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Abstract: One of the major mechanisms of drug-induced liver injury includes mitochondrial pertur-
bation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in
most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism.
Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such
as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as
drugs. Despite the fact that many methods have been developed for studying mitochondrial function,
there is still a need for advanced and integrative models and approaches more closely resembling
liver physiology, which would take into account predisposing factors. This could reduce the costs of
drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests
and, especially, prevent serious complications observed in clinical settings.
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1. Introduction

Drug toxicity is a ubiquitous clinical problem that can have far-reaching consequences,
from the drug development process to the healthcare system, with huge costs and major
implications on patient safety, which is reflected by increased morbidity and mortality [1].
The liver is one of the most affected organs in drug toxicity, as seen both during drug
development and pre-clinical safety studies, and especially following marketing [1–3].
Drug-induced liver injury (DILI), under the most severe circumstances, can lead to the
need for liver transplantation and even the patient’s death [4].

Even though there are various mechanisms responsible for DILI, some of which
are not yet fully investigated or known, one process that is often present and described
for numerous drugs is mitochondrial damage and dysfunction [5,6]. A drug can have
that effect directly or indirectly, exerted by its intermediate metabolism products [6,7].
Hepatotoxicity linked to mitochondrial dysfunction can be due to damage to mitochondria
and their components, leading to a wide range of consequences and injury types to the
liver. Typically, altered energy production, excessive oxidative stress, the release of pro-
apoptotic signals triggering cell death, and altered lipid metabolism leading to triglyceride
accumulation (steatosis) and steatohepatitis are observed [8]. Given the importance of DILI
and drug-induced mitochondrial dysfunction, it is essential that these adverse reactions
are detected early on during the drug development process.

In the present review, we first describe briefly the main mitochondrial functions and
their relevance for the liver. Next, we review the main mechanisms of liver injury with
a particular focus on the process of drug-induced mitochondrial dysfunction. We also
discuss some key factors influencing DILI and mitochondria-related hepatotoxicity, as
well as the most common experimental tools and methods used to evaluate mitochondrial
dysfunction. Finally, we conclude with a discussion regarding future perspectives and
the need for novel and integrative approaches for predicting drug-induced mitochondrial
injury and hepatotoxicity.
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2. Mitochondria and the Liver
2.1. Mitochondrial Functions

Mitochondria are organelles of bacterial origin, composed of two membranes sur-
rounding the matrix containing enzymes and mitochondrial DNA (mtDNA). They are
indispensable for the normal function of eukaryotic cells, as evidenced by their role in
energy production, the regulation of cellular metabolism, and apoptosis (Figure 1) [9–12].
Due to the presence of major complex enzymatic systems and via the tricarboxylic acid
(TCA) cycle and the electron transport chain (ETC), mitochondria are the main site of
adenosine triphosphate (ATP), and therefore energy production, in healthy cells, starting
from the oxidation of sugars, fatty acids, and amino acids [13]. Furthermore, mitochondria
participate in the biosynthetic pathways of glucose, amino acids, fatty acids, cholesterol,
and heme, but also in calcium homeostasis and the disposal and re-purposing of cellular
waste, such as ammonia, hydrogen disulfide (H2S), and reactive oxygen species (ROS),
through various pathways [11,14]. Mitochondria also regulate programmed cell death by
participating in the intrinsic pathway of apoptosis, which requires mitochondrial outer
membrane polarization (MOMP), cytochrome c release, and subsequent caspase 3 and
7 activation [12]. Various mitochondrial proteins possess pro-apoptotic or antiapoptotic
potential, such as the B cell lymphoma 2 (Bcl-2) family of proteins, and can directly lead to
apoptosis upon specific stimuli, including growth factor withdrawal, mitotic arrest, and
DNA damage [12]. Overall, proper mitochondrial functioning is of utmost importance and
mitochondrial defects or alterations in their activity can evoke various diseases, such as
metabolic and neurodegenerative disorders [15].
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2.2. Liver Metabolic Functions and Mitochondrial Activity in Hepatocytes

The liver is the most important organ in the body when it comes to maintaining energy
homeostasis, regulating the storage and metabolism of nutrients, and blood detoxification.

Biorender.com


Int. J. Mol. Sci. 2022, 23, 3315 3 of 37

It is an extremely metabolically active organ and one of the richest organs in terms of
the number of mitochondria. Hepatocytes, the most abundant cell type of the liver, are
highly specialized in various metabolic activities, both anabolic, such as gluconeogenesis,
lipogenesis, and glutaminogenesis, as well as catabolic, including glycolysis, lipolysis, and
ureagenesis (Figure 2). Mitochondria play key roles in each of these biochemical events [16].
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2.2.1. Gluconeogenesis

Mitochondrial enzymes are responsible for gluconeogenesis upon the prolonged fast-
ing and depletion of glycogen stores starting from precursors, such as lactate, glycerol,
and amino acids [17]. Lactate is oxidized to pyruvate by lactate dehydrogenase (LDH),
which is transported into mitochondria, where it becomes transformed into oxaloacetate
by pyruvate carboxylase. Oxaloacetate is reduced to malate in a reaction catalyzed by
malate dehydrogenase and exported into the cytoplasm, where it is converted to phospho-
enolpyruvate by cytoplasmic phosphoenolpyruvate carboxykinase [18]. Glucogenic amino
acids are first converted to α-ketoacids via deamination reactions and further to precur-
sors of gluconeogenesis, such as pyruvate and oxaloacetate, while glycerol is converted
to glycerate-3 phosphate, serving as a precursor of gluconeogenesis. Phosphoenolpyru-
vate and glycerate-3 phosphate are subsequently metabolized to glucose-6-phosphate and,
finally, glucose [17].

2.2.2. De Novo Lipogenesis

In addition to gluconeogenesis, mitochondria are also key players in the synthesis of
fatty acids in the process known as de novo lipogenesis. The starting metabolite in this
process is acetyl coenzyme A (CoA) formed in the TCA cycle when there is an excess of the
main nutrients, glucose, and amino acids as well as alcohol [19]. The excess of synthesized
acetyl-CoA is transported to the cytoplasm in the form of citrate, where the synthesis
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of fatty acids is completed. Citrate is first transformed into acetyl-CoA by ATP-citrate
lyase, which in the following two steps is converted first into malonyl-CoA by acetyl-CoA
carboxylase and finally into palmitate by fatty acid synthase [17]. In the final step, palmitate
is converted to fatty acids by stearoyl-CoA desaturase 1 [17]. In the liver, the expression of
acetyl-CoA carboxylase and fatty acid synthase is regulated by glucose and insulin through
the transcription factors carbohydrate-response element-binding protein (ChREBP) and
sterol regulatory element-binding protein 1c (SREBP-1c) [20].

2.2.3. Urea Cycle

Like for gluconeogenesis and lipogenesis, hepatocytes are equipped with the neces-
sary enzymatic machinery to synthesize urea from ammonia in the urea cycle, which also
involves mitochondria [19]. The first steps of the urea cycle take place in mitochondria and
include the conversion of ammonia to carbamoyl phosphate catalyzed by carbamoyl phos-
phate synthase-1 and the subsequent formation of citrulline in a reaction of the condensation
of carbamoyl phosphate and ornithine catalyzed by ornithine carbamoyltransferase [21].
Citrulline is then transported into the cytoplasm, where together with aspartate, argini-
nosuccinate is formed, facilitated by argininosuccinate synthase, which is transformed
into fumarate and arginine by argininosuccinate lyase, and that finally produces ornithine
and urea [21].

2.2.4. Lipolysis

Following lipolysis, in which lipid triglycerides are hydrolyzed into glycerol and fatty
acids, the latter are further metabolized in a catabolic process called β-oxidation, which
takes place in hepatic mitochondria [17]. This process occurs either directly after lipolysis
or following initial peroxisomal β-oxidation that shortens very-long-chain and polyunsatu-
rated fatty acids before they reach the mitochondria [22]. Short-chain and medium-chain
fatty acids can freely enter mitochondria, whereas long-chain fatty acids need to be trans-
formed into acyl-carnitine by carnitine palmitoyltransferase 1 (CPT1) and transported into
the mitochondrial matrix via acyl-carnitine translocase [19]. Once inside mitochondria
in the form of acyl-carnitine intermediates, long-chain fatty acids are transformed back
into acyl-CoA by carnitine palmitoyltransferase 2, which separates the acyl group from
carnitine, whereas short-chain and medium-chain fatty acids are activated to acyl-CoA
molecules by specific acyl-CoA synthases. Acyl-CoA derivatives then enter the β-oxidation
cycle, consisting of four reactions of dehydrogenation, hydration, oxidation, and thiolysis,
in each of which it is shortened by two carbons with the generation of acetyl-CoA moi-
eties until the complete oxidation of the original acyl-CoA derivative [17,19]. Acetyl-CoA
moieties released during β-oxidation are ready to be used either in the TCA cycle or for
the synthesis of ketone bodies (acetylacetate, β-hydroxybutyrate, and acetone), which are
oxidized for energy purposes in peripheral tissues, including the brain, kidney, and mus-
cle. In this way, hepatic mitochondrial β-oxidation and ketogenesis contribute to energy
homeostasis [19,23]. Peroxisome proliferator-activated receptor alpha (PPARα), a nuclear
receptor family member activated by long-chain fatty acids and phosphatidylcholines, is a
major regulator of fatty acid β-oxidation in mitochondria and peroxisomes [24,25].

2.2.5. One-Carbon Metabolism

Hepatic mitochondria also possess a complete set of enzymes needed for one-carbon
(1C) metabolism, which includes both the methionine and folate cycles and that serves
to generate methyl groups (one-carbon units) used for biosynthetic processes [26], in
particular, the synthesis of purine and thymidine, polyamines amino acids, phospholipids,
and creatinine, as well as for the methylation reactions of DNA, RNA, and proteins [27].
Dietary folic acid serves as a universal 1C acceptor. It is converted first to dihydrofolate and
then to tetrahydrofolate in the enzymatic reactions catalyzed by dihydrofolate reductase,
which then accepts 1C units derived from amino acids, including serine and glycine [28].
This process leads to the formation of methylene-tetrahydrofolate, which donates its 1C unit
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to thymidylate synthesis [28]. Methylene-tetrahydrofolate can also be converted to methyl-
tetrahydrofolate by methylenetetrahydrofolate reductase, which participates in methionine
recycling, or it can be converted to methenyl-tetrahydrofolate and subsequently to formyl-
tetrahydrofolate by methylenetetrahydrofolate dehydrogenase 1/2/1L; MTHFD1/2/1L,
which supplies its 1C unit for purine synthesis [28].

2.3. Oxidative Phosphorylation

One of the key functions of mitochondria is oxidative phosphorylation (OXPHOS), by
which ATP, the principal source of cell energy, is generated through the ETC [29]. Reducing
equivalents nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide
(FADH2), produced in the TCA cycle, are necessary to transfer electrons to the ETC, which
takes place in the inner mitochondrial membrane, where enzymatic multiprotein complexes
participating in the process are located (complexes I through V) [30]. NADH and FADH2
transfer electrons to complex I and complex II, respectively, from which they are transferred
to ubiquinone (Q) and further to complex III [30]. From complex III, electrons are passed to
cytochrome c, which reduces oxygen into water in the presence of protons [30]. During this
sequential transfer of electrons through various complexes, protons are transferred to the
intermembrane space of the mitochondria, inducing the generation of a large mitochondrial
membrane potential (∆ψm) [8]. Finally, the complex V (ATP synthase) is responsible for
pumping the protons back into the mitochondrial matrix via the F0 subunit, thus releasing
the energy of ∆ψm, which is used by the F1 subunit of ATP synthase to catalyze the
phosphorylation of adenosine diphosphate (ADP) into ATP [30].

