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Abstract: Proteins from Sulfolobus solfataricus (S. solfataricus), an extremophile, are active even at
high temperatures. The single-stranded DNA (ssDNA) binding protein of S. solfataricus (SsoSSB) is
overexpressed to protect ssDNA during DNA metabolism. Although SsoSSB has the potential to be
applied in various areas, its structural and ssDNA binding properties at high temperatures have not
been studied. We present the solution structure, backbone dynamics, and ssDNA binding properties
of SsoSSB at 50 ◦C. The overall structure is consistent with the structures previously studied at room
temperature. However, the loop between the first two β sheets, which is flexible and is expected to
undergo conformational change upon ssDNA binding, shows a difference from the ssDNA bound
structure. The ssDNA binding ability was maintained at high temperature, but different interactions
were observed depending on the temperature. Backbone dynamics at high temperature showed
that the rigidity of the structured region was well maintained. The investigation of an N-terminal
deletion mutant revealed that it is important for maintaining thermostability, structure, and ssDNA
binding ability. The structural and dynamic properties of SsoSSB observed at high temperature can
provide information on the behavior of proteins in thermophiles at the molecular level and guide the
development of new experimental techniques.

Keywords: thermophile; thermostability; high temperature; OB-fold; single-stranded binding; NMR;
backbone relaxation; solution structure; chemical shift perturbation; Sulfolobus solfataricus

1. Introduction

Sulfolobus is one of the well-known hyperthermophilic archaebacterial genera [1].
Unlike mesophilic eukaryotes and bacteria, which are sensitive to external conditions,
Sulfolobus can survive at extremely low pH or high temperature [1–5]. Sulfolobus solfataricus
(S. solfataricus) is adapted to high temperature via lipid composition changes [6], protection
of its DNA with DNA binding proteins [7], and expression of a unique DNA topoiso-
merase [8]. Because they have the ability to survive in such harsh conditions, proteins from
S. solfataricus are widely used in biological experiments and industrial applications that
require low pH or high-temperature conditions [5]. Glyceraldehyde phosphate dehydroge-
nase, carboxypeptidase, alanine: glyoxylate transaminase, γ-lactamase, and other enzymes
of S. solfataricus have been applied as industrial biocatalysts [9].

Single-stranded DNA (ssDNA) binding proteins (SSBs) of S. solfataricus are also used
in biotechnological applications under harsh conditions. SSBs are proteins that bind to
ssDNA non-sequence specifically. During the DNA replication or repair process, they
prevent ssDNAs released by a helicase from returning to double-stranded DNAs (dsDNAs),
and thereby increase the DNA polymerase activity. Thus, SSBs are essential for all living
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organisms to preserve their genomes [10,11]. At high temperatures, dsDNAs substantially
melt into ssDNAs, and ssDNAs are much more vulnerable to damage than dsDNAs [12].
Therefore, hyperthermophilic archaebacterial species, including S. solfataricus, that inhabit
extremely hot environments, overexpress SSBs to protect single-stranded nucleic acids from
severe conditions and retain their genes [13].

S. solfataricus SSB (SsoSSB) consists of 148 amino acids. The unbound structure deter-
mined using X-ray crystallography (PDB ID: 1O7I [14]) and the ssDNA bound structure
determined at 25 ◦C using nuclear magnetic resonance (NMR) spectroscopy (PDB ID:
2MNA [15]) showed that the protein has a well-conserved oligonucleotide/oligosaccharide
binding fold (OB-fold) domain. OB-folds consist of a well-conserved β barrel structure
with five β strands capped by one α helix and an ssDNA binding pocket composed of L12
and L45 loops [16,17]. Human replication protein A (hRPA) [18], Escherichia coli SSB [19],
and human mitochondrial SSB [20] are examples of SSBs that can bind to ssDNA strongly.
Unlike other well-characterized SSBs, in which two aromatic residues are conserved and
are important for ssDNA binding, SsoSSB has an extra aromatic residue (Figure 1), which
increases the binding affinity for ssDNA by forming an additional π-π stacking interaction
with ssDNA [13–15]. Although the structural properties of SsoSSB have been reported at
room temperature, it remains unclear which structural and dynamic features are impor-
tant for its high thermostability and ssDNA binding properties at the optimal survival
temperature (55 to 88 ◦C [1–5]).
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Figure 1. Sequence alignment of SsoSSB with SSBs from various bacteria: hyperthermophilic
Thermotoga maritima (TmaSSB) and Pseudothermotoga thermarum (PthSSB); thermophilic Thermus
aquaticus (TaqSSB), and Pseudoalteromonas translucida (PtrSSB); mesophilic Escherichia coli (EcoSSB).
Conserved residues are indicated with an asterisk. Aromatic residues participating in base-stacking
upon DNA binding are colored red. The secondary structure of SsoSSB from UniProt [21] and a
previous study [14] are depicted above the sequence.

