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Abstract: Corneal epithelial wound healing is a multifaceted process that encompasses cell prolifer-
ation, migration, and communication from the corneal stroma. Upon corneal injury, bidirectional
crosstalk between the epithelium and stroma via extracellular vesicles (EVs) has been reported.
However, the mechanisms by which the EVs from human corneal keratocytes (HCKs), fibroblasts
(HCFs), and/or myofibroblasts (HCMs) exert their effects on the corneal epithelium remain unclear.
In this study, HCK-, HCF-, and HCM-EVs were isolated and characterized, and human corneal
epithelial (HCE) cell migration was assessed in a scratch assay following PKH26-labeled HCK-, HCF-,
or HCM-EV treatment. HCE cells proliferative and apoptotic activity following EV treatment was
assessed. HCF-/HCM-EVs were enriched for CD63, CD81, ITGAV, and THBS1 compared to HCK-EV.
All EVs were negative for GM130 and showed minimal differences in biophysical properties. At
the proteomic level, we showed HCM-EV with a log >two-fold change in CXCL6, CXCL12, MMP1,
and MMP2 expression compared to HCK-/HCF-EVs; these proteins are associated with cellular
movement pathways. Upon HCM-EV treatment, HCE cell migration, velocity, and proliferation
were significantly increased compared to HCK-/HCF-EVs. This study concludes that the HCM-EV
protein cargo influences HCE cell migration and proliferation, and understanding these elements
may provide a novel therapeutic avenue for corneal wound healing.

Keywords: cell–cell communication; cornea; extracellular vesicles (EVs); epithelial cells; fibroblast;
keratocytes; myofibroblast; migration; proteomics; wound healing

1. Introduction

The cornea is the most anterior tissue of the eye that transmits light and provides
protection to the intraocular eye components [1]. The outermost layer consists of the corneal
epithelium, which constitutes the main barrier of protection against injury and infection
by foreign pathogens, fluid loss, and physical and chemical trauma [2]. During corneal
epithelial injury, corneal healing occurs in a multifaceted approach to avoid infection [3];
however, defects in the ability to repair and restore epithelial integrity post-injury can
damage the underlying corneal stroma, leading to diminished corneal transparency and
vision loss [4].

The corneal stroma, which is the backbone of the cornea, is composed of collagenous
lamellae consisting of tightly packed collagen fibrils embedded in a matrix of glycoproteins
(GPs) and proteoglycans (PGs) [5]. The parallel arrangement and uniform spacing that
runs orthogonally are thought to give strength and promote corneal transparency [3,6].
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The (human) corneal keratocytes (HCKs) are a cell population of neural crest-derived,
quiescent mesenchymal cells of the stroma [7], responsible for the secretion of the stromal
extracellular matrix (ECM), including collagen fibrils and PGs. Upon stromal injury, HCKs
are capable of transforming into a repair-phenotype of activated human corneal fibroblasts
(HCFs) [6]. HCFs are a proliferative and migratory cell type that produce repair-type ECM
components, including fibronectin (FN1), proteinases, and cell–ECM adhesion molecules
(integrins) [8,9]. Moreover, some HCFs can further differentiate to human corneal myofi-
broblasts (HCMs) under the synergistic action of serum and transforming growth factor β1
(TGF-β1). HCMs are characterized by increased cell size and alpha smooth muscle actin
(αSMA) expression [10–12]. HCMs are responsible for the increased secretion of matrix
metalloproteinases (MMPs), collagenases, and chemokines that govern ECM remodeling
and collectively mediate wound closure [13]. Nevertheless, persistent HCM onset can lead
to corneal scarring and the loss of corneal transparency.

In the cornea, bidirectional communication between the corneal epithelium and stroma
plays a critical role in corneal wound repair [14], and it is increasingly understood that
cell–cell communication is vital for this process. Precisely, extracellular vesicles (EVs),
which are paracrine mediators, have become an area of growing interest in corneal tissue
biology in relation to physiological and pathological responses to wound healing. Early
research from our laboratory provided initial evidence that EVs are released into the corneal
stroma following a keratectomy [15]. Our investigations have found that epithelial EVs
released by the corneal epithelium can promote neovascularization and are involved in
corneal wound healing [16]. More recently, we have shown that human corneal epithelial
(HCE) cell-derived EVs encapsulated provisional matrix proteins that can trigger fibroblast
differentiation into myofibroblasts [11]. These studies revealed different roles for HCE-EVs
on the corneal stroma; however, there remains a knowledge gap on how HCK-, HCF-, and
HCM-EVs (termed corneal stromal EVs in this study) affect the corneal epithelium during
corneal wound healing.

To date, our understanding of stromal cells, such as adipocytes, fibrocytes, fibroblasts, and
mesenchymal stem cells (MSCs), along with their secreted EVs, has been reported in studies
that mediate disease-exacerbating changes in asthma [17], cancer [18–22], fibrosis [23–25], and
cardiovascular diseases [26–28], but also show the therapeutic action of MSC-EVs by targeting
different tissues, including the lungs, placenta, and thymus [29–37]. By focusing on the cornea,
studies have investigated how corneal MSC-EVs can improve corneal epithelial wound healing,
reduce corneal epithelial defects, and promote scarless stromal recovery post-corneal injury
in vivo [38–41]. These studies revealed a novel application of EVs as therapeutic carriers of
cargo that promotes corneal tissue regeneration. These data support the idea that HCK-, HCF-,
and HCM-EVs remain complex and their mechanistic influence on corneal wound healing in
the corneal epithelium remains unknown.