It is important to note that the mitochondrial ETC also underlies the production of
ROS [31]. This is mainly due to the fact that some electrons escape from the ETC and react
with oxygen directly, causing its mono-electronic reduction, resulting in the formation of
the superoxide anion radical (O2

−) [32]. In the presence of such electron leakage, O2
−

is usually produced by complexes I and III [31]. Under physiological conditions, O2
− is

readily transmuted to hydrogen peroxide (H2O2) in a reaction catalyzed by mitochondrial
manganese superoxide dismutase (MnSOD), which is further transformed into water by
mitochondrial glutathione peroxidase (GPx) in the presence of reduced glutathione (GSH).
The non-detoxified H2O2, in normal and acute conditions, can diffuse into the cytoplasm,
where it acts as a second messenger and can modulate gene transcription, induce hypoxia-
inducible factor-1 (HIF-1) stabilization, and therefore have a protective effect on hepatocytes
regarding oxidative damage and apoptosis [33–36]. On the other hand, in chronic liver
injury, this can lead to steatosis, fibrosis, and hepatocellular carcinoma progression [37–39].
Moreover, H2O2 can serve as a substrate in the Fenton reaction in the presence of Fe2+

and can be transformed into a hydroxyl radical (HO·), which can cause lipid peroxidation
as well as protein and DNA oxidation [19]. In conditions of extensive stress for the liver,
such as upon chronic ethanol consumption, fasting, or malnutrition, mitochondrial GSH
levels can be depleted, thus compromising the H2O2 detoxification process and favoring its
accumulation [8]. Furthermore, in the case of the impaired flow of electrons in the ETC, as
well as in the presence of excessive ETC substrate supply and electron overload without the
dissipation of ∆ψm by the ATP synthase, the increased production of ROS can occur [19,40].
Constantly increased levels of ROS can negatively affect mitochondrial proteins involved in
OXPHOS and mtDNA, hence contributing to mitochondrial dysfunction, electron leakage
from the ETC, and further ROS production and oxidative damage [41,42]. Of note, mtDNA
is extremely sensitive to oxidative injury due to a lack of all necessary mtDNA repair
enzymes, the absence of histones, and the proximity to the inner mitochondrial membrane,
which is the main source of ROS [8].

2.4. Mitochondrial Permeability Transition Pore/Mitochondrial Outer Membrane Polarization and
Cell Death

Mitochondrial membrane integrity is of critical importance for maintaining proper
mitochondrial function. However, in certain conditions, mitochondrial membrane perme-
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ability can be disrupted. This can be due to the opening of the mitochondrial permeability
transition pore (MPTP) or involving the peripheral benzodiazepine receptor (PBR), the
voltage-dependent anion channel, adenine nucleotide translocase, and cyclophilin D [43].
Such disruptions of MPTP lead to alterations in mitochondrial function and structure, and
to cell death [43]. MPTP opening can significantly affect ATP synthesis, ATP levels, and
intracellular calcium levels resulting in necrosis [44]. In addition, MPTP opening can cause
mitochondria to swell and membrane rupture, allowing the release of pro-apoptotic factors
and apoptosis initiation [12]. Furthermore, mitochondria can also mediate the intrinsic
pathway of apoptosis via MOMP and pro-apoptotic members of the Bcl-2 family of proteins,
including Bax and Bak [12]. In the presence of stress stimuli, such as DNA damage and a
lack of mitogenic signals, MOMP occurs followed by the release of various factors from
the mitochondrial intermembrane space, which triggers apoptosis [12]. Once released in
the cytoplasm, cytochrome c binds the adaptor molecule apoptotic peptidase activating
factor 1 (APAF1), forming the apoptosome, which subsequently activates the initiator
caspase 9 via proteolytic cleavage [12,45]. Finally, caspase 9 cleaves and activates the
executioner caspases 3 and 7 responsible for apoptosis [12]. Under pro-apoptotic stimuli,
Bax and Bak are activated and homodimerize to form oligomers that can form lipidic pores
in the outer mitochondrial membrane followed by the release of soluble intermembrane
space proteins, such as cytochrome c, Smac, and Omi [12,46,47]. These proteins can block
the X-linked inhibitor of apoptosis protein (XIAP), thereby facilitating apoptosis. When
Bax/Bak-induced pores expand over time, they create macropores that allow the extrusion
of the inner mitochondrial membrane through the outer mitochondrial membrane, and the
release of mtDNA in the cytoplasm upon its rupture [12]. Released mtDNA is responsible
for triggering various innate immune and pro-inflammatory responses, including the type
I interferon response [48]. The extrinsic pathway of apoptosis converges into the intrin-
sic one, specifically where caspase 8 cleaves Bid, a pro-apoptotic BH3-only Bcl-2 family
member, generating tBid that subsequently induces MOMP [12].

3. Mechanisms of Liver Injury

Liver injury is manifested as morphological and functional damage that can be caused
by various biological and chemical agents. Many of those harmful agents are easily
accessible to humans, being the products of food, pharmaceutical, and chemical industries,
but also because they can be found in nature as products of animal, plant, fungal or
bacterial metabolism, or be present in the environment as industrial waste products and
pollutants [49]. There are many factors influencing the type and extent of toxin-mediated
liver injury. These include the physicochemical characteristics of the toxic agent, the
mechanisms of toxicity, the nature of exposure, the efficacy of hepatocellular detoxification
systems, genetic polymorphisms affecting metabolic and transport pathways, and various
(patho)physiological conditions [49,50]. All these factors can impair liver function or
increase susceptibility to damage [49]. In severe cases and conditions where the exposure to
a hepatotoxin is not interrupted, extensive damage leading to liver failure can occur. Liver
damage can result either from direct insult to the hepatocytes or from damage to other
liver cell types, including stellate cells, Kupffer cells, sinusoidal epithelial cells, and bile
canalicular cells, which can indirectly affect hepatocytes or cause their injury [51]. There
are different types of liver damage, in particular cholestatic and hepatocellular insults, as
well as their combinations, all of which involve different mechanisms [49].

3.1. Cholestatic Injury

Cholestatic injury relates to the impairment of bile flow or secretion. Cholestasis is
commonly caused by drugs or their metabolites following the inhibition of hepatobiliary
transporter systems necessary for bile formation and secretion [52]. This leads to increased
concentrations of noxious bile acids [53]. The main mechanism of bile acid-induced hepato-
toxicity is hepatocellular necrosis [54,55]. Moreover, at the critical micellar concentration,
bile acids act as detergents, causing plasma membrane damage, thus inducing hepato-
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cyte injury [56]. Cholestasis is clinically diagnosed based on increased levels of bilirubin,
alkaline phosphatase (ALP), and gamma-glutamyl transpeptidase (GGT) [49].

3.2. Hepatocellular Injury

Hepatocellular injury can occur through various pathways, such as direct, immune,
metabolism-related, and mitochondria-mediated toxicity [57].

3.2.1. Direct Hepatotoxicity

Direct hepatotoxicity is usually attributable to apoptosis or necrosis as the main mech-
anisms [53]. Apoptosis can occur via the extrinsic pathway triggered by the activation
of death receptors, such as Fas, tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) and tumor necrosis factor receptor 1 (TNFR1), and the intrinsic mitochondrial
pathway, activated by intracellular perturbations, such as DNA damage, lysosomal per-
meabilization, endoplasmic reticulum stress, oxidative damage and increased levels of
calcium [44]. Even though apoptosis is a tightly controlled and programmed cell death
form causing no harm to healthy cells, it can lead to liver injury through excessive inflam-
mation [58]. On the other hand, during necrosis, usually triggered by ATP depletion or
other massive noxious stimuli, there is an uncontrolled cell swelling and rupture with
the subsequent release of endogenous danger-associated molecular patterns (DAMPs)
that induce inflammation and the innate immune system, which further contributes to
tissue damage [44]. Hepatocellular injury is clinically often detected based on serum
aminotransferases, in particular alanine aminotransferase (ALT or ALAT) and aspartate
aminotransferase (AST or ASAT) [49].

3.2.2. Immunological Hepatotoxicity

The immunologic hepatotoxicity is mediated by the covalent complexes, haptens,
formed between the toxin or its intermediates and cellular proteins. Haptens are highly
immunogenic and act as antigens, therefore eliciting excessive or inappropriate immune
responses [59,60]. They are able to induce the activation of antigen-presenting cells, which
activate T cells that exert cytotoxic activity towards hepatocytes [60]. Moreover, DAMPs
released during hepatocyte injury can further amplify the hapten-induced immunogenic
signal, therefore initiating the actual immune intolerance characterized by prominent T-cell
cytotoxicity and cell death [59,60]. In addition to haptens, some drugs can directly interact
with the immune system by binding to the highly variable antigen-specific regions of T cells
and inducing their activation, which results in prolonged and potent immune responses
leading to extensive liver damage [61,62].

3.2.3. Metabolism-Related Hepatotoxicity

Cytochrome P450 (CYP) isoenzymes play an important role in metabolism-related
hepatotoxicity. In fact, they can activate or metabolize some chemicals and drugs to
reactive intermediates that can have multiple direct and indirect toxic effects [50,63]. The
most important CYP isoenzymes responsible for xenobiotic metabolism, and therefore in
this type of hepatotoxicity, are CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2C9, CYP2E1,
and CYP3A4. Such reactive intermediates can interact and covalently bind to cellular
macromolecules, including nucleic acids, proteins, and lipids, affecting their structure and
function, and thus altering various cellular processes [64]. They can also affect cellular
antioxidant defense mechanisms by depleting GSH and even mediate lipid peroxidation.
As a result, many cellular organelles are directly affected and functionally compromised. In
particular, by interacting with membrane lipids, the reactive metabolites can severely affect
the permeability of the plasma membrane, endoplasmic reticulum, and mitochondrial
membranes, leading to alterations in calcium homeostasis and subsequent cell damage [64].
Necrosis due to ATP depletion has also been described as a mechanism in this type of
hepatotoxicity [7]. These metabolic derivatives can induce indirect toxic effects via the
regulation of signal transduction pathways and gene expression profiles, leading to cell
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death, either by apoptosis or necrosis [65]. However, this type of hepatotoxicity can
occur if the toxin in question is acutely present at extremely high concentrations or lower
concentrations over long periods of time [50]. However, it is worth mentioning that this
type of liver toxicity is very complex, considering that there are numerous developmental,
genetic, and environmental factors that can significantly influence CYP-mediated drug
metabolism and response, and consequently their potential toxic effects [50]. This is
particularly true for drugs with a narrow therapeutic window, where inter-individual
differences and genetic polymorphisms are crucial factors to be considered to avoid toxicity
when determining dose regimen [50].

3.2.4. Mitochondria-Mediated Hepatotoxicity

The mitochondrial type of hepatocellular injury commonly exhibits alterations of
lipid metabolism, OXPHOS, and the depletion of ATP, which cause lactic acidosis and
microvesicular steatosis, but also the altered activity of the enzymatic complexes in the
ETC, MnSOD, and GPx, leading to excessive ROS generation and oxidative damage [66,67].

