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Abstract: Mesenchymal stem cells (MSCs) are classified as advanced therapy medicinal products,
a new category of GMP (good manufacturing practice)-compliant medicines for clinical use. We
isolated MSCs from 5 bone marrow (BM) samples using human platelet lysate (HPL) instead of
foetal bovine serum (FBS). We used a new method of HPL production consisting of treating platelet
(PLTs) pools with Ca-Gluconate to form a gel clot, then mechanically squeezing to release growth
factors. We compared the new HPL (HPL-S) with the standard (HPL-E) obtained by freezing/thawing
cycles and by adding heparin. HPL-S had not PLTs and fibrinogen but the quantity of proteins and
growth factors was comparable to HPL-E. Therefore, HPL-S needed fewer production steps to be
in compliance with GMP conditions. The number of colonies forming unit-fibroblasts (CFU-F) and
the maintenance of stem markers showed no significant differences between MSCs with HPL-E and
HPL-S. The cumulative population doubling was higher in MSCs with HPL-E in the earlier passages,
but we observed an inverted trend of cell growth at the fourth passage. Immunophenotypic analysis
showed a significant lower expression of HLA-DR in the MSCs with HPL-S (1.30%) than HPL-E
(14.10%). In conclusion, we demonstrated that HPL-S is an effective alternative for MSC production
under GMP conditions.

Keywords: mesenchymal stem cells; human platelet lysate; GMP

1. Introduction

Medicine and biology have made many advances in cell therapy, and studies have
shown that mesenchymal stem cells (MSCs) are ideal actors in the field of regenerative
medicine and in the treatment of chronic degenerative diseases [1–4]. MSCs represent
a very small percentage of the cells of the whole organism but they are distributed in
almost all body organs [5]. However, bone marrow is the main source from which it
is easy to isolate MSCs [6]. The minimal criteria for defining MSCs is outlined by the
International Society for Cellular Therapy (ISCT) [7], who they define MSCs as multipotent
adult stem cells present in various tissues, such as bone marrow, umbilical cord and fat
tissue. They are characterized on the basis of their capability for self-renewing, adhesion
and differentiation in cell lines such as osteoblasts, adipocytes and chondroblasts in vitro.
As MSCs are multipotent cells, they are widely used in the treatment of various diseases
due to their self-renewal, differentiation and immuno-modulatory properties through
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the release of exosomes and micro-vesicles containing numerous cytokines and growth
factors [8]. The immunomodulatory properties of MSCs have been investigated extensively,
although nowadays the exact mechanism of actions are not well-defined. Some studies
have also shown the ability of MSCs to absorb huge amounts of chemotherapy drugs and
to release them in a diseased area with exosomes [9].

The use of cells or tissues in cell therapy has led to the definition of a new category
of medicines applied to the treatment of acquired or hereditary diseases: the advanced
therapy medicinal products (ATMP), defined as preparations in which the main biological
action is carried out by cells or tissues.

The production of ATMPs for clinical trials is subject to rigorous controls and regula-
tory requirements, which define the quality and safety criteria of the medicinal products
and require their production in controlled and accredited institutions and agencies, in Italy,
for example, by the Italian Medicines Agency (AIFA). Quality and safety must be guaran-
teed at each step of the production process: donation, isolation, expansion, quality control
of manufacturing, conservation, storage and distribution. Good manufacturing practices
(GMP) are the guidelines that describe the quality requirements for the production, quality
control and release of a pharmaceutical product that also includes ATMPs. The purpose of
GMPs is to ensure that a drug is produced, controlled and released by a certified quality
system, in order to minimize the risks for patients [10].

GMP compliance is required by the European Directive 2003/24/EC, by the Italian
Legislative Decree 219/2006, which acknowledges the indications, and by the European
Regulation 1394/2007/CE. Significantly, Regulation 1394 establishes that ATMPs, including
gene or cell therapies, are considered pharmaceutical products and are therefore subject to
the guidelines governing GMPs. In addition, the European Directive 2001/20/EC and the
Italian Legislative Decree 211/2003 also require the application of GMPs for pharmaceutical
products undergoing clinical trial [11–13].