In this study, we isolated EVs from HCKs, HCFs, and HCMs and characterized their
biophysical and molecular properties in accordance with the International Society of Extra-
cellular Vesicles (ISEV) guidelines [42]. We performed a proteomic analysis and ingenuity
pathway analysis (IPA) to understand the differences in their EV cargo and whether it is
attributed to specific diseases and biological function pathways. Additionally, we treated
HCE cells with different EV treatments to highlight if differences arise in their migratory,
proliferative, and apoptotic activity. Our study shows that HCM-EVs contain protein EV
cargo that may serve to enhance corneal epithelial wound healing. Understanding the
differences in corneal stromal EV repertoires [43–46] will strengthen the knowledge gap
associated with the molecular mechanism(s) involved in corneal wound healing.

2. Materials and Methods
2.1. Cell Culture
2.1.1. Human Corneal Epithelial (HCE) Cells

The immortalized Araki-Sasaki corneal epithelial cell line [47], HCE-TJ, was cultured
and maintained in complete epithelium medium (keratinocyte-SFM (Gibco, Grand Island,
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NY, USA); 0.05 mg/mL bovine pituitary extract (Gibco); 5 ng/mL epithelial growth factor
(Gibco); and 1× antibiotic-antimycotic (Gibco)) at 37 ◦C and 5% CO2.

2.1.2. Human Corneal Keratocytes (HCKs), Fibroblasts (HCFs), and Myofibroblast (HCMs)

Human corneas were obtained from the National Disease Research Interchange (NDRI;
Philadelphia, PA, USA). All research adhered to the tenets of the Declaration of Helsinki.
Cells were isolated and cultured as previously described [10,48]. Once isolated, cells
were plated on 6-well plates and grown to 75% confluency in complete Eagle’s Minimum
Essential Media (EMEM (American Type Culture Collection; Manassas, VA, USA) with
1× antibiotic-antimycotic (Gibco)) and either 1% (HCK media) or 10% (HCF media) fetal
bovine serum (FBS, Atlanta Biologicals; Flowery Branch, GA, USA). For this study, cells
exposed to 1% FBS are referred to as HCKs, denoting the maintenance, at least partially,
of a normal keratocyte phenotype [49–51]. Cells exposed to 10% FBS are referred to as
HCFs, indicating their differentiation from a normal keratocyte phenotype to a fibroblastic
phenotype, as previously demonstrated [9,52]. HCMs were generated by culturing HCFs
in HCF media with 2 ng/mL of TGF-β1 [9–11,16].

2.2. Extracellular Vesicle (EV) Isolation

Isolation and characterization of EVs was in accordance with the minimum informa-
tion for studies of extracellular vesicles (MISEV) published in 2018 [42], as summarized
by ISEV. EVs are characterized by their expression of vesicle-associated proteins (CD63,
CD81, ITGAV) and diameter range of 40–150 nm. In this study, stromal cells (HCKs, HCFs,
or HCMs) were cultured for 36 h in serum-free media, the conditioned media (CM) was
collected, and EVs were isolated, as previously described [11]. In brief, stromal cell CM
underwent serial differential centrifugation to remove cells (300× g for 10 min), cellular
debris (3000× g, for 10 min), and apoptotic detritus (13,000× g for 30 min). The supernatant
was concentrated using a Centricon® Plus-70 centrifugal filter unit with a 100 kDa MW
cutoff (MilliporeSigma, Burlington, MA, USA), and ultracentrifuged for 1 h and 10 min
at 110,000× g (4 ◦C) using a Beckman Type 50.2 Ti Rotor (Beckman Coulter, Brea, CA,
USA) in a Beckman Coulter, Optima LE-80K Ultracentrifuge. The resultant pellet was
resuspended in phosphate buffered saline (PBS; Gibco), centrifuged again for 1 h and
10 min at 110,000× g (4 ◦C), and stored at −80 ◦C.

2.3. Western Blot

Protein isolation and western blot analyses were performed as previously described [7,8,12].
In brief, proteins from isolated EVs were extracted with RIPA buffer (10 mM Tris, 150 nM
NaCl, 1% deoxycholic acid, 1% Triton X, 0.1% SDS, and 1 mM EDTA) plus protease inhibitors
(aprotinin, PMSF, and sodium orthovanadate). Protein concentration was determined using a
Pierce™ bicinchoninic acid (BCA) protein assay kit (ThermoFisher Scientific, MA, USA). Equal
amounts of protein (20 µg/lane) were loaded on a 4–20% Tris-Glycine gel (Bio-Rad, Hercules,
CA, USA) and electrophoresed under nonreducing conditions. Proteins were transferred to
a PVDF membrane, blocked in blocking buffer (PBS, 0.05% Tween20®, 5% milk) for 2 h, and
then probed overnight with primary antibodies: CD63 (Sc-365604; Santa Cruz, CA, USA); CD81
(Sc-7637; Santa Cruz); fibronectin (FN1) (Sc-8422; Santa Cruz); integrin αV (ITGAV) (Sc-9969;
Santa Cruz); thrombospondin-1 (THBS1) (MA5-13398; ThermoFisher Scientific); and GM130
(#12480; Cell Signaling, Danvers, MA, USA). The next day, the membranes were washed and
incubated for 1 h at room temperature (RT) with the following secondary antibodies: donkey
anti-mouse IRDye 800CW and donkey anti-rabbit IRDye 680RD (1:2000, LI-COR Biosciences,
Lincoln, NE, USA). All antibodies were diluted per manufacturer recommendation. Membranes
were imaged using a fluorescence scanner (Odyssey v.3.0, LI-COR Biosciences).