4. Drug-Induced Mitochondrial Dysfunction and Liver Injury

Drug-mediated mitochondrial toxicity represents one of the main mechanisms of DILI.
Not surprisingly, many of the drugs reported to interfere with mitochondrial function cause
symptoms similar to those of patients suffering from (genetic) mitochondrial diseases [68].
There are various mechanisms by which hepatotoxic drugs can cause mitochondrial dys-
function. These include the direct drug-induced inhibition of mitochondrial function, drug
interference with mtDNA, with transcription and protein synthesis, mitochondrial dysfunc-
tion mediated by drug-derived reactive metabolites, and mitochondrial injury due to the
increased susceptibility of specific groups of patients (Figure 3). Specifically, drugs capable
of inducing mitochondrial toxicity can cause membrane polarization, the impairment of
OXPHOS, or the impairment of fatty acid oxidation, by affecting different targets [8]. It is
important to note that the events leading to mitochondrial toxicity are extremely complex,
whereby different targets can lead to the same outcomes, such as steatosis. For instance, the
inhibition of fatty acid enzymes, the disruption of the ETC, and mtDNA depletion can all
lead to steatosis [6,8]. Besides, the same drugs can affect mitochondrial function at different
points, such as valproic acid, which causes oxidative stress, leading to MPTP opening, but
also inhibits fatty acid enzymes, therefore causing steatosis [69–72].

4.1. Mitochondrial Permeability Transition Pore Opening

Various drugs are capable of inducing MPTP opening in liver mitochondria, thus
causing cytolytic hepatitis characterized by extensive apoptosis and necrosis, which leads
to hepatic failure [4]. Depending on the extent of the damage, increased ALT, AST, and LDH
plasma levels can be measured, even though these markers cannot be considered specific
to mitochondrial hepatotoxicity [8]. Despite not being fully elucidated, there are different
mechanisms proposed by which these drugs induce MPTP opening (Table 1). Some drugs
can directly interact with PBR, an MPTP component, thereby inducing mitochondrial
membrane permeabilization and subsequent cell death [73]. Other drugs can indirectly
cause MPTP opening and the release of pro-apoptotic proteins via the activation of c-
Jun N terminal protein kinase (JNK), followed by the cleavage of Bid and the release of
cytochrome c from mitochondria. Moreover, some drugs have been shown to indirectly
affect the excessive production of ROS, which oxidize thiol groups of membrane proteins
involved in regulating MPTP [74], while others interfere with iron metabolism, which has
also been shown to induce MPTP [75]. In particular, lysosome instability allows ferrous
iron translocation into mitochondria, most likely through the mitochondrial electrogenic
Ca2+/Fe2+ uniporter, which causes MPTP opening and mitochondrial dysfunction [76].
As a consequence of the MPTP opening, loss of membrane potential and decreased ATP
production trigger cell death by necrosis [7].
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Figure 3. Schematic representation of the main mechanisms and consequences of drug-induced
mitochondrial dysfunction. Created with Biorender.com (accessed on 21 February 2022; Toronto, ON,
Canada). (MPTP—mitochondrial permeability transition pore; OXPHOS—oxidative phosphorylation;
ATP—adenosine triphosphate; ROS—reactive oxygen species; mtDNA—mitochondrial DNA).

Table 1. DILI drugs reported to induce MPTP opening. (DILI—drug-induced liver injury; MPTP—
mitochondrial permeability transition pore; JNK—c-Jun N terminal protein kinase; NSAID—
nonsteroidal anti-inflammatory drug).

Drug Therapeutic Class Mechanism Leading to MPTP Opening References

Acetaminophen Analgesic JNK activation, intracellular Fe2+ increase,
translocation into mitochondria

[76–78]

Alpidem Anxiolytic Ligand [73]

Amiodarone Antiarrhythmic Oxidative stress [79]

Diclofenac NSAID Oxidative stress, intracellular Ca2+ increase [74]

Disulfiram Aversion therapy for alcoholism Oxidative stress [80]

Nimesulide NSAID Oxidative stress, intracellular Ca2+ increase [81]

Salicylic acid NSAID Oxidative stress, intracellular Ca2+ increase [82,83]

Troglitazone Antidiabetic JNK activation, oxidative stress, intracellular
Ca2+ increase [84–86]

Valproic acid Antiepileptic Oxidative stress [69]

Biorender.com
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4.2. Alterations of Oxidative Phosphorylation and Electron Transport Chain

Certain drugs are also able to interfere with OXPHOS and ETC leading to reduced ATP
synthesis and its depletion, or a severely affected ETC with subsequent altered oxidation
processes [68]. Depending on the drug and/or its concentration, several mechanisms of
alteration in OXPHOS can be distinguished (Table 2). One of the mechanisms is OXPHOS
uncoupling without the inhibition of ETC, which causes a significant reduction in ATP
synthesis [87]. Drugs frequently observed as being capable of such an action are cationic
amphiphilic molecules that can be protonated in the mitochondrial intermembrane space
and subsequently transported into the mitochondrial matrix through the ∆ψm [88]. This
reversal of the proton flux from the intermembrane space into the matrix, while bypassing
the ATP synthase, dissipates the proton gradient generated during electron transport, which
ultimately disrupts the OXPHOS and drastically reduces ATP synthesis [88]. Another
mechanism includes OXPHOS uncoupling with the inhibition of ETC, which also further
impairs oxidation processes, including fatty acid β-oxidation [68,89]. The inhibition of
ETC by OXPHOS uncouplers is thought to be concentration-dependent, and even though
the exact mechanisms might not be fully elucidated, some data suggest that the direct
inhibition of ETC complexes is responsible for ETC impairment [90,91]. Alterations in
OXPHOS can also be due to a blockage of ETC by the direct inhibition of ETC complexes
and without prior OXPHOS uncoupling [92].

Table 2. DILI drugs reported to induce OXPHOS impairment. (DILI—drug-induced liver injury;
OXPHOS—oxidative phosphorylation; ETC—electron transport chain; NSAID—nonsteroidal anti-
inflammatory drug).

Drug Therapeutic Class Mechanism Leading to Impaired OXPHOS References

Acetaminophen Analgesic Direct inhibition of ETC activity (inhibition of
complexes I and II) [93,94]

Alpidem Anxiolytic OXPHOS uncoupling, direct inhibition of ETC activity [73]

Amiodarone Antiarrhythmic OXPHOS uncoupling, direct inhibition of ETC activity
(inhibition of complexes I, II, and III) [90]

Benzarone Thrombolytic OXPHOS uncoupling [95]

Benzbromarone Uricosuric OXPHOS uncoupling [95]

Buprenophrine Therapy for opioid dependence OXPHOS uncoupling, direct inhibition of ETC activity [91]

Diclofenac NSAID OXPHOS uncoupling [96]

Disulfiram Aversion therapy for alcoholism Direct inhibition of ETC activity [80]

Ibuprofen NSAID OXPHOS uncoupling [97]

Nilutamide Antineoplastic Direct inhibition of ETC activity (inhibition of complex I) [92]

Nimesulide NSAID OXPHOS uncoupling [81]

Perhexiline Antianginal OXPHOS uncoupling, direct inhibition of ETC activity
(inhibition of complexes I and II) [98]

Salicylic acid NSAID OXPHOS uncoupling [96]

Tacrine Anti-dementia OXPHOS uncoupling [99]

Tamoxifen Antineoplastic OXPHOS uncoupling, direct inhibition of ETC activity
(inhibition of complexes III and IV) [100,101]

Tetracyclines Antibiotic Direct inhibition of ETC activity (inhibition of
complexes I and IV) [102]

Troglitazone Antidiabetic Direct inhibition of ETC activity (inhibition of complex
II, III, IV, and V) [103]
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4.3. Alterations of Mitochondrial Fatty Acids β-Oxidation

Various drugs can directly or indirectly target mitochondrial fatty acid oxidation,
leading to hepatocyte damage [6,68,89]. The main consequence of impaired fatty acid oxi-
dation is the intracellular accumulation of triglycerides within hepatocytes and, in extreme
conditions, free fatty acids build-up [89]. The most common types of intracellular lipid
accumulation, occurring as a result of DILI, are microvesicular (multiple intracellular tiny
lipid droplets) and macrovesicular (single intracellular large lipid vacuole) steatosis, which
can be present either individually or co-existing [89,104,105]. While the former is a much
more severe hepatic lesion that can be possibly associated with liver failure, encephalopathy,
hypoglycemia, and even coma and death, the latter is more common and considered to be
a benign lesion in the short term, though after a prolonged time it can lead to complica-
tions such as steatohepatitis and, rarely, fibrosis [89,104,106–110]. Other consequences of
impaired β-oxidation are reduced energy production (ATP shortage) and cell death, and
related to that, hypoglycemia-inducing reduced gluconeogenesis due to reduced levels
of acetyl-CoA and the impaired activity of pyruvate carboxylase [89]. Furthermore, the
accumulation of fatty acid derivatives in plasma and urine can occur because of impaired
β-oxidation [89]. Several mechanisms have been described to result in drug-induced alter-
ations of mitochondrial β-oxidation (Table 3). Some drugs affect fatty acid oxidation by
inhibiting enzymes, such as CPT1 and acyl-CoA synthases, thereby interfering with and
affecting multiple points of the oxidation process [70,111]. Drugs can impair mitochondrial
fatty acid oxidation by decreasing the levels of important cofactors, including CoA and
L-carnitine esters [112–114]. The significant inhibition of the mitochondrial ETC can also
lead to impaired β-oxidation. Some drugs can act via a dual mechanism, namely the inhibi-
tion of fatty acid oxidation enzymes at lower concentrations and the impairment of ETC
at higher concentrations [91,98,115,116]. Drugs can equally cause a depletion of mtDNA,
therefore affecting ETC and subsequently β-oxidation. Although the exact mechanisms
by which drugs reduce mtDNA levels are not completely understood, evidence suggests
that interactions with mitochondrial topoisomerases negatively affect mtDNA synthesis
and levels [100,117–123]. Drug-induced ROS production and excessive oxidative stress
have been reported to induce mtDNA strand breaks and damage, ultimately resulting in a
reduction of mtDNA levels [124,125].

Table 3. DILI drugs reported to induce steatosis and fatty acid β-oxidation impairment. (DILI—
drug-induced liver injury; ETC—electron transport chain; mtDNA—mitochondrial DNA; NSAID—
nonsteroidal anti-inflammatory drug).

Drug Therapeutic Class Type of Steatosis Induced Mechanism Leading to Impaired Fatty Acid
Oxidation References

Acetaminophen Analgesic Microvesicular Inhibition of fatty acid oxidation enzymes and
inhibition of ETC activity [89,93,126]

Amineptine Antidepressant Microvesicular Inhibition of fatty acid oxidation enzymes and
sequestration of fatty acid oxidation cofactors [127]

Amiodarone Antiarrhythmic Microvesicular,
macrovesicular

Inhibition of fatty acid oxidation enzymes and
inhibition of ETC activity [90,116]

Buprenophrine Therapy for
opioid dependence Microvesicular Inhibition of ETC activity [91]

Didanosine Antiretroviral Microvesicular,
macrovesicular

mtDNA depletion and inhibition of mtDNA
polymerase γ [119,128]

Fialuridine Antiviral Microvesicular mtDNA depletion and inhibition of mtDNA
polymerase γ [117,119]

Ibuprofen NSAID Microvesicular Inhibition of fatty acid oxidation enzymes and
sequestration of fatty acid oxidation cofactors [113]

Panadiplon Anxiolytic Microvesicular Sequestration of fatty acid oxidation cofactors [129,130]

Perhexiline Antianginal Microvesicular,
macrovesicular

Inhibition of fatty acid oxidation enzymes and
inhibition of ETC activity [98,111]
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Table 3. Cont.