Process validation represents an important phase in the development of a medicine,
in which the use of culture medium, additives and materials that can compromise the
safety of medicines should be taken in account. The use of animal additives, for example,
increases the risk of transmission of pathogens, which must clearly be considered in a
careful risk analysis and in evaluating the use of alternative additives. The addition of
human components to the culture medium instead of animal derivatives makes the cell
expansion process compliant with GMP guidelines. To avoid using any animal products
and to have a safe human product, we validated our MSC production in GMP conditions
using human platelet lysate (HPL) inactivated with psoralen or riboflavin [14] as a substitute
for foetal bovine serum (FBS), and we demonstrated how they preserve their multipotent
and immunomodulant capacity [15]. HPL is rich in growth factors, cytokines and plasma
proteins obtained from a pool of donor platelets (PLT) and also undergoes an inactivation
process through the addition of psoralen or riboflavin to eliminate the possible presence
of viral or bacterial nucleic acids. The standard production of HPL (HPL-E) consists of
repeated freezing and thawing cycles of the platelet pool in order to release the growth
factors contained within their granules and the addition of heparin to avoid the formation
of gel in the culture medium [16,17]. The culture medium still requires numerous filtrations
because, despite the addition of heparin, the formation of aggregates and debris deriving
from HPL has been noted. However, these additional steps can pose a problem during
extensive cell expansion under GMP conditions. Therefore, an alternative method for the
production of HPL (HPL-S), which consists of making platelets coagulate through the
addition of Ca-Gluconate and the subsequent mechanical wringing of the clot without the
addition of heparin, could be fundamental for any extensive production of MSCs under
GMP conditions. The result of this new method would be a much more limpid product than
the standard and therefore the culture medium would not require numerous filtrations,
thus eliminating many additional steps. A further advantage is that we are able to improve
the safety of cell manipulation in GMP condition. The aim of this work was to verify if



Int. J. Mol. Sci. 2022, 23, 3234 3 of 16

the new GMP method of HPL-S production is effective and preserves the characteristics of
BM-MSCs when isolated from bone marrow (BM-MSCs).

2. Results and Discussions

This work investigated the effect HPL-S had on BM-MSCs when compared to HPL-E,
which we considered standard HPL after having validated it as a good substitute for FBS in
BM-MSCs isolation and expansion [14,15]. We performed a comparison between HPL-E and
S using bone marrow sample, which is considered the main source of MSCs in our expertise.
We investigated if the new HPL-S could be used for cell culture without the addition of
heparin and filtration. This treatment could be very useful to avoid potential risks for
patients during the manipulation of the cells, because this allows for the elimination of any
animal-derived products and less manipulation under GMP conditions. We isolated MCSs
from the waste bags of BM-related donors. All the BM donors were young and healthy as
shown in Table 1.

Table 1. MSCs donors’ age and sex.

ID BM-MSC Age Sex

BM-MSC-01 20 Male

BM-MSC-02 23 Male

BM-MSC-03 48 Male

BM-MSC-04 22 Male

BM-MSC-05 40 Male

First, we investigated if the treatment of Ca-Gluconate could interfere with the chem-
ical characteristic and the growth factor release, then if the new HPL was effective in
supporting the growth of MSCs.

2.1. HPL Production and Analysis

HPL was produced by the same pool of PLTs split into 2 bags and frozen at −30 C◦.
After thawing, the HPL-E appeared with debris and fragments that could have been
platelet fragments, whereas the HPL-S appeared limpid and without debris, as shown in
Figure 1A,C. In HPL-E, we added 200 IU/mL of heparin, and then both the HPL bags
were divided into small aliquots and stored at −20 ◦C, ready to be used after thawing.
Although the medium with HPL-S did not require filtration, we routinely filtered it to treat
the two HPLs in the same way at the moment of the medium preparation. Although we
observed the presence of debris and aggregates after filtration in the medium, as shown in
Figure 1B,E, and then also in the culture observing the cells at the microscope during the
expansion, as illustrated in Figure 1C,F.