2.4. Nanoparticle Tracking Analysis (NTA) and Zeta (ζ) Potential Measurements

All EV samples prepared and analyzed as previously published [20,32,34]. All EV
samples were diluted in PBS to a final volume of 1 mL. Ideal measurement concentrations
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were found by pretesting the Particle Metrix ZetaView® Basic NTA PMX-120 machine
(Patricle Metrix, Ammersee, Germany) at the ideal particle-per-frame value (140–200 par-
ticles/frame). The manufacturer’s default software settings for EVs/nanospheres were
selected. For each measurement, three cycles were performed by scanning 11 cell positions
each and capturing 30 frames per position under the following settings: focus—autofocus;
camera sensitivity for all samples—75; shutter—100; scattering intensity—detected au-
tomatically; cell temperature—25 ◦C. After capture, the videos were analyzed by the
in-built ZetaView Software 8.04.02 SP2 with specific analysis parameters: maximum area—
1000; minimum area—5; minimum brightness—25; hardware—embedded laser, 40 mW
at 488 nm; camera—CMOS. The number of completed tracks in NTA measurements was
always greater than the proposed minimum of 1000 in order to minimize data skewing
based on single large particles [53]. The zeta (ζ) potential of EVs was measured under the
same settings for NTA, as described above, but the data were collected and analyzed with
the ZetaView software.

2.5. Transmission Electron Microscopy (TEM)

EVs were fixed and imaged by transmission electron microscopy (TEM) to assess their
morphology, as previously described [11,54]. Briefly, the EV pellet was resuspended in 4%
w/v paraformaldehyde (PFA) in PBS (Gibco) and fixed for 30 min at RT. Five µl of the fixed
EV solution was added to a formvar/carbon-coated grid (Electron Microscopy Sciences,
Hatfield PA, CA, USA) and incubated for 20 min to allow the EVs to adhere to the grid
surface. The grids were washed with drops of PBS to remove residual PFA, followed by
resuspension in 1% v/v glutaraldehyde in PBS for 5 min. Residual glutaraldehyde was
removed by gently resuspending the grid in water. The grids were transferred to a uranyl
oxalate solution followed by 10 min incubation with a methylcellulose solution for contrast.
Grids with adsorbed EVs were dried prior to examination by TEM (JEM-1220 TEM: JEOL
USA, Peabody, MA, USA).

2.6. EV Labeling with PKH26

Isolated EVs were fluorescently labeled with a PKH26 Red Fluorescent Cell Linker
Kit (MilliporeSigma) according to the manufacturer’s instruction [11]. The EV pellet was
resuspended in diluent C, incubated with PKH26 dye in diluent C buffer at a ratio of 1:1
for 2 min at RT, and mixed with bovine serum albumin (BSA, 1% w/v in diluent C; Sigma
Aldrich, St Louis, MO, USA) at an equal ratio per volume. The PKH26–EV solution was
subjected to ultracentrifugation using a Beckman Type 50.2 Ti Rotor (Beckman Coulter)
in an Optima LE-80K Ultracentrifuge (Beckman Coulter) at 110,000× g for 1 h and 10
min at 4 ◦C. The supernatant was removed and the PKH26-labeled EVs were washed,
resuspended in diluent C, and ultracentrifuged (110,000× g for 1 h and 10 min at 4 ◦C).
The wash/ultracentrifugation steps were repeated a total of three times. PKH26-labeled
EVs were filter-sterilized (0.22 µm pore) prior to use in cell culture. For the control sample,
particle-free PBS (Gibco) was used instead of EVs and stained according to the procedures
described above.

2.7. Tracking PKH26-Labeled EVs in HCE Cells

HCE cells were cultured in a 12-well plate at a density of 0.1 × 106 cells per well
and incubated at 37 ◦C and 5% CO2 for 24 h. Following attachment, HCE cells were
serum starved in keratinocyte-SFM devoid of supplements for 24 h. Following serum
starvation, cells were washed with PBS (Gibco), stained with 1 µg/mL Hoechst 33342
(ThermoFisher Scientific) for 1 min at RT, washed again with PBS, and supplemented with
keratinocyte-SFM media containing PKH26-labeled EVs. Live cell imaging with the Leica
DMi8 microscope (Leica Microsystems, Wetzlar, Germany) began 1 h post-administration of
PKH26-labeled EVs and continued for 24 h, with images and videos obtained every 15 min.
Endpoint images and videos were analyzed by ImageJ (Version 1.53n7; National Institutes
of Health (NIH), Bethesda, MD, USA) analysis. Image sequences (Hoechst-positive cells)
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were imported, converted to greyscale, and analyzed with the Trackmate plugin. All
Hoechst-positive cells were measured (25 pixel constant diameter), and mean intensity
values were obtained. Mean velocity and displacement of the cell per pixel were acquired
following the removal of any outliers.

2.8. In Vitro HCE Cell Scratch Assay

HCE cells (20,000 per well) were plated in 48-well plates and cultured to confluency in
complete epithelial medium. Once confluent after 48 h, HCE cells were serum starved in
keratinocyte-SFM devoid of supplements for 24 h. A linear scratch wound was performed
using a 200 µL pipette tip across the center of each well, and images of the scratch area
(0, 12, and 24 h after wounding) were captured using an inverted microscope with a 10×
objective lens (EVOS XL Core Imaging System: Life Technologies, Bothell, WA, USA). The
images were analyzed and the remaining wound area was measured using ImageJ software.
All values were normalized to wounds at 0 h.