Drug Therapeutic Class Type of Steatosis Induced Mechanism Leading to Impaired Fatty Acid
Oxidation References

Salicylic acid NSAID Microvesicular Sequestration of fatty acid oxidation cofactors [114]

Stavudine Antiretroviral Microvesicular,
macrovesicular

mtDNA depletion and inhibition of mtDNA
polymerase γ [128]

Tamoxifen Antineoplastic Macrovesicular
Inhibition of fatty acid oxidation enzymes,
inhibition of ETC activity, and
mtDNA depletion

[100,107,131,132]

Tetracyclines Antibiotic Microvesicular Inhibition of fatty acid oxidation enzymes [133–135]

Tianeptine Antidepressant Microvesicular Inhibition of fatty acid oxidation enzymes [136]

Troglitazone Antidiabetic Microvesicular Inhibition of fatty acid oxidation enzymes [137,138]

Valproic acid Antiepileptic Microvesicular,
macrovesicular

Inhibition of fatty acid oxidation enzymes and
sequestration of fatty acid oxidation cofactors [70,71]

Zidovudine Antiretroviral Microvesicular mtDNA depletion and inhibition of mtDNA
polymerase γ [119,139]

5. Factors Influencing Drug-Induced Hepatic Mitochondrial Dysfunction

A plethora of specific conditions and factors can predispose to or aggravate hepatic
injury due to mitochondrial toxicity, including drug chemistry and administration regimen,
genetic polymorphisms, variation in mtDNA, non-genetic host factors, comorbidities, and
external factors, including environment and lifestyle (Figure 4) [8].
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The chemical structure of the drugs is very important and can be accountable for
mitochondrial toxicity. In this respect, amphiphilic molecules that possess protonable
moieties can be transported to and accumulate within the mitochondrial matrix due to
∆ψm. Consequently, vital processes, such as OXPHOS, are impaired [88,91,98,115]. On the
other hand, drugs that have a fatty acid structure, such as the branched-chain fatty acid
valproic acid, can be activated by CoA, and therefore account for the sequestration of this
important cofactor and subsequent impaired β-oxidation [112]. Furthermore, nucleotide
reverse transcriptase inhibitors (NRTIs) can be incorporated within mtDNA by the mtDNA
polymerase γ and inhibit mtDNA replication, causing its depletion and affecting vital
mitochondrial processes [119].

Drug dose and duration regimen are also key factors in influencing hepatic mitochon-
drial dysfunction and DILI. A number of studies have suggested that tetracycline-associated
microvesicular steatosis is dose-dependent and that prolonged treatment with amiodarone
can induce liver injury even after therapy discontinuation, which is linked to its accumula-
tion in different tissues, including liver, lung and adipose tissue [68,140,141].

Genetic predisposition is a major factor affecting the susceptibility of developing mito-
chondrial hepatotoxicity. DNA mutations and polymorphisms can significantly increase the
risk of DILI, by affecting normal mitochondrial function, the activity of drug-metabolizing
enzymes, and enzymes involved in oxidative stress defense. Individuals suffering from
cytochrome c oxidase deficiency or a deficiency of medium-chain acyl-CoA dehydroge-
nase, which is involved in the mitochondrial oxidation of medium-chain fatty acids, are
more prone to develop DILI associated with drugs that impair mitochondrial function,
such as valproic acid [142–144]. Several polymorphisms in CYP genes, including CYP2C9,
CYP2C19, CYP2D6, CYP2E1, and CYP2B6, have been associated with DILI, including
steatosis, steatohepatitis, and cirrhosis [145–148]. The deletion of glutathione S-transferase
theta 1 (GSTT1) and glutathione S-transferase Mu 1 (GSTM1), involved in the detoxifi-
cation and prevention of oxidative stress, have also been reported to increase the risk of
hepatotoxicity [145,149–152]. MnSOD is another enzyme essential for cellular defense
mechanisms against oxidative stress, and its genetic polymorphisms have also been linked
with increased susceptibility to mitochondrial toxicity by various drugs [67,153–157].

There is a large inter-individual variation in mtDNA copy number, and while the
origin of this variation is still unknown, low mtDNA levels could present a risk factor
for the mitochondrial toxicity of drugs known to interfere with mtDNA [6]. In addition,
variations and mutations in mtDNA represent an important inter-individual difference
associated with adverse drug reactions and idiosyncratic DILI [158,159]. Emerging studies
have shown that mitochondrial genetics and specific mtDNA haplogroups are involved
in increased susceptibility to drug toxicity, especially for toxicity induced by antibiotics,
antiretrovirals and chemotherapeutic agents [159].

Moreover, non-genetic host factors that majorly influence DILI are age and sex. Age is
considered a risk factor depending on the drug, with certain age populations being more
vulnerable to specific drugs [160]. In this regard, young children are at risk of hepatotoxicity
due to valproic acid and aspirin [160]. However, the elder population is more susceptible to
DILI caused by numerous drugs, such as erythromycin, isoniazid, and amoxicillin [160–162].
While the reasons for the age-dependent DILI are not known, available research suggests
that altered drug pharmacokinetics due to reduced renal function, reduced liver blood flow,
and reduced CYP-mediated metabolism, as well as the increased production of reactive
intermediates and co-medication in elder people, could play a role [163–166]. Gender
has also been shown to affect the risk of DILI, with women and men having different
degrees of susceptibility, due to different metabolism efficiency [166]. Sex hormones,
pregnancy, and growth hormone levels can influence drug metabolism. Thus, men have
higher glucuronidation rates and therefore a more efficient clearance rate of acetaminophen,
while women possess higher expression levels of CYP3A4 [167,168].

Other recognized predisposing factors for mitochondrial toxicity and DILI are un-
derlying comorbidities, including obesity, non-alcoholic fatty liver disease (NAFLD), and
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type 2 diabetes. In fact, increased susceptibility to liver injury and the aggravation of
hepatic lesions in obese and NAFLD patients could be attributable to underlying mito-
chondrial dysfunction (latent ETC dysfunction), reduced antioxidant defenses (low GST
expression and GSH levels), the enhanced expression and activity of CYP isoenzymes
(CYP2E1), and pro-inflammatory and pro-fibrotic cytokine production (tumor necrosis
factor α; TNF-α) [169–173].

Some of the key environmental factors that can increase vulnerability to drug-induced
hepatic mitochondrial toxicity are alcohol consumption, CYP inducers and inhibitors, and
viral infections.

Excessive ethanol consumption can have deleterious effects on hepatic mitochondrial
function, and by causing mitochondrial dysfunction, it renders the liver more prone to
DILI [174,175]. Moreover, ethanol is metabolized by hepatic CYP2E1 and its overconsump-
tion increases CYP2E1 levels in mitochondria, hence affecting the metabolism of numerous
drugs and enhancing the formation of reactive metabolites that can directly cause mitochon-
drial dysfunction [7,176]. Furthermore, drugs can induce other CYP isoenzymes, such as
CYP1A1 and CYP2B1. By doing so, they significantly affect hepatic drug metabolism and
increase the generation of reactive hepatotoxic intermediates [177–179]. In addition, ethanol
intoxication can induce SREBP-1c activation, thus stimulating hepatic lipogenesis [180].

Many drugs, food components, herbal products, and pollutants are known to mod-
ulate CYP isoenzymes and thereby affect drug metabolism and DILI. The most affected
are CYP3A4, CYP3A5, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2A6,
and CYP2E1 [181]. The compounds shown to interfere with their function comprise many
drug classes, such as antiepileptics, antiretrovirals, antibiotics, antimalarials, barbiturates,
proton pump inhibitors, glucocorticoids, and many others [181]. Moreover, nutritional
and herbal compounds capable of such effects include, but are not limited to, resvera-
trol, quercetin, theophylline, caffeine, hyperforin, genistein, baicalin, sulforaphane, and
indole-3-carbinol [181]. Moreover, there are numerous other toxic agents that can modulate
drug-metabolizing enzymes, including dioxins, polycyclic aromatic hydrocarbons, hete-
rocyclic aromatic amines, organochlorine pesticides, polychlorinated biphenyls, benzene
derivatives, and others [181].

The hepatitis C virus is a recognized contributing factor for drug-induced mitochon-
drial dysfunction [6]. Viral infections can increase oxidative stress and the release of
pro-inflammatory factors, therefore impairing both mitochondrial function and lipid home-
ostasis, and considerably increasing the risk of drug-induced mitochondrial toxicity [6].
This has been reported for various drugs, and in particular for aspirin, shown to increase
the occurrence of Reye’s syndrome in the presence of an ongoing viral infection, as well
as for NRTIs that can drastically increase susceptibility to hepatotoxicity in individuals
infected with the hepatitis C virus [182–185]. It is thought that viral proteins, together with
pro-inflammatory cytokines and the oxidative stress generated during infection, affect mito-
chondrial function and potentiate mitochondrial toxicity and liver injury by NRTIs [6,183].

6. Experimental Models and Methods to Study Hepatic Mitochondrial Toxicity
6.1. Experimental Systems and Models to Study Mitochondrial Dysfunction and Related Hepatotoxicity

There are numerous in vitro tools that are largely implemented for the assessment
of the hepatotoxic potential of various compounds and that offer a valid platform to
investigate mechanisms of mitochondrial toxicity. Human-based models are preferred over
animal-derived systems because of their better predictive and translational value [186,187].
However, both are used, especially since there is a low availability of human material.

Many in vitro assays make use of isolated liver mitochondria, which represent an
essential tool to study not only mitochondrial structure and functions but also compounds
capable of inducing mitochondrial dysfunction [188]. The isolation of liver mitochondria is
usually carried out by differential centrifugation and allows one to obtain functional, intact,
and relatively pure organelles that can be used to study various mitochondrial parameters
in situ, both under physiological conditions and in the presence of underlying pathological
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conditions or toxic compounds [189]. Mitochondria can be isolated from different tissues
such as liver, muscle, and kidney tissue as well as cultured cells [189,190]. However, isolated
mitochondria present different limitations as well. Besides the obvious lack of cellular
context, there are certain issues related to the isolation method and source material that
can affect mitochondrial function. These include the necessity of a large amount of tissue
sample for successful isolation, high mitochondrial susceptibility to damage, alterations in
ETC complex subunits, and increased ROS production during centrifugation [191,192].

Next to the isolated mitochondria, hepatocyte culture systems are yet another highly
valuable tool to study mitochondrial toxicity and dysfunction. Despite being used success-
fully for mitochondrial dysfunction studies and representing the gold standard and most
relevant model from the clinical translational point of view, primary human hepatocytes
do have some limitations [193–195]. These include inter-individual variability, scarcity, sus-
ceptibility to dedifferentiation, and low quality, considering that the source of hepatocytes
is usually liver biopsies obtained from individuals suffering from liver disease or material
unsuitable for liver transplantation [193,196–199]. Therefore, other cell culture models have
been used widely as alternatives, including primary rat and mouse hepatocytes, which un-
der certain circumstances are acceptable for mitochondrial toxicity evaluation [93,200,201].
By far the most popular culture system is represented by human hepatoma cell lines, such
as HepG2, Hep3B, Fa2N4, HepaRG, and Huh7 cells [193]. These cell lines, despite not being
completely physiologically representative, show genetic instability and reduced expression
levels of biotransformation enzymes, offer high reproducibility, are readily available, sim-
ple to culture, and suitable for mitochondrial toxicity testing [193,202,203]. An additional
crucial limitation of such cell lines, compared to primary cells, is their altered bioenergetic
phenotype. These cells are metabolically adapted to grow in acidic and hypoxic conditions,
relying mostly on glycolysis to obtain the energy [204]. Despite possessing fully functional
mitochondria, they do not obtain the energy via OXPHOS, which significantly reduces
the predictive value when studying mitochondrial toxicants [205,206]. This has led to the
development of the “glucose-galactose” assay based on HepG2 cells, in which the cells
are grown in the presence of galactose [205]. This induces slow glycolytic conditions and
higher cell dependency on mitochondrial OXPHOS for energy production, which makes
them more vulnerable to drugs targeting mitochondria and more suitable for the evaluation
of drug-induced mitochondrial dysfunction [205–207].