2.1.1. Biochemical Analysis

The HPL batches were prepared from a pool of platelets from 10 donors. Their chemical
analysis revealed that the mean of PLT present in the samples was 1037.25 (×103/µL). After
standard treatment in the HPL-E, a residual PLT concentration persisted, because the
PLT concentration was a mean of 72.50 with a SEM of 14.40 × 103/µL, while in HPL-S,
PLT was almost completely absent (mean value with SEM was 0.75 ± 0.75 × 103/µL),
as seen in Figure 2A. To verify if the treatment of Ca-Gluconate could interfere with the
protein content, an evaluation of total proteins was performed, and we obtained a mean
of 5.35 ± 0.75 g/dL and 5.025 ± 0.53 g/dL, respectively, in HPL-E and HPL-S, without
statistically significant differences (Figure 2B). The absence of the fibrinogen in the HPL-S
confirmed the effect of the treatment with Ca-Gluconate, while, in the HPL, a significant
presence persisted (80.50 ± 10.65 mg/dL), as shown in Figure 2C.



Int. J. Mol. Sci. 2022, 23, 3234 4 of 16

Figure 1. Pictures of HPL-E (A) or HPL-S (D) after thawing and of the medium Alpha MEM with
HPL-E (B) or HPL-S (E) two days after the preparation and filtration, and representative microscopic
observations of the MSCs in the BM-MSCs in HPL-E (C) and in HPL-S (F) during the culture
(Magnification 10×), focusing on the debris. Red circles are placed on evidence of platelet aggregates
and debris present only in the HPLE condition.

Figure 2. Chemical analyses performed in HPL-E (blue column) and in HPL-S (red column). Each
column represents the mean with SEM of 4 batches of each HPL. No significant differences were
observed between HPL-E and HPL-S in total proteins (B), but the absence of fibrinogen (C) and
total PLTs (A) were significant in HPL-S in comparison with HPL-E. * and ** indicate, respectively, a
significant (p < 0.05) and a highly significant (p < 0.01) difference.

The absence of fibrinogen in the HPL-S was related to their manipulation performed
during the wringing of the PTL lysate that eliminated much more PLT residue. These results
demonstrated an advantage of HPL-S versus the standard HPL for the following reasons:

(1) The HPL-S was more limpid, and no debris was present.
(2) No heparin was added to avoid the coagulation of the medium through the clumping

of the fibrinogen in the HPL.
(3) No filtration was needed for the culture media, and therefore no additional manipula-

tion occurred under GMP conditions.



Int. J. Mol. Sci. 2022, 23, 3234 5 of 16

2.1.2. Growth Factor Analysis

To verify if the treatment with Ca-Gluconate could also interfere with the release of
growth factors, ELISA assay was performed on both HPLs. The relation coefficient R2
value of the standard curve was more than 0.96 for each analysed growth factor. In one
batch of both HPL, we found some non-detectable results for EGF and FGF. The results
for EFG, VEGF, FGF, PDGF were reported as a mean with SEM in Figure 3. We observed
a light decrease of protein quantity and the release of growth factors such as EGF, VEGF,
PDGF, FGF, but overall, no statistically significant differences were reported, demonstrating
that the treatment with Ca-Gluconate did not modify the release of proteins and growth
factors. These results showed that HPL-S can be used instead of HPL-E for the isolation
and expansion of BM-MSCs under GMP conditions. In addition, IFN-γ was researched,
but no release was detected in both HPLs.

Figure 3. Growth factor release in HPL-E and HPL-S. Each column represents the means with SEM
of 4 batches of each HPL. No significant differences were observed between HPL-E and HPL-S.

2.2. Sample Collection and Colony-Forming Unit Fibloblastoids

We verified if HPL-S was able to support the growth of MSCs on a large scale by
comparing the new HPL with standard HPL (HPL-E) in the five production batches
of BM-MSCs.

The MSCs were isolated from the BM collection of healthy donors with a median age
of 23 years (range: 20–48 years). Details of donors’ characteristics are described in Table 1.
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Adherent fibroblastoid colonies were observed in all of the batches with fibroblastic
morphology after 7 days of culture, as shown in Figure 4A,B. The appearance of the colonies
showed a higher concentration of cells in HPL-E than in HPL-S, without differences in
morphology (Figure 4A,B). Although the number of CFU-F was always higher in BM-
MSCs cultivated in HPL-E compared to BM-MSCs in HPL-S, a paired t-test did not show
any statistically significant differences. The mean with SEM of CFU-F/106 cells was
127.00 ± 37.93 and 92.00 ± 32.47 in BM-MSCs cultivated, respectively, in HPL-E and in
HPL-S (Figure 4C), without statistical differences.

