(2)

To equally benchmark CITL against Scribe, we tested their performance in simulations
under both Qiu’s [8] and our set-ups. Qiu’s simulation was based on a manual-curated
network of neurogenesis with 12 genes forming 15 directed pairs and two bidirectional
pairs. The data were simulated according to the differential equations of these genes at
three noise levels. The noise terms followed normal distributions of N(0, 0.01), N(0, 1),
and N(5, 0.01) in the low-noise, high-deviation, and high-mean simulation, respectively.

Different gene regulations could have different reaction times in real data sets, resulting
in asynchronous changing expression levels of genes. Therefore, we tested the robustness
of CITL with the simulations where not all genes were synchronous. For each asynchronous
gene i, we changed its real changing expression level (Xcha

i ) to an asynchronous changing

expression level (Xcha−asy
i ) by

Xcha−asy
i = ai ∗ Xcha

i , i ∈ {asynchronous genes} (3)

ai is the random bias value from (1− d) to (1 + d). The changing expression levels of
asynchronous genes were replaced with Xcha−asy in CITL. We tested different proportions
of asynchronous genes (0.2, 0.4, 0.6, 0.8, 1.0) and different d (0.1, 0.3, 0.5, 0.7, and 0.9) to
evaluate the influence of varying degrees of desynchronization on CITL. We carried out
500 single-trace simulations for each set-up. In all simulations, the k of the CI test was equal
to the square root of the number of genes n.
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4.4. Evaluation

We used precision, recall, and F-measure for the inferred node adjacency versus the
data-generating model as the primary evaluation measures to compare the performances
of different approaches. To compute these metrics, we first calculated three basic statistics:
true positives (TP), false positives (FP), and false negatives (FN) that are related to inferring
edges. TP is the number of adjacencies in both the output graph Goutput from an analytical
approach and the true graph Gtrue. FP represents the number of adjacencies in Goutput but
not in Gtrue. FN is the number of adjacencies in Gtrue but not in Goutput. Precision is the ratio
TP/(TP+FP), recall is the ratio TP/(TP + FN), and F-measure is the ratio 2 × precision ×
recall/(precision + recall). For evaluating the directions, TPdirection represented the number
of directed edges in both Goutput and Gtrue with consistent directions. FP represents the
number of inconsistent edges in Goutput compared with Gtrue, including absent, undirected,
and reverse. FN represents the number of edges in Gtrue but not correctly directed in Goutput.
These three metrics have been used in many studies [25–29]. In addition, we used the
ability of determining directions (ADD) to evaluate how well a method was able to define
directions given true causal edges. ADD was calculated by TPdirection/TPedge. Receiver
operating characteristic (ROC) [30,31] and precision-recall (PR) [32] curves were also used
to evaluate Scribe and Approach 0. However, CITL is unsuitable for ROC or PR curve
evaluation because it outputs a binary result rather than a continuous score for each edge.

4.5. Real Data Sets

We considered two data sets. Data set 1 was from mouse P0 and P5 dentate gyrus [33],
and RNA velocity information was estimated with the same parameters as the example
dentate gyrus in Velocyto (http://velocyto.org/ (accessed on 23 May 2018)). There were
more than 18,000 cells and an average of 2160 genes for each cell in data set 1 after prepro-
cessing. Data set 2 was the human week ten fetal forebrain data set in Velocyto, containing
1720 cells and an average of 1488 genes for each cell. According to La Manno et al. (2018),
the forebrain, as identified by pre-defined markers, can be divided into eight developing
stages (0–7). The stage information was only exploited in data visualization.

5. Conclusions

In this article, we propose CITL to infer the time-lagged causality of genes using
scRNA-seq data. Specifically, we adopted the changing information of genes estimated
by RNA velocity in our approach. We further present the superior performance of CITL
against other methods in simulations under different set-ups. The proposed approach CITL
achieves promising results on a human fetal forebrain scRNA-seq data set, which accurately
provides time-lagged causal gene pairs curated by published articles. We note that most
methods for analyzing scRNA-seq data did not consider the relationships between genes
that could be time-lagged. The results of simulations and real data sets from this paper
suggest that we cannot ignore such common relationships. Therefore, we foresee that CITL
can provide more insights that may help to guide future gene regulatory research.
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