2.9. Tandem Mass Tag (TMT) Mass Spectrometry
2.9.1. Experimental Design and Statistical Rationale

All TMT Mass Spectrometry experiments were performed by BGI Genomics (BGI
Genomics, San Jose, CA, USA). All EVs were lysed, protein concentrations were measured,
and enzymatic digestion was applied, akin to western blotting. All 3 samples were labeled
with a Tandem Mass Tag™ (TMT™) 10-plex for quantitative proteomics experiment. After
the labeling step, a small fraction of each sample was pooled together to examine the
labeling efficiency.

2.9.2. Sample Preparation and Proteolytic Digestion

Sample preparation and proteolytic digestion were performed as per the previously
published protocols by BGI Proteomics [55–57]. For stromal EV sample lysis and prepa-
ration, RapiGest (Waters, Milford, MA, USA) was added to each EV sample to a final
concentration of 1% RapiGest (mass/volume). Then, the samples were sonicated for 10 s
at 20% amplitude using a Q500 Sonicator (QSonica, Newtown, CT, USA), heated at 90 ◦C
for 5 min, centrifuged, and measured for protein concentration with a BCA assay (Ther-
moFisher Scientific). For proteolytic digestion, equal amounts of protein (15 µg) for each
stromal EV sample were normalized to the same volume of 400 µL with 100 mM (pH
8.5) HEPES buffer, 40 µL of 10 mM dithiothreitol (DTT) was added to each sample and
incubated at 60 ◦C for 15 min in an Eppendorf Thermomixer® C (Eppendorf, Hamburg,
Germany), and then 40 µL of 20 mM iodoacetamide (IAM) was added and incubated at
RT for 20 min in the dark. Samples were quenched with 10 mM DTT to eliminate excess
IAM. To bring the RapiGest concentration below 0.5% for enzymatic digestion, 450 µL H2O
and 30 µL 100 mM HEPES buffer (pH 8.5) were added to each sample, and then 15 µL of
0.1 µg/µL trypsin/LysC (ThermoFisher Scientific) was added and the samples were shaken
and incubated for 12 h at 37 ◦C in an Eppendorf Thermomixer® C. Five µL of trypsin/LysC
was added, and the samples were shaken and incubated for 16 h. To quench the trypsin
reaction, 100 µL of 10% trifluoroacetic acid (TFA) was added to each sample [58]. Each
sample was purified with C18 stage tips (PhyNexus Inc, San Jose, CA, USA) and elutes
from each sample were dried down in the Speedvac SPD120 concentrator (ThermoFisher
Scientific) for TMT labeling.

2.9.3. TMT Labeling and Label Check

Each dried sample was resuspended in 40 µL of 100 mM HEPES (pH 8.5), gently
vortexed, and centrifuged. Three new specific TMT labels were resuspended in 80 µL
acetonitrile (ACN; Optima™ LC/MS Grade; ThermoFisher Scientific), and 20 µL of TMT
reagent was added to each EV sample. All samples were incubated at RT for 1 h [59].
To confirm the TMT labeling [21], 1 µL of each TMT-labeled sample was removed and
transferred into 80 µL reconstitution buffer (1% formic acid), mixed, and analyzed by liquid
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chromatography–mass spectrometry (LC/MS), which indicated labeling efficiency to be
~99%. To quench the TMT reaction, 15 µL of 5% hydroxylamine solution was added to
each TMT-labeled sample. TMT-labeled samples were then mixed and dried down in the
Thermo Speedvac SPD120 (ThermoFisher Scientific).

2.9.4. High-pH Reverse-Phase High-Performance Liquid Chromatography (HPLC)

Dried TMT-labeled samples were reconstituted with 80 µL deionized water and
fractionated by high-pH reverse-phase high-performance liquid chromatography (HPLC;
ThermoFisher Scientific). A total of 96 fractions were collected over 75 min. These initial
fractions were combined to form 8 final fractions; therefore, 12 fractions were combined
into 1 fraction. Combined fractions were dried down and desalted using C18 stage tips
(PhyNexus Inc).

2.9.5. Liquid Chromatography–Tandem Mass Spectrometry (nanoLC–MS/MS)

NanoLC–MS/MS was performed as per the previously published protocols by BGI
Proteomics [55–57]. All fractionated samples were analyzed by Ultimate™ 3000 nanoflow
HPLC (ThermoFisher Scientific) followed by Orbitrap Eclipse Tribrid Mass Spectrometry
(ThermoFisher Scientific). The Nanospray Flex™ Ion Source (ThermoFisher Scientific) was
equipped with a PRSO-V2 Column Oven (Sonation, Biberach, Germany) to heat up the
PicoFrit® nanocolumn (100µm × 250 mm × 15µm tip; New Objective, Littleton, MA, USA)
for peptide separation. The nanoLC method is water/ACN-based, with a 0.35 µL/min
flowrate (150 min). For each TMT fraction, all TMT-labeled peptides were first engaged on
a trap column (ThermoFisher Scientific) and then delivered to the separation nanocolumn
by the mobile phase. A TMT-specific MS2-based MS method on Orbitrap Eclipse was used
to sequence TMT peptides that were eluted from the nanocolumn. For the full MS, 120,000
resolution was used with 3E6 AGC target, and the scan range was 300–1500 m/z. For the
dd-MS2(MS/MS), 60,000 resolution was used with 1E5 AGC target. Isolation window was
0.7 Da, with a fixed first mass of 110.0 Da. Normalized collision energy was set to 32, with
a 15-cycle loop.