Figure 4. Representative phase images at 5× magnification of CFU-Fs after 7 days from seeding.
CFU morphology of BM-MSCs cultivated in HPL-E (A) and in HPL-S (B). In (C), blue and red dots
report CFU-F/106 cells of BM-MSCs batches with HPL-E and HPL-S, respectively. No significant
differences were observed.

2.3. Cellular Growth

Because the clonogenic potential is extremely variable for each donor, we also consid-
ered cell growth expansion.

Cells at confluence were detached after a mean of 16.80 days (with a SEM of 1.241) at
the first passage and then at the second, third and fourth passages after 14.40 days ± 2.62,
11.00 ± 0.55 and 20.67 ± 0.33, respectively. Although a lower trend was observed in BM-
MSCs cultivated in HPL-S, with an inversion of the trend in the last passage, both conditions
led them to expand significantly over time without statistically significant differences, as
demonstrated by ANOVA in multi-comparison analyses (p > 0.05) and as shown in Figure 5.
The cell proliferative capacity during expansion was expressed as population doubling (PD)
using the following formula: Log10N/Log102, where N was the cell number of the detached
cells divided by the initial number of seeded cells. The mean of errors of cumulative PD
obtained at each passage are summarized in Table 2.

Table 2. Cumulative PD of BM-MSCs obtained at each passage during expansion in HPL-E and
HPL-S. Data are expressed as means with the standard error of 5 experiments.

HPL-E_p2 HPL-S_p2 HPL-E_p3 HPL-S_p3 HPL-E_p4 HPL-S_p4 HPL-E_p5 HPL-S_p5

Mean 3.66 1.84 6.1 5.35 8.49 6.89 8.59 10.27

Std. Error of Mean 1.08 1.68 1.38 1.87 1.53 0.67 2.48 0.90

In GMP conditions, MSC production usually is not performed past the third pas-
sage [18], but we continued the expansion until the fifth passage to evaluate if HPL-S
supports growth over time. No more passages were needed for our aim.

2.4. Immunophenoipic Analysis

To verify that expanded cells, in both HPLs, were MSCs, we performed an immunophe-
notype at p2 as suggested by the International Society for Cell and Gene Therapy for defin-
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ing multipotent mesenchymal stromal cells [7]. As seen in Figure 6, the immunophenotype
analysis showed positivity for CD105, CD73 and CD90 and negativity for CD45-34–14
and CD19 in cells cultured with HPL-E and HPL-S, without any differences. We noticed a
very significant difference (p = 0.015) in the expression of CD146 that is higher in MSCs
treated with HPL-S (>50%) with respect to those treated with HPL-E (<30%). Moreover,
we observed a significant difference for the expression level of HLA-DR in HPL-E, with
an expression of 17.27% ± 5.91 compared to 0.54% ± 0.16 of those cultured with HPL-S.
Contrary to the minimal criteria proposed by the International Society for Cell and Gene
Therapy for defining multipotent mesenchymal stromal cells (MSC), HLA-DR expression
was analysed and used only for informative purposes but not for product release because
it is largely unpredictable in ex vivo-expanded clinical-grade cultures [19]. In previous
studies, we also observed a high expression of HLA-DR in MSCs cultivated in standard
HPL, and, because IFN-γ could interfere with the expression of HLA-DR, we tested the
release of IFN-γ in the 2 HPLs with ELISA, which resulted in the complete absence of
IFN-γ. For this reason, we hypothesize that the presence of some residue PLTs could be
responsible for the presence of HLA-DR on the MSCs that they do not normally express.

Figure 5. Cellular growth expressed as cumulative PD from 2nd to 5th passages during expansion on
BM-MSC cultivated in HPL-E (blue curve) and HPL-S (red curve).