Furthermore, there are numerous animal models used to study DILI and related
hepatotoxicity mechanisms, with rodents being undoubtedly preferred due to higher ac-
cessibility and easier experimental implementation [208,209]. However, different animal
species have been used to study DILI-related mitochondrial dysfunction, including dogs,
rabbits, and primates [6]. In addition to wild-type animals, hepatic mitochondrial toxicity
can be studied in certain genetic models, such as the heterozygous MnSOD+/− knock-
out mouse [156,210]. This model has underlying liver mitochondrial problems, such as
decreased ∆ψm and decreased ETC activity, and can reveal drug-induced mitochondrial
dysfunction not detectable in wild-type models [211,212].

6.2. Experimental Methods and Assays to Study Mitochondrial Dysfunction and Related Hepatotoxicity

Drug-induced mitochondrial dysfunction can be assessed in isolated mitochondria,
cells (cell lines, cells derived from in vivo models of mitochondrial toxicity), or liver tissue,
by using numerous methods that can evaluate the capacity of a drug to trigger MPTP
opening, interfere with fatty acid oxidation, uncouple or inhibit OXPHOS, and cause
mtDNA damage and depletion and DILI-induced liver lesions (Table 4).
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Table 4. Advantages and disadvantages of the most commonly used methods and assays for mito-
chondrial function assessment. (MPTP—mitochondrial permeability transition pore; CO2—carbon
dioxide; BODIPYTM 493/503—4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene;
OCR—oxygen consumption rate; ∆ψm—mitochondrial membrane potential; ADP—adenosine
diphosphate; ATP—adenosine triphosphate; NADPH—nicotinamide adenine dinucleotide phos-
phate; NADH—nicotinamide adenine dinucleotide; MDR—multidrug resistance; ROS—reactive
oxygen species; mtDNA—mitochondrial DNA).

Method/Assay Advantages Disadvantages References

Swelling assay for MPTP
opening—absorbance

Allows the multiplex assessment of
mitochondrial Ca2+ uptake and
mitochondrial swelling due to loss of the
inner mitochondrial membrane integrity

Only possible in isolated mitochondria;
mitochondria isolation procedure can
affect shape and morphology of
mitochondria, reducing reliability of
obtained data

[213–216]

Swelling assay for MPTP
opening—microscopy

Intact cells and fixed cells/tissue samples
can be used

Low resolution; diffraction limits; artifacts
due to sample preparation and fixation;
difficult to estimate the actual volume
of mitochondria

[216–218]

Fatty acid oxidation—14C
labeled palmitate

Direct measurement of mitochondrial fatty
acid oxidation efficiency

Low 14CO2 recovery rate; large inter-assay
variability; use of radiolabeled compounds

[219,220]

Steatosis—staining procedures (Oil
Red O, Sudan Black B, Nile Red,
BODIPYTM 493/503)

Simple and reproducible; allows
determination of cellular localization and
distribution of lipid droplets; compatible
with other assays; compatible with various
detection methods (microscopy, flow
cytometry, plate readers)

Lower specificity; stability or the
background of the signal [221–227]

Steatosis—absolute lipid
quantification

Specificity and sensibility; commercially
available kits

Laborious procedure; does not provide
information about cellular localization
of lipids

[228–230]

OCR—Clark electrode Simple; inexpensive

Potential artifacts due to oxygen
consumption by the electrode; required
cell detachment by trypsinization can
affect OCR

[231,232]

OCR—Seahorse XF Flux Analyzer
Simultaneous measurement of OCR and
extracellular acidification rate; reduced
sample volume; high throughput

Expensive; limited to non-perfused cell
population measurements [233–235]

OCR—Oroboros Oxygraph-2k
Simultaneous measurement of ORC and
∆ψm and ADP-ATP exchange rate
in suspension

Labor-intensive; low throughput [233,236]

Mitochondrial NADPH and
NADH—autofluorescence Non-invasive; informative

Excessive exposure highly phototoxic;
Exposure optimization required to
improve signal-to-noise levels

[237–239]

Mitochondrial NADPH and
NADH—fluorescent reporters Improved sensitivity; low phototoxicity pH sensitivity; transfection efficiency [240–243]

Mitochondrial membrane potential
variation—fluorescent dyes

Reliable and informative; compatible with
various detection methods (microscopy,
flow cytometry, plate readers)

Most probes are substrates of MDR
transporters and mitochondrial loading
can be affected; need for pharmacological
inhibitors such as cyclosporin A;
phototoxicity and photobleaching in
confocal microscopy; possible binding to
mitochondrial membrane and affecting
mitochondrial respiration; some probes
present high toxicity; low sensitivity

[244–248]

Respiratory chain
complexes activity

Very informative when combined with
other measurements such as OCR; useful
for detecting molecular origin of
mitochondrial defects

Not necessarily reflecting mitochondrial
dysfunction (presence of
compensatory mechanisms)

[232,249–251]

Mitochondrial
ROS—redox-sensitive fluorophores

Relatively easy to perform and measure;
compatible with live microscopy, flow
cytometry, and plate readers

Not reliably attributable to mitochondrial
ROS; requires some form of correction;
optimization required to avoid dilution
and saturation of the signal; non-linear
fluorescence response; photosensitivity
and pH sensitivity; auto-oxidation

[252–257]
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Table 4. Cont.

Method/Assay Advantages Disadvantages References

Mitochondrial
ROS—redox-sensitive
fluorescent proteins

Suitable for monitoring ROS production
over longer times

Lack of specificity; dye-specific
pH sensitivity [258–260]

Mitochondrial
ROS—redox-sensitive
enzymatic assays

Allows determination of enzymatic
ROS origin Provides only fixed time-point readouts [261,262]

Mitochondrial ATP
Possible to multiplex with other
fluorescent probes; reproducible;
signal stability

Potential phototoxicity; potential pH and
temperature sensitivity;
weak signal in bioluminescence
assays; expensive

[263–268]

Mitochondrial Ca2+

Allows specific mitochondrial targeting
with genetically encoded fluorescent
reporters; can be combined with
∆ψm measurement

Incomplete intramitochondrial
accumulation of traditional fluorescent
probes; possibly can cause alterations of
Ca2+ dynamics; mostly free and not total
Ca2+ is measured

[269–276]

Mitochondrial pH
Allows reliable calculation of the
proton-motive force; good indicator of
energy metabolism fluctuations

Many pH sensor probes are not specific
for mitochondria; requires the use of
additional mitochondrial markers

[246,277,278]

mtDNA copy number Easy to measure and accessible
High variability in experimental
procedures related to DNA extraction,
quality, cross-contaminations, accuracy

[279–282]

Microscopy methods for
mitochondrial morphology, size,
and number

Provide more detail and insight when
combined with other methods of
mitochondrial dysfunction

Some probes not compatible with
paraformaldehyde fixation; low
transfection efficiency for targeted
reporter proteins; laborious optimization
of experimental protocols

[283,284]

Tetrazolium salt assay Easy to perform; reproducible; low cost
Not reliable for mitochondrial activity
assessment; endpoint assay; dependent on
cell type and cell culturing

[285–287]

Resazurin reduction assay Easy to perform; compatible with other
assays; high sensitivity

Not reliable for mitochondrial activity
assessment; requires optimization of
incubation times, possibly causing
cellular alterations

[288–291]

MPTP opening, known to be involved in drug-induced mitochondrial toxicity, can
be determined experimentally using the mitochondrial swelling assay [215,292]. This
method is based on measuring spectrophotometrically mitochondrial swelling and confor-
mational changes, direct consequences of MPTP opening, which are reflected in a decrease
in absorbance at optical density in the presence of Ca2+ [214]. Moreover, MPTP can also
be assessed by measuring the ability of mitochondria to take up and retain extramito-
chondrial Ca2+. For this purpose, Ca2+-sensing fluorescence dyes are used to reflect Ca2+

uptake. The fluorescence hereby decreases as added Ca2+ is taken up by mitochondria
until MPTP occurs [214]. In addition, microscopy techniques (fluorescence, confocal or
electron microscopy) can be used to visualize and measure mitochondrial swelling in cells
and tissue samples [216].

Fatty acid oxidation can be assessed both in isolated mitochondria and cells by using
radio-labeled fatty acids, such as 14C-labeled palmitate [219]. The 14C label can be present
at different positions in the palmitate, depending on whether complete or incomplete
oxidation is measured [219]. During fatty acid oxidation, 14C-palmitate can be oxidized
to different acid-soluble metabolites containing the 14C label, such as palmitoyl-carnitine,
acetyl-carnitine, acetyl-CoA, ketone bodies, fatty acyl-CoA shorter than 6 carbons, gluco-
neogenic and TCA cycle intermediates, as well as 14C-carbon dioxide (14CO2), which is
the product of radiolabeled acetyl-CoA entering the TCA cycle [219]. Finally, the rate of
conversion of 14C-palmitate can be calculated for any of the acid-soluble metabolites or
14CO2 produced [219]. In in vivo models, 14C-labeled fatty acids can be administered and
exhaled 14CO2 measured to determine whole-body fatty acid oxidation [136]. The use of
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different lengths of 14C-labeled fatty acids allows one to assess whether the whole fatty
acid oxidation process is affected or only processes regarding specific chain length [136].
Therefore, this type of assay allows one to precisely monitor the complete oxidation process
and determine the efficiency and possible modulation of fatty acid oxidation [219].

An indirect measure of mitochondrial dysfunction, linked to altered fatty acid oxida-
tion, is the assessment of steatosis. The presence of lipid droplets in the cells following
drug-induced mitochondrial injury can be evaluated by means of one of the several avail-
able staining procedures, including Oil Red O, Sudan Black B, Nile Red, and 4,4-difluoro-
1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (BODIPYTM 493/503) [293–296]. These
are often detected with microscopy techniques or flow cytometry. Absolute lipid quan-
tification assays are also used to determine intracellular lipid levels, in which various
multi-step protocols are used to extract and quantify the total lipid content, either with
high-performance liquid chromatography (HPLC) and liquid chromatography-mass spec-
trometry (LC-MS) methods or fluorimetric-based and colorimetric-based assays [297–300].

Energy metabolism and the efficiency of OXPHOS are usually assessed by measuring
the oxygen consumption rate (OCR) and can be done using isolated mitochondria, sus-
pensions of cells, or small amounts of tissue in a specific cell culture media [301]. OCR is
calculated by determining the rate of decrease in oxygen concentration in the cell culture
medium by a polarography electrode [231]. Recent variations of this method allow OCR
measurement to be performed in adherent cells in situ and with reduced sample volume
by using optical techniques and the oxygen-mediated quenching of phosphorescence or
fluorescence [302,303]. Moreover, novel methods, such as the Seahorse XF Extracellular
Flux Analyzer (Agilent Technologies) and the Oroboros Oxygraph-2k System (Oroboros
Instruments), can be efficiently used in real-time for the assessment of OCR [233,234].

Mitochondrial OXPHOS performance can be evaluated by assessing the enzymatic
activity of respiratory chain complexes, which is commonly done by means of spectrophoto-
metric assays [249]. Complex I activity is measured by monitoring the oxidation of NADH
at 340 nm, detectable as a decrease in absorbance [249]. Complex II activity is measured
by monitoring the reduction in ubiquinone with absorbance at 280 nm or the oxidation
of electron acceptor 2,6-dichlorophenolindophenol with absorbance at 600 nm [249]. The
combined activity of complexes II and III is measured by determining the reduction in
cytochrome c with an increase in absorbance at 550 nm [249]. Furthermore, the activity
of complex IV can be measured by monitoring the oxidation of cytochrome c and the
subsequent decrease in absorbance at 550 nm [249]. Finally, complex V activity is based on
the measurement of the reverse ATP hydrolysis reaction, coupled to NADH oxidation, and
the conversion of phosphoenolpyruvate to pyruvate, by pyruvate kinase, and pyruvate to
lactate, by LDH, by monitoring changes in absorbance at 340 nm [249,304]. In addition, the
protein expression of the respiratory chain complexes, detected by immunoblot analysis,
can be used complementarily to their enzymatic activity when determining mitochondrial
OXPHOS function.