2.9.6. Quantitative Proteomic Analysis

Collected LC–MS data was analyzed by Proteome Discoverer 2.4 (ThermoFisher
Scientific). As all peptides were labeled with TMT tags, TMT quantitative proteomic
searches were performed utilizing SEQUEST HT node with mass tolerance of 20 ppm
MS1 and 0.05 Da for MS2. Homo Sapiens database (UP000005640) from Swiss-Prot was
used, and percolator node was used for peptide false discovering rate (FDR) filtering
(stricted—001; relaxed—0.05). TMT-labeled peptide abundance was normalized by total
peptide abundance.

2.9.7. Ingenuity Pathway Analysis (IPA) of EVs

Using IPA software (Qiagen, Germantown, MD, USA), proteins involved in disease
function pathways related to cellular movement, growth, proliferation, and development
were explored. Proteins that exhibited a false-discovery-rate adjusted p-value <0.05 and a
log-fold change >0.5 or <−0.5 between HCK-EVs vs. HCM-EVs and HCF-EVs vs. HCM-
EVs were uploaded onto IPA for primary analysis. Canonical, disease, and function
pathways for the pairwise comparisons for each group were then combined into a final
analysis using the IPA comparison module. Only pathways showing a Z score >2 or <−2
among the final combined pairwise comparisons were included, among which positive
and negative Z scores represented activated and inhibited pathways, respectively. Protein
lists for relevant pathways were then downloaded from IPA for further analysis and
visualization into heat map configuration.
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2.10. Statistics

Data were reported as mean ± SEM unless stated otherwise. Differences between
groups were compared by ANOVA followed by Tukey’s multiple comparison test using
GraphPad Prism (Version 8.4.2; GraphPad, CA, US). p values < 0.05 were considered
significant: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results
3.1. Characterization of HCK-, HCF-, and HCM-EVs

To investigate whether EVs were isolated successfully from HCKs, HCFs, and HCMs,
we used an established EV isolation protocol [11,16]. We adhered to the ISEV guidelines
for EV characterization by utilizing multiple approaches [42]; EVs in this study were
normalized to the protein concentration. We performed western blotting by probing for
vesicle-associated markers: CD63, CD81, and ITGAV (Figure 1A). HCF- and HCM-EVs
showed high expression levels of CD63 and CD81, but this was decreased in HCK-EVs.
Additionally, HCF-EVs and HCM-EVs showed elevated ITGAV expression compared to
HCK-EVs.
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Figure 1. Isolation and characterization of human corneal keratocyte (HCK)-, fibroblast (HCF)-,
and myofibroblast (HCM)-derived extracellular vesicles (EVs). (A) EV pellets (20 µg protein/lane)
were analyzed by western blot to probe for vesicle-associated markers. Representative images are
shown for vesicle-associated proteins CD63, CD81, and ITGAV; a negative control (GM130); and
proteins associated with corneal wound healing, FN1 and THBS1. (B) EV pellets were analyzed
by nanoparticle tracking analysis (NTA), and a size distribution histogram for each EV sample
is shown. ((B), inset) Transmission electron microscopy images demonstrating EV morphology
(high magnification, 49000x; scale bar = 100 nm). (C) The average particle concentrations (particles
x1011/mL); (D) mean particle size (nm); and (E) zeta (ζ) potential of EV pellets were measured
using NTA with Zetaview™. Data are shown as mean + SEM; n = 3 independent EV preparations;
ns = nonsignificant. One-way ANOVA with Tukey’s post-test.

We also probed for the cornea wound-healing proteins FN1 and THBS1. HCM-
EVs showed abundant THBS1 expression, with this decreasing in HCF-EVs and HCK-
EVs, respectively. Interestingly, HCF-EVs showed elevated FN1 expression compared
to HCK-EVs and HCM-EVs. All EV preparations showed negative GM130 expression,
indicative of no contaminants. To validate the biophysical properties of EVs, we performed
NTA measurements to show the size distribution of the particles (Figure 1B), and the EV
morphology by TEM (Figure 1B, inset) was similar, irrespective of cell type. We found
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no differences in the particle concentration measurements of EVs ranging from 5.6 × 1011

to 7.1 × 1011 particles/ml (Figure 1C); a mean particle size ranging from 124 to 158 nm
(Figure 1D); and a net negative surface charge ranging from −21.87 mV to −25.38 mV, which
is indicative of colloidal EV stability (Figure 1E). Collectively, the data suggested differences
in protein expression, while we saw negligible effects in their biophysical properties.

3.2. Proteomic Analysis of HCM-EV Protein Cargo

To compare EV protein cargo from HCK-, HCF- and HCM-EVs (pooled from three
independent preparations), samples were digested in-solution and analyzed by nanoLC–
MS/MS. In total, peptides from 2482 unique proteins were identified from all EV samples,
and further details are specified in Table S1. Peptides with a log fold change <−0.5 or >0.5
between protein profiles from HCM-EVs vs. HCK-EVs or HCM-EVs vs. HCF-EVs were
confirmed. A multigroup comparison was performed and showed 195 proteins were found
to have significant log-fold changes (as described) based on a false-discovery-rate (FDR)
adjusted p-value of <0.05 (Figure 2A). Whilst the magnitude of change was dissimilar for
many proteins, the presented heatmap (Figure 2B) narrows that number and lists the top
25 least expressed proteins with a <−0.5 log-fold decrease in HCK-EVs or HCF-EVs when
compared to HCM-EVs, such as CXCL6, CXCL12, LRRC15, MMP1, MMP2, and TGFBI.
Additionally, we extended our observations to highlight the top 25 most highly expressed
proteins with a >0.5 log-fold increase in HCM-EVs compared to HCK-EVs or HCF-EVs,
such as TNIK, LMNA, CALR, and PLAT. The data show similarities across the different EV
samples but demonstrate where the EV cargo is diverse in protein expression.
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Figure 2. Proteomic analysis of corneal keratocyte, fibroblast, and myofibroblast extracellular vesicles.
(A) The heatmap of differentially expressed proteins from human corneal keratocyte (HCF) and
fibroblast (HCF) relative to myofibroblast (HCM) extracellular vesicles. A multigroup comparison
was performed and showed that 195 proteins were differentially expressed in our dataset; proteins
selected show log-fold change values of target proteins (blue (−3.5) to yellow (+3.5) through white),
ranked by adjusted p < 0.05. (B) The top 25 proteins are selected from this heatmap with decreased
(blue (−3.5)) and increased (yellow (+3.5)) log-fold change in HCK-EVs and HCF-EVs relative to
HCM-EVs. Data shown as n = 3 independent EV preparations.
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3.3. IPA of HCM-EV Proteins