The absence of HLA-DR in BM-MSCs cultivated in HPL-S guarantees their compliant
characterization as MSCs, giving them a higher immunological privilege for allogenic
clinical use. On the other hand, we saw a very significant difference in the expression level
for CD146. Those cells, cultured with HPL-S data, demonstrated a higher level of CD146.
Recently, Bowles et al. [20] demonstrated that CD146 + BM-MSCs had a markedly higher
secretory capacity with significantly greater immunomodulatory and anti-inflammatory
protein production upon inflammatory priming compared with the CD146- BM-MSCs. For
this reason, we will investigate the immunomodulant properties of MSCs isolated in the
two HPLs.
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Figure 6. Immunophenotype analysis. Values are expressed as mean percentage ± SEM of positive
cells for MSC antigen expression in histogram bars (top panel). Cells were analyzed at the 2nd
passage for each experimental condition (n = 5), and a representative cytofluorimetric analysis is
illustrated in the bottom panel. * and *** indicate, respectively, a significant (p < 0.05) and a very
highly significant (p < 0.001) difference.

2.5. Differentiation Capacity

We also analyse the multipotent capacity of BM-MSCs isolated in the two HPLs. After
induction with specific culture medium, we were able to differentiate all batches of BM-
MSCs in osteoblasts, adipocytes and chondrocytes, as shown in a representative experiment
in Figure 7. No differences were identified in our experiments.
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Figure 7. MSC differentiation potential assay after specific induction in MSCs. Representative images
of oil red O staining (A,B) showing intracytoplasmic vacuoles in adipocytes, Von Kossa staining
(C,D) showing the presence of calcium oxalates in osteoblasts, and Alcian blue (E,F) showing the
hyaluronic acid for chondrocytes, respectively, in HPL-E (left images) and HPL-S (right images).

2.6. Stem Cell Marker Expression

To determine if MSCs cultivated in the 2 HPLs maintained their stemness through each
passage, from p0 to p4, we evaluated the expression level of NANOG, OCT-4, SOX-2 and
stem cell markers. A real-time PCR was performed on five MSC samples. No significant
differences between BM-MSCs cultivated in HPL-E and HPL-S were observed in gene
expression at any cell passage (Figure 8), meaning that both cell lines displayed similar
stemness phenotype that was steadily maintained during the in vitro culture.

Because various protocols for HPL generation are available from the literature [16], the
International Society of Blood Transfusion (ISBT) has recently focused on HPL production
methods and proposed recommendations on manufacturing and quality management in
line with current technological innovations and regulations of biological products and
advanced therapy medicinal products [21]. Our data confirmed that HPL-S could be a valid
substitute for HPL-E and a new method to validate MSC production in GMP conditions.
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Figure 8. Stem cell markers analyses by RT-PCR: NANOG (A), Oct-3/4 (B) and Sox-2 (C) expression
is shown as means with SEM of five experiments in HPL-E (blue columns) and HPL-S (red columns)
at different passages. No significant differences were observed between the HPLs and between
the passages.

3. Materials and Methods
3.1. HPL Production and Analysis
3.1.1. HPL Production

Each HPL batch was prepared from two buffy-coat derived platelet concentrates (BC-PCs).
In detail, five O-group BCs were pooled with one AB-group plasma, then centrifuged

and automatically separated through a leukoreduction filter (TACSI system, Terumo BCT
Europe, N.V. Zaventem, Belgium) to obtain the platelet concentrate (PC) (pooling of 10 units
of platelet concentrates from buffy coat (BC) pools. Each PC was prepared by pooling
5 units of BC group 0 and one unit of plasma group AB).

The BC-PCs units were then inactivated by the Mirasol PRT system (Terumo BCT,
Lakewood, CO, USA). Briefly, after the addition of 35 mL of riboflavin solution (500 µM
riboflavin in 0.9% sodium chloride solution), the BC-PC unit was placed into the illuminator
and exposed to UV light (6.24 J/mL) with continuous horizontal shaking.

Following the treatment procedure, two BC-PC units were pooled and split into two
aliquots for the production of HPL-E and HPL-S. Samples were taken from each unit to
perform a platelet count (HPL pre).
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The HPL-E was produced by platelet lysis, induced by three freeze/thaw cycles
(−30 ◦C/37 ◦C) and platelet fragments depletion by centrifugation (5300× g, 8 min). Sam-
ples were taken before cryopreservation and stored at −30 ◦C for platelet count and
sterility testing.