Measurements of mitochondrial cofactors NADH and nicotinamide adenine dinu-
cleotide phosphate (NADPH), crucial for enzymatic redox reactions, is also a valuable
indicator of mitochondrial function. The changes in their levels can indicate increased
ETC activity (increased NADH oxidation), decreased TCA cycle activity (decreased NAD+

reduction), or increased NAD+ consumption [305]. The autofluorescence of NADH and
NADPH is usually exploited to determine their levels and it can be detected using confocal
microscopy (excitation wavelength 340–360 nm; emission wavelength 450 nm) or fluo-
rescence lifetime imaging microscopy [237]. HPLC and spectrometry techniques are also
used to monitor these cofactors [306]. Moreover, genetically encoded fluorescent proteins,
such as Rex protein, circularly permuted yellow fluorescent protein, and Peredox, can bind
to NADH and NAD+, and therefore can be measured via fluorescence-based methods to
determine their levels and ratios [240,241,307]. The measurement of mitochondrial NADH
and NADPH is commonly performed together with ∆ψm measurements for more reliable
monitoring of mitochondrial activity [251].
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Another important in vitro tool used to detect mitochondrial dysfunction is the deter-
mination of ∆ψm. Among the most frequently used assays for ∆ψm assessment is the use
of cationic cell membrane-permeable fluorescent dyes, including tetramethyl rhodamine
methyl and ethyl esters (TMRM, TMRE), rhodamine-123 (Rh123), 3,3′-dihexyloxacarbocyanine
iodide (DiOC6(3)), 1,1′,3,3′-tetraethyl-5,5′,6,6′-tetrachloroimidacarbocyanine iodide (JC-1),
MitoTrackerTM Red CMXRos, and safranine, all of which are selective for the mitochondria
of live cells and reflect changes in ∆ψm, which can be detected using flow cytometry, fluo-
rescence imaging, or spectrofluorimetry [244,308]. In addition, ∆ψm can be measured by
using tetraphenylphosphonium cation (TPP(+))-selective electrodes, which allows one to
assess the concentration of this mitochondria-permeable probe in the cell culture medium,
thus reflecting changes of TPP(+) mitochondrial accumulation and consequently ∆ψm [309].

The detection of ROS is also an important way of assessing mitochondrial damage
and function. To achieve this, usually redox-sensitive fluorophores, fluorescent proteins,
and enzymatic assays are used. Some of the most relevant fluorophores are hydroethidine,
dihydrorhodamine 123, and derivatives of dichlorofluorescein (DCF) that can be oxidized
in the presence of ROS and detected by flow cytometry, microplate readers, or live-cell
imaging [256,310]. The fluorescent reporter proteins that are redox-sensitive and can
monitor ROS production are probes based on green fluorescent protein or yellow fluorescent
protein and can make use of glutaredoxin-1 or peroxiredoxin to specifically determine the
ROS species [260,311,312]. One of the spectrophotometric enzymatic assays that serves
to monitor ROS is TCA cycle enzyme aconitase, which can be inhibited by H2O2, O2

−,
and peroxinitrite, and for which reduced activity is, therefore, an indicator of increased
ROS production [261].

The monitoring of mitochondrial pH, ATP, and Ca2+ can also provide useful informa-
tion on the function of mitochondria. Usually, genetically encoded and Förster resonance
energy transfer (FRET)-based fluorescent protein reporters are used for this purpose. One
of the reporters used to detect changes in ATP concentration is the ATeam FRET-based
reporter, as well as its analogs [313]. The PercevalHR fluorescent reporter is used to de-
tect variations in ATP/ADP ratio, which is a better indicator of energy status than ATP
alone [267]. The use of bioluminescence energy transfer (BRET) probes, such as BTeam,
is also able to monitor ATP fluctuations, especially when fluorescence-based methods
are not suitable [266]. Finally, luciferase-based bioluminescence assays, HPLC, and 31P
nuclear magnetic resonance (NMR) are also reliable methods for ATP measurements [263].
There are various fluorescent probes to measure free mitochondrial Ca2+, such as Rhod-2
acetoxymethyl, FRET-based Ca2+ reporter cameleons containing Ca2+-binding calmodulin
or troponin C, circularly permuted yellow fluorescent protein-based Pericam, as well as
bioluminescence-based aequorin [273,275,314,315]. Energy metabolism alterations are re-
flected in changes in mitochondrial pH and its measurement can provide further indications
of mitochondrial function and can be used to correct experimental measurements relying
on pH-sensitive fluorescent reporters. Mitochondrial pH is also measured via genetically
encoded fluorescent reporters, especially those based on yellow fluorescent protein, such
as mitoSypHer, but others, including pHRed and pHTomato, are also used [316–319].

Another useful indicator of mitochondrial function is the assessment of mtDNA copy
number, since the mtDNA content reflects mitochondrial energy metabolism. The method
employed most widely to quantify mtDNA is quantitative real-time polymerase chain
reaction (PCR), although more advanced methods, such as next-generation sequencing,
microarrays, and droplet digital PCR, can be used as well [280,320,321].

Moreover, the size, number, and morphology of mitochondria, which can change due
to processes of fusion/fission and mitophagy, and in the presence of damaging stimuli,
also represent valid indicators of mitochondrial health status. These parameters can be
assessed by using labeling probes and MitoTrackerTM dyes, as well as immunofluorescence
staining techniques and electron microscopy, which help to visualize mitochondria and
examine any structural changes [283,284].
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Furthermore, there are also tetrazolium salt and resazurin (7-hydroxy-3-oxo-3H-
phenoxazine 10-oxide) reduction colorimetric/spectrophotometric assays that are based
on the mitochondrial activity and are frequently used to evaluate cell viability but are
not a reliable indicator of mitochondrial function, per se. The [3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide] (MTT) assay foresees the reduction in the yellow
tetrazolium salt MTT into purple formazan crystals by mitochondrial succinate dehydro-
genase. However, the extra-mitochondrial enzymes and other reducing agents are also
capable of reducing MTT [285]. The resazurin reduction assay is also based on the reduction
capacity of mitochondrial and cytosolic reductases to reduce the non-fluorescent resazurin
to fluorescent pink resorufin [322]. Similar to MTT, the resazurin assays are a good indicator
of cell viability, but not specific for mitochondrial activity evaluation [288].

The measurement of plasma levels and the activity of metabolites and enzymes can
give significant insight into drug-induced hepatic mitochondrial dysfunction. The activity
of mitochondrial enzymes, glutamate dehydrogenase, and ornithine carbamoyltransferase
is a good indicator of mitochondrial structural damage and cell membrane disruption [323].
Increased plasma levels of lactate and pyruvate, on the other hand, are suggestive of
reduced pyruvate oxidation [6]. Moreover, plasma levels of β-hydroxybutyrate and ace-
toacetate and their ratio reflect the hepatic mitochondria ratio of NADH/NAD+, thus
indicating hepatic ETC activity [6,324]. Elevated plasma and urine levels of acyl-carnitine
and acyl-glycine derivatives can indicate an alteration or inhibition of mitochondrial β-
oxidation in the liver [325].

Furthermore, liver histology can also provide important information about DILI and
mitochondrial dysfunction. Thus, the use of hematoxylin-eosin, or Oil red O staining,
can provide evidence of the presence of lipid droplets and the type of steatosis, whereby
the presence of microvesicular steatosis is a strong indication of the inhibition of fatty
acid oxidation [6,326]. However, microvesicular steatosis is rarely present in pure form,
and it is often combined with macrovesicular steatosis [6]. In addition to steatosis, other
histopathological features, such as lobular inflammation and hepatocellular ballooning, can
confirm the presence of steatohepatitis, which is also linked to mitochondrial dysfunction
under various circumstances [327,328]. On the other hand, the presence of apoptosis
and necrosis in the liver, despite being a valid sign, does not necessarily suggest drug-
induced mitochondrial dysfunction, as these can be due to other mechanisms, as well [329].
Alterations and mitochondrial ultrastructural changes, such as the swelling and disruption
of cristae, detectable by electron microscopy, offer additional information on mitochondrial
dysfunction [6]. However, it is important to highlight that liver histopathology analysis
is not sufficient by itself to determine drug-induced mitochondrial toxicity and should
therefore be complemented by additional assays.

7. Concluding Remarks and Future Perspectives

There are many drugs capable of inducing liver toxicity, specifically by causing mito-
chondrial dysfunction. On many occasions, such effects of drugs are discovered too late in
the drug development process, often during pre-clinical assessment and clinical trials, thus
entailing huge costs and safety issues [1]. In fact, mitochondrial dysfunction-associated
DILI has caused the interruption of clinical trials and numerous drug withdrawals from
the market because it was not predicted in animal models, with many drugs even receiving
black box warnings from the US Food and Drug Administration (FDA) [6,330].

For this reason, it is of critical importance to develop and use novel and relevant
in vitro models and high-throughput platforms, which can help to screen many lead com-
pounds and determine eventual mitochondrial toxicity early on during drug development,
thereby reducing costs and selecting safer molecules for pre-clinical evaluation and clinical
trials [1,331–334]. Furthermore, it can be beneficial to screen and study mechanisms of
drugs already approved and in use. In this regard, novel 3D liver cell culture models, such
as co-culture spheroids and liver organoids, could have better predictive value when assess-
ing the liver toxicity of drugs, as they better mimic liver physiology compared to standard
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2D cell cultures [331,332,335–339]. Another promising in vitro platform currently being
developed is the liver-on-a-chip, a bioengineering and microfluidics-based system [331,340].
However, despite being more physiologically relevant, such models and platforms still
require further optimization and the extensive evaluation of the sensitivity and specificity
regarding hepatotoxicity [331,341].

Taking into consideration the recently demonstrated role of dysbiosis in multiple liver
diseases, including DILI, there is an urgent need for novel liver in vitro models that would
incorporate gut microbiota as well, therefore increasing the relevance and translational
power [342–344]. Advanced organ-on-a-chip and 3D models replicating the gut-liver axis
with added microbiota components could represent the right direction for future interdis-
ciplinary research in the DILI field [345–348]. Moreover, the implementation of in silico
prediction models, machine learning methods, and the development of comprehensive
databases could further assist in selecting better and safer candidates for drug development,
and predicting, with high accuracy, potential DILI [349–352].

Another important aspect to consider is the implementation of adverse outcome path-
ways (AOPs) that link molecular initiating events via a series of measurable key events to
adverse outcomes at a biological level [353–355]. AOPs thereby represent a major tool, use-
ful not only to assess toxicological features, such as liver cholestasis, steatosis, and fibrosis,
but also to develop novel in vitro tests and batteries of human-based assays to study specific
key events while retaining relevant translational value [354,356–360]. Such an approach
would greatly assist in identifying appropriate assays that, together with adequate models,
will be extremely advantageous for DILI prediction. Consequently, it is worth mentioning
that there are different factors that can obfuscate mitochondrial toxicity and should be
considered during in vitro assessment, such as the protein-binding capacity of drugs, or
the expression levels of drug-metabolizing enzymes and altered bioenergetic phenotype
(glycolysis-mediated ATP production) observed in several hepatoma cell lines [6].