To gain a functional insight into the proteomic cargo of HCM-EVs, we followed the
initial selection step to show log-fold changes <−0.5 or >0.5 that showed statistically signif-
icant differences in proteins from HCM-EVs compared to HCK-EVs or HCF-EVs. From
the shortlisted proteins (Figure 2), we performed ingenuity pathway analysis (IPA) for
the top disease and biological functions enriched in HCM-EVs. The results show the top
10 biological functions via IPA associated with these differentially expressed proteins in
HCM-EVs, which include cell death and survival (-log (p-value = 139.757)), cellular move-
ment (-log (p-value = 105.439)), cellular growth and proliferation (-log (p-value = 67.141)),
and tissue development (-log (p-value = 46.429)), as some functional examples (Figure 3A).
Of interest, increased cellular movement in HCM-EVs compared to HCF-EVs or HCK-EVs
via IPA analysis revealed changes in protein expression, as listed in Figure 3B. Within
the HCM-EV heatmap dataset, we identified CXCL1, CXCL6, CXCL12, MMP1, MMP2,
L1CAM, and LRCC15 as proteins influencing cellular movement, cell proliferation, and
tissue development compared to HCF-EVs or HCK-EVs (Figure 3C).
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Figure 3. Ingenuity pathway analysis of proteins from corneal myofibroblast extracellular vesicles.
(A) The top 10 disease and biological functions identified from the ingenuity pathway analysis (IPA)
using the dataset of 195 proteins. The p-value for each biological function is indicated by the bar and is
expressed as -log2 (p-value). The orange dashed line indicates the threshold of significance (p < 0.05).
(B) The top-scoring proteins identified by IPA for cellular movement; green indicates decreased
measurement, red indicates increased measurement, blue dashed arrow leads to inhibition. (C) The
heatmap shows 31 proteins with decreased (blue (−3.5)) and increased (yellow (+3.5)) log-fold change
in HCK-EVs and HCF-EVs relative to HCM-EVs. Data shown as n = 3 independent EV preparations.
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3.4. HCM-EVs Promote HCE Cell Migration

It has been reported that upon corneal injury, re-epithelialization is one key aspect
of the route towards corneal epithelial wound healing. After investigating the differences
in protein expression in HCK-, HCF- and HCM-EVs, we next assessed the ability of these
EVs to promote corneal epithelial cell migration. A monolayer of confluent HCE cells
was established, and once confluent, they were growth-arrested to remove promotility
factors, followed by the formation of a vertical scratch. Using a protein-dependent EV
normalization approach, HCK-, HCF-, and HCM-EVs were added, and we tracked the
closure of a single scratch over 24 h (Figure 4A). Compared with the HCM-EVs, which
achieved complete closure over 24 h, the HCF-EV and HCK-EV treatments achieved
incomplete closure (82.64% ± 3.67% and 71.61% ± 0.96%, p < 0.001, respectively) (Figure 4B).
Nevertheless, the closure rate remained significantly slower when using media (without
growth factors) (41.50% ± 3.81%, p < 0.0001). Representative brightfield images at scratch
initiation, at 12 h, and at 24 h with different treatments are shown in Figure 4C. Additionally,
this suggests that HCM-EVs accelerate HCE cell migration compared to HCF-EVs and
HCK-EVs.
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Figure 4. Corneal myofibroblast extracellular vesicles accelerate corneal epithelial cell motility. (A)
Schematic of human corneal epithelial (HCE) cells treated by corneal stromal-derived extracellular
vesicles (EVs) in an in vitro scratch assay. A monolayer of growth-arrested HCE cells were freshly
scratched using a 200 µL pipette tip. After 24 h, HCE cells were treated with EVs derived from
human corneal keratocytes (HCKs), fibroblasts (HCFs), and myofibroblasts (HCMs) (normalized
for protein concentration). The closure of the scratch was monitored microscopically up to 24 h
thereafter. (B) Measurements of the scratch width were taken throughout the time course and are
plotted as the proportion of scratch width relative to that at scratch initiation (0 h) at each time
point. (C) Representative images of wells at scratch initiation, at 12 h, and at 24 h are shown, and the
margin of scratch is emphasized by the white lines. White arrows depict movement of scratch. Scale
bar: 100 µm. Data are shown as mean + SEM; n = 4 per group. Two-way ANOVA with Bonferroni
post-test.
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3.5. HCM-EVs Increase HCE Cell Proliferation