The HPL-S was produced by treating platelets with 20 mL of Ca-gluconate (1000 mg/10 mL)
and heating the bag unit to 37 ◦C until clots formed. The coagulated medium was then cen-
trifuged (5300× g, 8 min) and squeezed to recover a clear supernatant that only contained
growth factors without platelet fragments. Samples were taken before cryopreservation
and stored at −30 ◦C for platelet count and sterility testing.

3.1.2. Biochemical Analysis

Platelets were counted in Sysmex XE2100.
A quantitative determination of total proteins was performed by colorimetric test with

a Roche/Hitachi cobas c system.
Plasma coagulation factors assays were carried out using the automated coagulation

analyser ACL (Werfen, Instrumentation Laboratory, Barcelona, Spain).
Factor VIII activity was measured using the activated partial thromboplastin time

(APTT) method and a factor-deficient substrate. The sample was combined and incubated
with a factor VIII-deficient substrate (normal plasma depleted of factor VIII by immunoad-
sorption) and an APTT reagent. After an established incubation time period, calcium
was added to trigger the coagulation process in the mixture. Then the time frame to clot
formation was measured optically at a wavelength of 671 nm.

Fibrinogen concentration was measured by the Clauss fibrinogen assay.
The sample, containing fibrinogen, was mixed with a reagent containing excess throm-

bin. The excess thrombin converts the fibrinogen in the sample to fibrin. The amount of
time it takes to form a clot is inversely proportional to the amount of fibrinogen present in
the sample.

A fibrinogen reference curve was plotted from the clotting time results of the known
reference plasma dilutions that expressed different fibrinogen values. The concentration of
fibrinogen in plasma samples was determined by comparing clotting time values to the
reference curve.

3.1.3. Growth Factor Analysis

An aliquot of each HPL was collected for the evaluation of concentration levels of
VEGF, PDGF, EGF and FGF.

IFN-γ was also analysed to evaluate if its presence can modulate HLA-DR, as shown
in Guess et al. [22].

The analysis was performed using an ELISA kit (Invitrogen, ELISA Assay), following
the manufacturer’s instructions.

Briefly, 50–100 µL of standards and samples were plated in duplicate on a well that
was already coated with the antibody and incubated at room temperature (RT) for 2–3 h.
Four washes were performed and then 50–100 µL of biotinylated antibody 1× for 1 h at
RT were added and incubated for 1 h at RT. A further four washes were performed before
adding streptavidin-horseradish peroxidase. At the end of the procedure, we washed it four
times and incubated with an appropriate stabilized chromogen, conferring a colouring, on
reaction, with an intensity (evaluated with a spectrophotometer at wavelength of 450 nm)
directly proportional to the factor concentration. Data were expressed as the concentration
in picograms per millilitre.

3.2. Sample Collection and Cell Cultures

Samples were obtained from the collection of bone marrow (BM) by washing the
post-infusion waste bag. The samples were named BM-MSC-1, BM-MSC-2 and BM-MSC-3.
Each sample was cultivated in two parallel cultures with Alpha Medium (Sigma Aldrich,
St. Louis, MI, USA), 1% of L-glutammine, 1% of pen/streptomycin and 10% of HPL-E or
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HPL-S, respectively. During their expansion, the cells were kept in an incubator at 37 ◦C
and 5% CO2. At the initial seeding the cells were plated at 1 × 104 cells/cm2, and, 7 days
later, the original medium with non-adhered cells was removed. A medium change was
performed every 2–3 days. When the cells reached around 80% of confluence, they were
detached using trypsin (trypsin/EDTA, Sigma-Aldrich, St. Louis, MI, USA) for 5 min at
37 ◦C in incubator. From the first step onwards, they were plated at a concentration of
1 × 103 cells/cm2.

At each step, the cells were detached, and the following analyses were carried out:
cell count and viability by staining with Trypan blue and counting in a Burker chamber,
immunophenotype analysis by flow cytometry, mRNA extraction for subsequent real-
time PCR and, only at the third step, differentiation induction. After setting up all the
experiments, at each step, the excess on the detached cells was cryopreserved as a cell
suspension in cryovials, in α-MEM 5% of human albumin (Kedrion, Lucca, Italy) and 10%
of dimethyl sulfoxide (DMSO) (Sigma Aldrich, St. Louis).