When dealing with the evaluation of hepatic mitochondrial toxicity, it could be bene-
ficial to take into consideration contributing factors that can affect genetic predisposition
or the presence of metabolic syndrome and NAFLD. Given the increased prevalence of
such disorders and other predisposing conditions, it has become clear that appropriate and
advanced systems incorporating multiple cell types, cells from such patients, or genetically
modified cells resembling specific predisposing phenotypes should be used more frequently
in future investigations for the proper and timely assessment of hepatic mitochondrial
toxicity and related liver injury [1,331]. In addition, future studies should also focus on
idiosyncratic DILI. Even though the pathogenesis of this condition is not yet completely
understood, there are indications that inter-individual differences, such as those related to
metabolic phenotype or immune system, play an important role [361–363]. Novel tools that
would take into account this additional layer of complexity might be capable of predicting
idiosyncratic DILI and help elucidate underlying mechanisms and susceptible phenotypes.
Moreover, herb-induced liver injury, due to the excessive and prolonged consumption of
herbal supplements and natural products, represent another emerging problem that often
has an idiosyncratic character, and therefore should also be a part of the efforts undertaken
to improve liver toxicity testing [364,365].

Overall, the current advances in the field of DILI, including hepatic mitochondrial
toxicity, will depend on and should rely on novel approaches combining in silico modeling
and state-of-the-art human-based models to study and predict hepatotoxic events. This
will undoubtedly alleviate ethical concerns related to animal use as well as the financial
aspects of drug development, but will certainly require an intersectoral engagement and
efforts from academia, industry, and regulatory bodies from the earliest stages, such as
those showcased in the Innovative Medicines Initiative (IMI) [366,367].
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Abbreviations

∆ψm mitochondrial membrane potential
ADP adenosine diphosphate
ALP alkaline phosphatase
ALT (ALAT) alanine aminotransferase
AOP adverse outcome pathway
APAF1 apoptotic peptidase activating factor 1
AST (ASAT) aspartate aminotransferase
ATP adenosine triphosphate
Bcl-2 B cell lymphoma 2
BODIPYTM 493/503 4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-Indacene
BRET bioluminescence energy transfer
ChREBP carbohydrate-response element binding protein
CO2 carbon dioxide
CoA coenzyme A
CPT1 carnitine palmitoyltransferase 1
CYP cytochrome P450
DAMP danger-associated molecular pattern
DCF dichlorofluorescein
DILI drug-induced liver injury
DiOC6(3) 3,3′-dihexyloxacarbocyanine iodide
ETC electron transport chain
FADH2 flavin adenine dinucleotide
FDA Food and Drug Administration
FRET Förster resonance energy transfer
GGT gamma-glutamyl transpeptidase
GPx glutathione peroxidase
GSH glutathione
GSTM1 Glutathione S-Transferase Mu 1
GSTT1 Glutathione S-Transferase Theta 1
H2O2 hydrogen peroxide
H2S hydrogen disulfide
HIF-1 hypoxia-inducible factor-1
HO· hydroxyl radical
HPLC high-performance liquid chromatography
IMI Innovative Medicines Initiative
JC-1 1,1′,3,3′-tetraethyl-5,5′,6,6′-tetrachloroimidacarbocyanine iodide
JNK c-Jun N terminal protein kinase
LC-MS liquid chromatography-mass spectrometry
LDH lactate dehydrogenase
MDR multidrug resistance
MnSOD manganese superoxide dismutase
MOMP mitochondrial outer membrane polarization
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MPTP mitochondrial permeability transition pore
mtDNA mitochondrial DNA
MTHFD1/2/1L methylenetetrahydrofolate dehydrogenase 1/2/1L
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NADH, NAD+ nicotinamide adenine dinucleotide
NADPH nicotinamide adenine dinucleotide phosphate
NAFLD non-alcoholic fatty liver disease
NMR nuclear magnetic resonance
NRTIs nucleotide reverse transcriptase inhibitors
NSAID nonsteroidal anti-inflammatory drug
O2
− superoxide anion

OCR oxygen consumption rate
OXPHOS oxidative phosphorylation
PBR peripheral benzodiazepine receptor
PCR polymerase chain reaction
PPARα proliferator-activated receptor alpha
Q ubiquinone
Rh123 rhodamine-123
ROS reactive oxygen species
SREBP-1c sterol regulatory element-binding protein 1c
TCA tricarboxylic acid
TMRE tetramethyl rhodamine ethyl ester
TMRM tetramethyl rhodamine methyl ester
TNF-α tumor necrosis factor α
TNFR1 tumor necrosis factor receptor 1
TPP tetraphenylphosphonium
TRAIL tumor necrosis factor-related apoptosis-inducing ligand
XIAP X-linked inhibitor of apoptosis protein
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316. Benčina, M. Illumination of the Spatial Order of Intracellular PH by Genetically Encoded PH-Sensitive Sensors. Sensors 2013,
13, 16736–16758. [CrossRef]

317. Abad, M.F.C.; Di Benedetto, G.; Magalhães, P.J.; Filippin, L.; Pozzan, T. Mitochondrial PH Monitored by a New Engineered Green
Fluorescent Protein Mutant. J. Biol. Chem. 2004, 279, 11521–11529. [CrossRef]

318. Tantama, M.; Hung, Y.P.; Yellen, G. Imaging Intracellular PH in Live Cells with a Genetically Encoded Red Fluorescent Protein
Sensor. J. Am. Chem. Soc. 2011, 133, 10034–10037. [CrossRef]

319. Li, Y.; Tsien, R.W. PHTomato, a Red, Genetically Encoded Indicator That Enables Multiplex Interrogation of Synaptic Activity.
Nat. Neurosci. 2012, 15, 1047–1053. [CrossRef] [PubMed]

320. Sims, D.; Sudbery, I.; Ilott, N.E.; Heger, A.; Ponting, C.P. Sequencing Depth and Coverage: Key Considerations in Genomic
Analyses. Nat. Rev. Genet. 2014, 15, 121–132. [CrossRef] [PubMed]

321. Ashar, F.N.; Moes, A.; Moore, A.Z.; Grove, M.L.; Chaves, P.H.M.; Coresh, J.; Newman, A.B.; Matteini, A.M.; Bandeen-Roche,
K.; Boerwinkle, E.; et al. Association of Mitochondrial DNA Levels with Frailty and All-Cause Mortality. J. Mol. Med. 2015,
93, 177–186. [CrossRef]

322. Niles, A.L.; Moravec, R.A.; Riss, T.L. Update on in Vitro Cytotoxicity Assays for Drug Development. Expert Opin. Drug Discov.
2008, 3, 655–669. [CrossRef] [PubMed]

323. Murayama, H.; Ikemoto, M.; Fukuda, Y.; Tsunekawa, S.; Nagata, A. Advantage of Serum Type-I Arginase and Ornithine
Carbamoyltransferase in the Evaluation of Acute and Chronic Liver Damage Induced by Thioacetamide in Rats. Clin. Chim. Acta
Int. J. Clin. Chem. 2007, 375, 63–68. [CrossRef]

324. Ozawa, K.; Chance, B.; Tanaka, A.; Iwata, S.; Kitai, T.; Ikai, I. Linear Correlation between Acetoacetate/Beta-Hydroxybutyrate
in Arterial Blood and Oxidized Flavoprotein/Reduced Pyridine Nucleotide in Freeze-Trapped Human Liver Tissue. Biochim.
Biophys. Acta 1992, 1138, 350–352. [CrossRef]

325. Rinaldo, P. Fatty Acid Transport and Mitochondrial Oxidation Disorders. Semin. Liver Dis. 2001, 21, 489–500. [CrossRef]
326. Knapp, A.C.; Todesco, L.; Beier, K.; Terracciano, L.; Sägesser, H.; Reichen, J.; Krähenbühl, S. Toxicity of Valproic Acid in Mice with

Decreased Plasma and Tissue Carnitine Stores. J. Pharmacol. Exp. Ther. 2008, 324, 568–575. [CrossRef]
327. Takahashi, Y.; Fukusato, T. Histopathology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. World J. Gastroen-

terol. 2014, 20, 15539–15548. [CrossRef]
328. Begriche, K.; Igoudjil, A.; Pessayre, D.; Fromenty, B. Mitochondrial Dysfunction in NASH: Causes, Consequences and Possible

Means to Prevent It. Mitochondrion 2006, 6, 1–28. [CrossRef] [PubMed]
329. Kaplowitz, N. Biochemical and Cellular Mechanisms of Toxic Liver Injury. Semin. Liver Dis. 2002, 22, 137–144. [CrossRef]
330. Nadanaciva, S.; Will, Y. Investigating Mitochondrial Dysfunction to Increase Drug Safety in the Pharmaceutical Industry. Curr.

Drug Targets 2011, 12, 774–782. [CrossRef] [PubMed]
331. Fernandez-Checa, J.C.; Bagnaninchi, P.; Ye, H.; Sancho-Bru, P.; Falcon-Perez, J.M.; Royo, F.; Garcia-Ruiz, C.; Konu, O.; Miranda,

J.; Lunov, O.; et al. Advanced Preclinical Models for Evaluation of Drug-Induced Liver Injury—Consensus Statement by the
European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J. Hepatol. 2021, 75, 935–959. [CrossRef] [PubMed]

332. Andersson, T.B. Evolution of Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotox-
icity of Drugs and Drug Candidates. Basic Clin. Pharmacol. Toxicol. 2017, 121, 234–238. [CrossRef]

333. Nadanaciva, S.; Bernal, A.; Aggeler, R.; Capaldi, R.; Will, Y. Target Identification of Drug Induced Mitochondrial Toxicity Using
Immunocapture Based OXPHOS Activity Assays. Toxicol. In Vitro Int. J. Publ. Assoc. BIBRA 2007, 21, 902–911. [CrossRef]
[PubMed]

334. Hynes, J.; Marroquin, L.D.; Ogurtsov, V.I.; Christiansen, K.N.; Stevens, G.J.; Papkovsky, D.B.; Will, Y. Investigation of Drug-
Induced Mitochondrial Toxicity Using Fluorescence-Based Oxygen-Sensitive Probes. Toxicol. Sci. Off. J. Soc. Toxicol. 2006,
92, 186–200. [CrossRef]

335. Bell, C.C.; Hendriks, D.F.G.; Moro, S.M.L.; Ellis, E.; Walsh, J.; Renblom, A.; Fredriksson Puigvert, L.; Dankers, A.C.A.; Jacobs, F.;
Snoeys, J.; et al. Characterization of Primary Human Hepatocyte Spheroids as a Model System for Drug-Induced Liver Injury,
Liver Function and Disease. Sci. Rep. 2016, 6, 25187. [CrossRef]

http://doi.org/10.1016/B978-0-12-801415-8.00013-8
http://www.ncbi.nlm.nih.gov/pubmed/25416361
http://doi.org/10.1038/nmeth.1212
http://www.ncbi.nlm.nih.gov/pubmed/18469822
http://doi.org/10.1038/nmeth866
http://doi.org/10.1073/pnas.0904764106
http://doi.org/10.1073/pnas.0400417101
http://doi.org/10.1073/pnas.051636098
http://doi.org/10.3390/s131216736
http://doi.org/10.1074/jbc.M306766200
http://doi.org/10.1021/ja202902d
http://doi.org/10.1038/nn.3126
http://www.ncbi.nlm.nih.gov/pubmed/22634730
http://doi.org/10.1038/nrg3642
http://www.ncbi.nlm.nih.gov/pubmed/24434847
http://doi.org/10.1007/s00109-014-1233-3
http://doi.org/10.1517/17460441.3.6.655
http://www.ncbi.nlm.nih.gov/pubmed/23506147
http://doi.org/10.1016/j.cca.2006.06.018
http://doi.org/10.1016/0925-4439(92)90014-E
http://doi.org/10.1055/s-2001-19037
http://doi.org/10.1124/jpet.107.131185
http://doi.org/10.3748/wjg.v20.i42.15539
http://doi.org/10.1016/j.mito.2005.10.004
http://www.ncbi.nlm.nih.gov/pubmed/16406828
http://doi.org/10.1055/s-2002-30100
http://doi.org/10.2174/138945011795528985
http://www.ncbi.nlm.nih.gov/pubmed/21275886
http://doi.org/10.1016/j.jhep.2021.06.021
http://www.ncbi.nlm.nih.gov/pubmed/34171436
http://doi.org/10.1111/bcpt.12804
http://doi.org/10.1016/j.tiv.2007.01.011
http://www.ncbi.nlm.nih.gov/pubmed/17346924
http://doi.org/10.1093/toxsci/kfj208
http://doi.org/10.1038/srep25187