Here, we determined the structure of SsoSSB at high temperature (50 ◦C) using NMR
spectroscopy. SsoSSB was shown to maintain a well-conserved OB-fold structure even at
this high temperature, and its thermostability was measured using differential scanning
calorimetry (DSC) and circular dichroism (CD) spectroscopy. The ssDNA binding activity
and backbone dynamics of the protein were also investigated at high temperature using
NMR spectroscopy. The spin relaxation experiments revealed that the protein surprisingly
retained a highly rigid structure even at high temperature. Moreover, the protein was
still able to interact with ssDNA at elevated temperatures. To determine the role of the
N-terminal region in the thermostability and DNA binding of the protein, we analyzed
the properties of an N-terminal deletion mutant using DSC, CD spectroscopy, isothermal
titration calorimetry (ITC), and NMR. Our findings provide important understanding of
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thermophilic SsoSSB near its physiological conditions and fundamental insights into its
potential for biotechnological applications in high-temperature conditions.

2. Results
2.1. Thermostability of SsoSSB

SSBs have highly conserved sequences ranging from mesophiles to hyperthermophiles
(Figure 1). Unlike other SSBs, SsoSSB has a unique N-terminal region containing an
additional helix H1. All the individual secondary structure elements other than H1 and
β5 combine to form the well-conserved OB-fold structure. Compared with the canonical
OB-fold structures, SsoSSB showed unique secondary structures (H1, β1’, and β5’) [14].
In addition to the highly conserved aromatic residues, W56 and W75, SsoSSB possesses an
additional F79, which contributes to the increase in binding affinity for ssDNA by forming
an additional base-stacking interaction [14].

To compare the thermostability of SsoSSB with other thermophilic SSBs, we per-
formed DSC. From the DSC data, the melting temperature (Tm) of SsoSSB1−114 was mea-
sured at 84.16 ◦C (Figure 2a), which is lower than that of the hyperthermophilic TmaSSB
(109.3 ◦C) [22]. CD spectroscopy was performed at 20 ◦C to confirm the secondary structure
of the protein (Figure S1a). There is a negative peak at 215 nm, which comes from β

strands [23], and a positive peak at 228 nm, which indicates β-II type β-rich protein [24,25].
We also monitored structural changes over the temperature range of 20 to 80 ◦C using
CD. Molar ellipticity at 228 nm was plotted at intervals of 2 ◦C (Figure S1b). As the tem-
perature increased from 20 to 80 ◦C, the molar ellipticity at 228 nm decreased by about
452,000 deg cm2 dmol−1. This suggests that the secondary structure became destabilized
but not completely denatured [23–27]. When the temperature reached 80 ◦C, the sample
was cooled to 20 ◦C to confirm whether SsoSSB1–114 refolded after heating (Figure 2b).
Our result showed that the CD spectrum was fully recovered, which implies that denatura-
tion of the protein is reversible. This is consistent with the previous studies showing that
the protein was not fully denatured, even at high temperatures, using 1H-15N heteronuclear
single-quantum coherence (HSQC) spectra [15,28].
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Figure 2. Thermostability of SsoSSB1–114. (A) Melting temperature (Tm) of SsoSSB1–114 measured by
differential scanning calorimetry. (B) Circular dichroism spectroscopy was used to investigate the
effect of temperature on the secondary structure of SsoSSB1–114.