3.3. Colony-Forming Unit Fibloblasts

To quantify MSC precursors, we performed a colony-forming unit fibroblast (CFU-F)
test. The BM cells were seeded in six well-plates in α-MEM containing 10% HPL-E or HPL-S
at 10,000. After 7–10 days, MSC clonogenic precursors were fixed in acetone methanol
and coloured with the May Grunwald dye in order to proceed to the visual counting of
the colonies. Clusters of >50 cells were considered colonies and scored macroscopically
7–10 days after seeding.

All experiments were performed in duplicate and by two different operators. The
CFU-F means were expressed as fibroblastic clones obtained from 1 million BM cells
(CFU-F/106 cells).

3.4. Count and Cell Viability

The cells were analysed for cell growth by calculating population doubling (PD) with
the following formula: Log10 N/Log10 2, where N (growth rate) is the number of cells
recovered divided by the initial number of cells seeded. Their expansion was expressed in
terms of cumulative PD (cPD).

A vitality assessment was performed at each step during cell expansion.
The cells were counted at optical microscope, using Burker chamber calculation as

indicated in the European Pharmacopoeia (Chapter 2.7.29).

3.5. Immunophenotype Analysis

At each step the characteristic MSC surface markers were analysed by flow cytometry
using the following antibodies: CD90 FITC, CD73 PE, CD105 PC7, CD45-34-14 FITC,
HLA-DR PE, CD19 APC and CD146 APC.

A total of 1 × 106 cells were divided into 5 tubes in aliquots of 100 µL of cell suspension
in buffered saline solution (PBS). The tubes were then incubated for 20 min at 4 ◦C with
the addition of 10 µL of monoclonal antibody conjugated with a fluorochrome (fluorescein
isothiocyanate: FITC, phycoerythrin: PE, allophicocyanine: APC) and were then analysed
using Navios software (Vs. 1.2, Beckman Coulter, Krefeld, Germany). Non-labelled
antibody cells were used as negative control.

3.6. Differentiation Induction

In order to investigate the multipotent capacity of the isolated BM-MSCs, we cultivated
them in specific culture medium inducing osteoblastic, adipogenic and chondrogenic
differentiation (Miltenyi Biotec, Bergisch Gladbach, Germany). The duration of the culture
was 15 days for the osteogenic medium and 21 days for the adipogenic and chondrogenic
media, according to the manufacturer’s instructions.
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3.6.1. Osteoblastic Differentiation

Four aliquots of 45 × 103 cells were grown in 35 mm Petri dishes: two plates were set
up with differentiating medium StemMACS OsteoDiff Media (Miltenyi, Germany), and the
other two were used as control. To verify cell differentiation, after 15 days, differentiated
BM-MSCs were fixed with acetone/methanol (1:1), stained with Van Kossa and observed
morphologically using an optical microscope. The presence of calcium crystals and mineral
deposits was evaluated.

3.6.2. Adipogenic Differentiation

Four aliquots of 75 × 103 cells were cultured in 35 mm Petri dishes: two plates were
set up with StemMACS.

AdipoDiff Media differentiation medium (Miltenyi, Germany) and the other two were
used as control. The changing of the medium was performed three times a week, and, after
21 days, cells were fixed with paraformaldehyde (PAF) vapours for 10 min and stained
with oil red O dye. They were morphologically observed using an optical microscope to
evaluate the presence of red lipid vacuoles, the differentiated and coloured cells having red
lipid granules and blue nuclei.

3.6.3. Chondrogenic Differentiation

Aliquots of 25 × 104 cells were resuspended in tubes (it is handy to use 15 mL) in
1 mL of StemMACS ChondroDiff Media differentiation medium (Miltenyi, Germany) and
were grown as a three-dimensional cell aggregation for 21 days by changing the culture
medium three times a week. At the end of the third week the differentiation was evaluated
by Alcian Blue staining.