Int. J. Mol. Sci. 2022, 23, 3315 36 of 37

336. Gaskell, H.; Sharma, P.; Colley, H.E.; Murdoch, C.; Williams, D.P.; Webb, S.D. Characterization of a Functional C3A Liver Spheroid
Model. Toxicol. Res. 2016, 5, 1053–1065. [CrossRef]

337. Vilas-Boas, V.; Gijbels, E.; Leroy, K.; Pieters, A.; Baze, A.; Parmentier, C.; Vinken, M. Primary Human Hepatocyte Spheroids as
Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int. J. Mol. Sci. 2021, 22, 11005. [CrossRef]

338. Bouwmeester, M.C.; Bernal, P.N.; Oosterhoff, L.A.; van Wolferen, M.E.; Lehmann, V.; Vermaas, M.; Buchholz, M.-B.; Peiffer, Q.C.;
Malda, J.; van der Laan, L.J.W.; et al. Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies. Macromol.
Biosci. 2021, 21, e2100327. [CrossRef] [PubMed]

339. Godoy, P.; Hewitt, N.J.; Albrecht, U.; Andersen, M.E.; Ansari, N.; Bhattacharya, S.; Bode, J.G.; Bolleyn, J.; Borner, C.; Böttger, J.; et al.
Recent Advances in 2D and 3D in Vitro Systems Using Primary Hepatocytes, Alternative Hepatocyte Sources and Non-
Parenchymal Liver Cells and Their Use in Investigating Mechanisms of Hepatotoxicity, Cell Signaling and ADME. Arch. Toxicol.
2013, 87, 1315–1530. [CrossRef]

340. Beckwitt, C.H.; Clark, A.M.; Wheeler, S.; Taylor, D.L.; Stolz, D.B.; Griffith, L.; Wells, A. Liver “Organ on a Chip”. Exp. Cell Res.
2018, 363, 15–25. [CrossRef]

341. Kuna, L.; Bozic, I.; Kizivat, T.; Bojanic, K.; Mrso, M.; Kralj, E.; Smolic, R.; Wu, G.Y.; Smolic, M. Models of Drug Induced Liver
Injury (DILI)—Current Issues and Future Perspectives. Curr. Drug Metab. 2018, 19, 830–838. [CrossRef] [PubMed]

342. Schwenger, K.J.; Clermont-Dejean, N.; Allard, J.P. The Role of the Gut Microbiome in Chronic Liver Disease: The Clinical Evidence
Revised. JHEP Rep. Innov. Hepatol. 2019, 1, 214–226. [CrossRef] [PubMed]

343. Philips, C.A.; Augustine, P.; Yerol, P.K.; Ramesh, G.N.; Ahamed, R.; Rajesh, S.; George, T.; Kumbar, S. Modulating the Intestinal
Microbiota: Therapeutic Opportunities in Liver Disease. J. Clin. Transl. Hepatol. 2020, 8, 87–99. [CrossRef]

344. Zheng, Z.; Wang, B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and
Regeneration. Front. Immunol. 2021, 12, 775526. [CrossRef]

345. Lee, S.Y.; Sung, J.H. Gut-Liver on a Chip toward an in Vitro Model of Hepatic Steatosis. Biotechnol. Bioeng. 2018, 115, 2817–2827.
[CrossRef]

346. Jeon, J.-W.; Lee, S.H.; Kim, D.; Sung, J.H. In Vitro Hepatic Steatosis Model Based on Gut-Liver-on-a-Chip. Biotechnol. Prog. 2021,
37, e3121. [CrossRef]

347. Tang, L. In Vitro Intestine Model for Gut Microbiome. Nat. Methods 2019, 16, 578. [CrossRef] [PubMed]
348. Biagini, F.; Calvigioni, M.; Lapomarda, A.; Vecchione, A.; Magliaro, C.; De Maria, C.; Montemurro, F.; Celandroni, F.; Mazzantini,

D.; Mattioli-Belmonte, M.; et al. A Novel 3D in Vitro Model of the Human Gut Microbiota. Sci. Rep. 2020, 10, 21499. [CrossRef]
[PubMed]

349. Zhao, P.; Peng, Y.; Xu, X.; Wang, Z.; Wu, Z.; Li, W.; Tang, Y.; Liu, G. In Silico Prediction of Mitochondrial Toxicity of Chemicals
Using Machine Learning Methods. J. Appl. Toxicol. 2021, 41, 1518–1526. [CrossRef] [PubMed]

350. Lin, Y.-T.; Lin, K.-H.; Huang, C.-J.; Wei, A.-C. MitoTox: A Comprehensive Mitochondrial Toxicity Database. BMC Bioinform. 2021,
22, 369. [CrossRef] [PubMed]

351. Luechtefeld, T.; Hartung, T. Computational Approaches to Chemical Hazard Assessment. ALTEX 2017, 34, 459–478. [CrossRef]
352. Vall, A.; Sabnis, Y.; Shi, J.; Class, R.; Hochreiter, S.; Klambauer, G. The Promise of AI for DILI Prediction. Front. Artif. Intell. 2021,

4, 638410. [CrossRef] [PubMed]
353. Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.;

Schmieder, P.K.; et al. Adverse Outcome Pathways: A Conceptual Framework to Support Ecotoxicology Research and Risk
Assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [CrossRef]

354. Vinken, M. The Adverse Outcome Pathway Concept: A Pragmatic Tool in Toxicology. Toxicology 2013, 312, 158–165. [CrossRef]
355. Vinken, M.; Knapen, D.; Vergauwen, L.; Hengstler, J.G.; Angrish, M.; Whelan, M. Adverse Outcome Pathways: A Concise

Introduction for Toxicologists. Arch. Toxicol. 2017, 91, 3697–3707. [CrossRef]
356. Vinken, M. Adverse Outcome Pathways and Drug-Induced Liver Injury Testing. Chem. Res. Toxicol. 2015, 28, 1391–1397.

[CrossRef]
357. Gijbels, E.; Vilas-Boas, V.; Annaert, P.; Vanhaecke, T.; Devisscher, L.; Vinken, M. Robustness Testing and Optimization of an

Adverse Outcome Pathway on Cholestatic Liver Injury. Arch. Toxicol. 2020, 94, 1151–1172. [CrossRef]
358. Horvat, T.; Landesmann, B.; Lostia, A.; Vinken, M.; Munn, S.; Whelan, M. Adverse Outcome Pathway Development from Protein

Alkylation to Liver Fibrosis. Arch. Toxicol. 2017, 91, 1523–1543. [CrossRef]
359. Burden, N.; Sewell, F.; Andersen, M.E.; Boobis, A.; Chipman, J.K.; Cronin, M.T.D.; Hutchinson, T.H.; Kimber, I.; Whelan, M.

Adverse Outcome Pathways Can Drive Non-Animal Approaches for Safety Assessment. J. Appl. Toxicol. JAT 2015, 35, 971–975.
[CrossRef] [PubMed]

360. Vinken, M.; Kramer, N.; Allen, T.E.H.; Hoffmans, Y.; Thatcher, N.; Levorato, S.; Traussnig, H.; Schulte, S.; Boobis, A.; Thiel, A.; et al.
The Use of Adverse Outcome Pathways in the Safety Evaluation of Food Additives. Arch. Toxicol. 2020, 94, 959–966. [CrossRef]
[PubMed]

361. Fontana, R.J. Pathogenesis of Idiosyncratic Drug-Induced Liver Injury and Clinical Perspectives. Gastroenterology 2014,
146, 914–928. [CrossRef] [PubMed]

362. Tolosa, L.; Jiménez, N.; Pérez, G.; Castell, J.V.; Gómez-Lechón, M.J.; Donato, M.T. Customised in Vitro Model to Detect Human
Metabolism-Dependent Idiosyncratic Drug-Induced Liver Injury. Arch. Toxicol. 2018, 92, 383–399. [CrossRef] [PubMed]

363. Uetrecht, J. Mechanistic Studies of Idiosyncratic DILI: Clinical Implications. Front. Pharmacol. 2019, 10, 837. [CrossRef]

http://doi.org/10.1039/C6TX00101G
http://doi.org/10.3390/ijms222011005
http://doi.org/10.1002/mabi.202100327
http://www.ncbi.nlm.nih.gov/pubmed/34559943
http://doi.org/10.1007/s00204-013-1078-5
http://doi.org/10.1016/j.yexcr.2017.12.023
http://doi.org/10.2174/1389200219666180523095355
http://www.ncbi.nlm.nih.gov/pubmed/29788883
http://doi.org/10.1016/j.jhepr.2019.04.004
http://www.ncbi.nlm.nih.gov/pubmed/32039372
http://doi.org/10.14218/JCTH.2019.00035
http://doi.org/10.3389/fimmu.2021.775526
http://doi.org/10.1002/bit.26793
http://doi.org/10.1002/btpr.3121
http://doi.org/10.1038/s41592-019-0489-5
http://www.ncbi.nlm.nih.gov/pubmed/31249420
http://doi.org/10.1038/s41598-020-78591-w
http://www.ncbi.nlm.nih.gov/pubmed/33299026
http://doi.org/10.1002/jat.4141
http://www.ncbi.nlm.nih.gov/pubmed/33469990
http://doi.org/10.1186/s12859-021-04285-3
http://www.ncbi.nlm.nih.gov/pubmed/34266386
http://doi.org/10.14573/altex.1710141
http://doi.org/10.3389/frai.2021.638410
http://www.ncbi.nlm.nih.gov/pubmed/33937745
http://doi.org/10.1002/etc.34
http://doi.org/10.1016/j.tox.2013.08.011
http://doi.org/10.1007/s00204-017-2020-z
http://doi.org/10.1021/acs.chemrestox.5b00208
http://doi.org/10.1007/s00204-020-02691-9
http://doi.org/10.1007/s00204-016-1814-8
http://doi.org/10.1002/jat.3165
http://www.ncbi.nlm.nih.gov/pubmed/25943792
http://doi.org/10.1007/s00204-020-02670-0
http://www.ncbi.nlm.nih.gov/pubmed/32065296
http://doi.org/10.1053/j.gastro.2013.12.032
http://www.ncbi.nlm.nih.gov/pubmed/24389305
http://doi.org/10.1007/s00204-017-2036-4
http://www.ncbi.nlm.nih.gov/pubmed/28762043
http://doi.org/10.3389/fphar.2019.00837


Int. J. Mol. Sci. 2022, 23, 3315 37 of 37

364. Ballotin, V.R.; Bigarella, L.G.; de Mello Brandão, A.B.; Balbinot, R.A.; Balbinot, S.S.; Soldera, J. Herb-Induced Liver Injury:
Systematic Review and Meta-Analysis. World J. Clin. Cases 2021, 9, 5490–5513. [CrossRef]

365. Frenzel, C.; Teschke, R. Herbal Hepatotoxicity: Clinical Characteristics and Listing Compilation. Int. J. Mol. Sci. 2016, 17, 588.
[CrossRef]
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