2.2. Solution Structure of SsoSSB1–114 at High Temperature

We previously reported the backbone and sidechain atom chemical shift assignments
of the protein at 50 ◦C (BMRB 50523) and presented 2D 1H-15N HSQC spectra with the as-
signment [28]. To obtain high temperature distance constraints, nuclear Overhauser effects
(NOEs) were observed from 15N- and 13C-edited-NOESY-HSQC experiments performed at
50 ◦C. The AUDANA algorithm [29] generated distance and torsion angle constraints using
the protein sequence, chemical shift assignments, and NOESY data as inputs. TALOS-N [30]
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and Xplor-NIH [31] operations were automated by AUDANA for torsion angle constraints
and structure calculations, respectively.

We obtained 893 distance constraints from the NOESY data and 193 angle constraints
from TALOS-N. In the previous study of the NMR structure at room temperature, 2294
intramolecular constraints were used for protein structure calculation [15]. It is known
from previous studies that fewer constraints are measured at higher temperatures [32,33]
because of various factors, including the partial denaturation of secondary structures and
the reduced sensitivity at elevated temperatures. It was also found that there were relatively
small numbers of medium-range constraints (85, 9.9% of total distance restraints) because
the protein is mainly composed of β strands with a small amount of 310 helical structure.
For the structure calculation at room temperature, a similar proportion of medium-range
restraints (8.5% of total distance restraints) was used [15]. The number of NOE constraints
for each residue is shown in Figure S2.

The solution structure of the protein was calculated with Xplor-NIH in the PONDEROSA-
C/S software package [34], starting from 100 random structures. The structural statistics
are shown in Table 1. The 20 lowest energy models (Figure 3) were calculated with no
violations and root-mean-square deviations (RMSDs) of 0.974 Å (backbone atoms) and
1.751 Å (heavy atoms). Ramachandran plot analysis from PROCHECK [35] revealed that
all dihedral angles were within the allowed regions. The protein retained its secondary and
tertiary structure at high temperature, containing five β strands and one 310 helix (Figure 4a
and Figure S3). Unstructured regions, especially the L12 loop, residues 98–103, and the
C-terminal region, were relatively not converged one another. The structure was deposited
in the Protein Data Bank (PDB ID: 7WCG).

Table 1. Statistics of the solution structure of SsoSSB1–114 at 50 ◦C. The 20 lowest energy structures
were calculated using NMR restraints.

Restraints 1 Value

Total NMR Constraints 1086

Distance Constraints
Intra Residue (|i–j| = 0) 259
Sequential Residue (|i–j| = 1) 225
Medium Range (1 < |i–j| ≤ 5) 85
Long Range (|i–j| > 5) 291
Hydrogen Bond 33

Dihedral Angle Constraints
Φ 96
Ψ 97

Pairwise RMSD (Å) 2

Backbone Atoms 3 0.974 ± 0.044
Heavy Atoms 3 1.751 ± 0.054

Ramachandran Plot Summary from PROCHECK (%) 2

Most Favored Regions 94.9
Additionally Allowed Regions 3.9
Generously Allowed Regions 1.2
Disallowed Regions 0.0

wwPDB NMR Structure Validation 4

Clashscore 8
Ramachandran Outliers 2.0%
Sidechain Outliers 1.0%

Average Number of Violations Per Conformer 5

Distance Violations (>0.5 Å) 0
Angle Violations (>5◦) 0
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Table 1. Cont.

Repulsive Violations 0
1 The solution structure of SsoSSB1–114 was calculated using Xplor-NIH in PONDEROSA-C/S [36].
2 The final 20 lowest energy structures were evaluated using Protein Structure Validation Software (PSVS)
[35]. 3 Among ordered residues: E3-S97, S104-T113. 4 wwPDB (7WCG) validation results [37]. 5 Xplor-NIH
pseudo-potential energy and every violation of the 20 best structures were analyzed using POKY-Analyzer [38].
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Figure 4. SsoSSB structures by (A) NMR at high temperature (PDB ID: 7WCG; indicated with
red), (B) X-ray crystallography (PDB ID: 1O7I [14]; indicated with orange), and (C) NMR at room
temperature in complex with ssDNA (PDB ID: 2MNA [15]; indicated with blue). (D) Magnified view
of the L12 loop in each of the 3 structures. The zoomed area is indicated by a dotted square in each
figure (A–C).