3.7. Rna Extraction, Reverse Transcription and Real-Time PCR

The stemness of MSCs was evaluated by the expression of specific stemness markers:
Homeobox protein (NANOG), octamer-binding transcription factor 4 (OCT4) and SRY
(sex determining region Y)-box 2 (SOX2), which were analysed by real-time PCR. A total
of 1 × 106 MSCs expanded in the two types of HPL cells were detached at each passage
and centrifuged at 13,200 rpm for 5 min in order to obtain a dry pellet. The pellets were
then stored at −20 ◦C for subsequent total RNA extraction using Purelink RNA mini kit
(Life Technologies Italia, Monza, Italy). The extracted RNA was quantified by QIAxpert
(QI-AGEN, Hilden, Germany), and 200 ng of material was retrotranscribed with SSIV VILO
MASTERMIX W/EZDNASE (Life Technologies Italia, Monza, Italy).

Their RNA was retro-transcribed into cDNA using GeneAmp, PCR System 9700 Thermal
Cycle (Applied Biosystems) under the following conditions: 10 min at 25 ◦C, 10 min at
50 ◦C, 5 min at 85 ◦C.

The cDNAs obtained were stored at −80 ◦C until further amplification.
The relative expression quantification of the selected genes (obtained with Taqman

En-zyme amplification process, StepOne, Real-time PCR System, Thermo Fisher Scientific,
Waltham, MA, USA) was obtained by normalization with the Glyceraldehyde-3-Phosphate
Dehydrogenase housekeeping gene (GAPDH Hs99999905_m1, Thermo Fisher Scientific,
Waltham, MA, USA). The markers used were Nanog (Hs02387400_g1, Thermo Fisher
Scientific, Waltham, MA, USA), Oct-4 (Hs03005111_g1, Thermo Fisher Scientific, Waltham,
MA, USA) and Sox-2 (Hs01053049_s1, Thermo Fisher Scientific, Waltham, MA, USA) and
15 ng of cDNA were amplified in 10 µL of total reaction volume containing:

– 5 µL of Taqman fast advanced mastermix (4444556, Thermo Fisher Scientific, Waltham,
MA, USA),

– 0.5 µL of Taqman Gene ex assays (4453320, Thermo Fisher Scientific, Waltham,
MA, USA),

– 4.5 µL of cDNA,

The reaction mixes were deposited in 96-wells plates using the following conditions:
2 min of hold at 50 ◦C and 2 min of hold at 95 ◦C, followed by 40 cycles of 1 s at 95 ◦C and
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20 s at 60 ◦C. Each sample was analyzed in triplicate. We compared the expression of the
target gene in the different batches using ∆Ct values calculating as [CT target gene—CT
housekeeping gene] during their expansion.

3.8. Statistical Analysis

Statistical analyses were performed with the use of GraphPad Prism statistical software.
The differences between paired samples were evaluated with t-test analysis. We considered
a significant difference if their p value was <0.05.

Comparisons of HPL-E and HPL-S across different groups were done with an unpaired
two tailed t-test or by two-way analyses of variance (ANOVA).

To compare the effect of HPL-E and HPL-S on different groups, a multi-comparison
analysis two-way ANOVA was performed.

4. Conclusions

We can conclude that HPL-S could be a better cell culture supplement for MSC
expansion in GMP conditions. The results obtained in our experiments suggest that we can
introduce HPL-S as a valid alternative for HPL-E while avoiding the addition of heparin
and any animal additive during the production process and furthermore avoiding the
medium filtration step. This contributes to mitigating the risk of contamination during
cell production.

Because our interest in cellular therapy with MSCs is now focused on the production
of secretome and its clinical use, in this study, we have also collected the culture medium
and isolated the secretome as described in Bari et al. [23]. We also analysed the differences
in the secretome isolated from BM-MSCs and expanded in HPL-E and also those in HPL-
S to investigate theirmmunomodulant effects on activated lymphocytes. Furthermore,
we compared the effect of HPL-E and HPL-S on the MSC secretome, analysing their
physical, chemical, immunophenotypic and functional characteristics. We observe that the
secretome produced by MSCs, isolated and cultured with the two different HPLs, did not
show significant characteristics and preserve the paracrine effect and immunomodulant
proprieties on activated lymphocytes [24] (manuscript submitted). All of these data allow
us to identify HPL obtained from a pool of PLTs that underwent Ca-Gluconate treatment,
and the subsequent mechanical wringing of the clot is a good alternative to the standard
HPL and FBS to isolate and expand MSCs on a large scale in GMP condition, preserving
their immunophenotipic, multipotent and immunomodulant characteristics.
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