Considering the differences in the migratory capacity of HCE cells from different
EV treatments, we next determined the proliferative capacity of the treated HCE cells by
WST-8 absorbance. HCM-EV treatment showed a significant difference compared to media
alone (no supplements) following 24 h EV treatment (100.00% ± 8.11% vs 28.82% ± 1.66%,
p < 0.0001, (Figure 5A)). Similarly, we observed that HCK-EV (63.40% ± 1.12%, p < 0.01)
and HCF-EV (68.57% ± 0.52%, p < 0.05) proliferation was significantly reduced compared to
the HCM-EV treatment after 24 h. To explore the apoptotic activity, we used a Caspase-Glo®

3/7 reagent to measure the luminescence from the treated HCE cells with different EVs. The
HCM-EV treatment significantly reduced the levels of apoptotic activity when compared to
the media treatment with no supplements (0.69 ± 001 vs. 1.00 ± 0.04, p < 0.05 (Figure 5B)).
Interestingly, we saw minimal apoptotic differences in the HCK-EV (0.90 ± 0.07, p > 0.05)
and HCF-EV (0.78 ± 0.01, p > 0.05) treatments compared with HCM-EV. These data suggest
that HCM-EVs promote HCE cell proliferation with a minimal impact upon apoptosis.
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Figure 5. Corneal myofibroblast extracellular vesicles increase corneal epithelial cell proliferation. A
monolayer of growth-arrested human corneal epithelial (HCE) cells were scratched using a 200 µL
pipette tip after 24 h following EVs derived from human corneal keratocytes (HCKs), fibroblasts
(HCFs), and myofibroblasts (HCMs) (normalized for protein concentration). Cell-conditioned media
were removed and replenished with supplement-free keratinocyte-SFM media. Treated HCE cells
were assessed with (A) WST-8 reagent (absorbance values = 450 nm) to assess cell proliferation and
(B) Caspase-Glo® 3/7 reagent (luminescence) to assess apoptotic activity. Data are shown as mean +
SEM; n = 3 per group. One-way ANOVA with Tukey’s post-test.

3.6. PKH26-Labeled HCM-EVs Promote Cell Velocity

Considering the differences we observed with HCM-EVs in promoting HCE migration
and proliferation, we further investigated whether HCM-EVs can promote HCE velocity.
We stained growth-arrested HCE cells with Hoechst 33342 and treated these cells with
PKH26-labeled HCK-, HCF- and HCM-EVs. We tracked the movement of Hoechst-positive
HCE cells and PKH26-labeled EVs hourly for 24 h, and representative images are shown in
Figure 6A. We showed that treatment with PKH26-labeled HCM-EVs (10.40 ± 0.47) signifi-
cantly increased the HCE cell velocity per pixel when compared to HCK-EVs (7.14 ± 0.12,
p < 0.0001) or HCF-EVs (8.03 ± 0.24, p < 0.001) (Figure 6B). The media-only treatment
showed negative PKH26-positive particles, indicative of no free-floating PKH26 particles.
Furthermore, the HCM-EV (31.72 ± 1.28) treatment significantly increased the mean dis-
placement of HCE cells per pixel when compared to HCK-EV (25.40 ± 1.18, p < 0.01) and
HCF-EV (26.62 ± 0.66, p < 0.05) (Figure 6C).
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videos were collected at the endpoint and analyzed by ImageJ. Image sequences (Hoechst-positive 
HCE cells) were imported and converted to greyscale images. Analysis occurred using the Track-
mate plugin to acquire mean cell velocity and (C) mean displacement of the cell per pixel. Data are 
shown as mean + SEM; n = 3 per group. One-way ANOVA with Tukey’s post-test. 
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Figure 6. PKH26-labeled corneal myofibroblast extracellular vesicles increase corneal epithelial cell
velocity. (A) Human corneal epithelial (HCE) cells were seeded into a 12-well plate and growth-
arrested for 24 h. Attached HCE cells were stained with Hoechst 33342. EVs derived from human
corneal keratocytes (HCKs), fibroblasts (HCFs), and myofibroblasts (HCMs) were labeled with the
lipophilic dye PKH26. PKH26-labeled EVs (red) were added to Hoechst-33342-stained HCE cells
(blue), and images were obtained at 0, 8, 16, and 24 h. White dashed outline indicates initial cell size
and location at 0 h. The white arrow indicates PKH26-labeled EVs. Scale bar: 50 µm. (B) Images and
videos were collected at the endpoint and analyzed by ImageJ. Image sequences (Hoechst-positive
HCE cells) were imported and converted to greyscale images. Analysis occurred using the Trackmate
plugin to acquire mean cell velocity and (C) mean displacement of the cell per pixel. Data are shown
as mean + SEM; n = 3 per group. One-way ANOVA with Tukey’s post-test.

4. Discussion

Corneal wound repair is a complex process involving interactions between the wound-
healing epithelium, a temporary “provisional matrix”, and the stromal cells [3,13,14].
During corneal injury, the regulated changes of stromal cell phenotypes are mediated by a
complex web of biophysical and chemical cues [48,60,61]. Specifically, the onset of HCMs
by TGF-β1 or -β3 plays a vital role in wound healing in the contraction and closure of
incisional corneal wounds and surface re-epithelialization [62]. Studies have acknowledged
that the secretome of stromal cells contributes to reinforcing the injured site in either a
regenerative manner or in a pathological fibrotic manner [38,63,64]. However, there persists
a knowledge gap regarding the stromal paracrine-EV mechanism(s) and how the protein EV
cargo is of most relevance in corneal epithelial wound healing, as this remains unexplored
to date.

In our present study, we isolated HCK-, HCF-, and HCM-EVs and characterized
their biophysical and molecular properties. We showed the differences in their molecular
properties by detecting the CD63 in all the corneal stromal EVs, but found elevated CD81
and ITGAV expression in the HCF-/HCM-EVs. Additionally, we showed the differences
in THBS1 and FN1 expression in all the preparations, but all the EVs showed negative
GM130 levels, indicative of no contaminants [65,66]. Although some molecular differences
were present, we examined the considerable overlap in their biophysical properties when
assessing the EV morphology, size distribution measurements, particle concentration, and
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zeta potential. These data suggest that we isolated and characterized EVs in accordance
with the ISEV requirements.

Following the isolation of HCK-, HCF-, and HCM-EVs, there are many normalization
strategies varying between cell number, lipid concentration, or particle counts, but we kept
a constant protein concentration, akin to previous corneal-related studies [11,16,41], as this
eliminates any bias towards overdosing EV towards a different metric. Hence, the corneal
stromal EVs used for the proteomic analysis and functional experiences were normalized
by protein concentration and should reflect the differences in EV phenotype.

Our proteomics study showed that HCM-EVs had a distinct EV protein cargo profile
compared to HCK- and HCF-EVs, with 195 proteins being significantly different. We
highlight the elevated expression of HCM-EV proteins such as CD63, CDH13, CTSB,
CXCL1, CXCL6, CXCL12, LRRC15, MMP1, and MMP2 from our proteomic analysis. Col-
lectively, from our IPA analysis, these proteins are proposed to affect cellular movement,
but also pathways related to cell proliferation, epithelial tissue development, and growth.
Studies suggests that CXCL1 and CXCL12 are components shown to accelerate intestinal,
pulmonary, or ovarian epithelial cell migration [67–69]. Similarly, the overexpression of
CXCL1, CXCL6, or CXCL12 has been shown to increase epithelial cell migration, prolif-
eration, and growth, albeit in many cancer models [68,70–74]. Of relevance to the eye,
CXCL12 expression plays a role in the development and formation of ocular tissue in chick
and mouse models [75]. Additionally, MMP1 and MMP2 can enhance cellular growth and
migration in cancer [76–80] and wound-healing models [81–83]. Of interest to the cornea,
MMP1 and MMP2 have been shown to increase HCE cell migration [60,84] and can aid
corneal wound healing [85]. This reveals an important difference between HCK-, HCF-, and
HCM-EVs in terms of their protein cargo, as it highlights that increased CXCL1, CXCL6,
CXCL12, MMP1, and MMP2 expression is likely to influence epithelial cell migration,
proliferation, and growth functions.

We used a well-established in vitro corneal scratch assay [86–89], in which HCE
movement is dependent upon EV stimulus and can generate a strong directional migratory
response [90,91]. As such, we provided evidence that the HCM-EV treatment accelerated
HCE cell migration and motility compared to the HCK- and HCF-EV treatments. This is
further supported by the increased HCE proliferation resulting from the HCM-EV treatment
when compared to the other EV treatments. Similar to our data are observations that HCM
secretome can promote wound-healing mechanisms in different models [63,92,93], thus
agreeing with the premise that the HCM EV-secretome in part plays a role in promoting
corneal epithelial wound healing. Despite the evidence, the HCM-EV cargo remains elusive
and investigation into its interactions with other corneal cells warrants the distinction of
the critical elements that can dictate the potency of corneal epithelial wound healing.

There were several limitations in this study, which in future studies will be explored.
Some experiments were performed with the HCE cell line; we acknowledge that future
studies and investigations do require the translation of our findings into using primary
cell lines, as they are more physiologically relevant compared to immortalized cell lines,
despite the ease of cell culture and proliferation. We did not evaluate in depth other EV
cargo proteins that could be pivotal for biological functions, such as tissue development
or cellular compromise. The data at hand show HCM-EV cargo proteins that could be
pivotal for accelerating corneal epithelial wound healing, and although this can only be
deemed as speculative, this does warrant further investigation. Therefore, to provide a
greater in-depth understanding, within our future studies we should employ different types
of short interfering/short hairpin RNA (si/shRNA)-silencing approaches to address the
specific key EV cargo that can accelerate corneal epithelial migration and wound healing.
Furthermore, in this study, we focused on the interaction of HCM-EV cargo with the corneal
epithelia, yet we cannot dismiss the possibility that the cargo can exert different effects
on the cornea, such as the stroma, immune system, and lacrimal glands, which could
potentially exacerbate the fibrotic or inflammatory responses.
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In addition, we reported that the HCM-EV secretome can accelerate epithelial cell
migration, motility, and proliferation, yet other studies have reported that myofibroblast
soluble secretome can exert similar migratory capacity and tissue microenvironmental
changes [61,63,64,94,95]; however, there are minimal studies on HCM-EVs. We also note
that HCM-soluble secretome could modulate HCE cell migration, and this prospect cannot
be excluded, though any conjecture on the topic can only be deemed as speculative. Future
studies will explore and compare protein levels between the soluble factors and EVs, as
these components remain to be fully understood.

The current EV study provides evidence that HCM-EVs compared to HCK-/HCF-EVs
contain distinct cargo proteins that can promote HCE cell migration, proliferation, and
motility. The proteins identified here could be elements contributing to corneal epithelial
wound healing by the expression of CXCL1, CXCL6, CXCL12, MMP1, or MMP2 by EVs, and
hence may provide proteins of interest that could be harnessed towards accelerating cornea
wound closure. Though deciphering in detail the molecular components and mechanism(s)
of action will be important for future studies, we demonstrated that the EV cargo is distinct
but could provide beneficial findings to accelerate corneal epithelial wound healing.
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