It was already known that β strands β1, β4, and β5 are broken by residues 26, 72–73,
and 89, respectively, which differs from the general OB-fold domain [14]. Secondary structure
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prediction from the previous study suggested that SsoSSB1–114 consists of nineβ strands and
three 310 helices [28]. The previous X-ray crystal structure (PDB ID: 1O7I) consisted of five
β strands and three 310 helices, and the DNA-bound NMR structure at room temperature
(25 ◦C) consisted of five β strands and two 310 helixes (Figure 4b,c and Figure S3). Most β
strands were conserved in all structures. There were no 310 helices near the N- and C-
termini in our calculated structure, leaving only the internal H2 helix. β strand β5’ was
found only in the NMR structures and not in the X-ray structure. It is expected that these
differences are partly due to the differences in the structure calculation methods of NMR
and X-ray crystallography. The RMSD in the crystal structure (PDB ID: 1O7I) was calculated
as 1.406 Å, and that in the solution structure at room temperature bound to ssDNA (PDB
ID: 2MNA) was 1.954 Å.

Structural alignment of the three SsoSSB structures revealed that the L12 loop in the
high-temperature structure of SsoSSB highly deviates from the other two SsoSSB structures.
Significant structure fluctuations in L12 were also observed in the 20 ensemble structures
(Figure 3b), implying that this loop region is highly flexible. This feature is consistent
with the previous findings that L12 was shown to be flexible from the asymmetric unit
superimposition of the X-ray crystal structure [14] and the previous NMR study at room
temperature [15]. The position of K33 α-carbon differed by 1.622 ± 0.985 Å (7WCG) and
0.507 ± 0.190 Å (2MNA), respectively. The L12 loop, one of the regions forming the DNA
binding pocket and that plays an important role in DNA binding of the OB-fold [14,16,17],
is less converged at 7WCG than 2MNA. The position of the K33 α-carbon differed by
4.72 ± 1.61 Å (1O7I) and 3.88 ± 1.50 Å (2MNA), respectively. The position of the K33 α-
carbon of lowest energy differed by 4.6 Å (1O7I) and 3.4 Å (2MNA), respectively (Figure 4d).
L12 of the crystal structure was bound to a sulfate ion, whereas L12 of the room temperature
NMR structure was bound to ssDNA. The high temperature structure confirmed that L12
became more flexible and straightened because of the absence of its binding partner, ssDNA.

2.3. SsoSSB1–114–DNA Interaction at High Temperature by NMR CSP Analysis

The Gamsjaeger group demonstrated that SsoSSB1–114 binds to ssDNA at both room
temperature and high temperature [15]. To obtain detailed DNA binding surfaces at the
atomic level, we performed chemical shift perturbation (CSP) experiments with ssDNA at
25 ◦C and 50 ◦C (Figure 5). The average (standard deviation) CSP during ssDNA titration
at 25 ◦C was 0.0763 (0.0928) ppm, and that at 50 ◦C was 0.0591 (0.0745) ppm. At 25 ◦C,
residues V15, V19, Q31, T32, I39, W56 (sidechain atoms), F79, and Q84 were perturbed
more than 1 standard deviation from the average, and residues I30, R37, S40, T54, W75
(sidechain atoms), and N86 were perturbed more than 2 standard deviations from the
average. At 50 ◦C, residues V15, N34, R37, and I39 were perturbed more than 1 standard
deviation from the average, and residues I30, Q31, T32, S40, T54, W75 (sidechain atoms), and
F79 were perturbed more than 2 standard deviations from the average. Thus, the ssDNA
binding sites and ssDNA binding interactions are similar at 25 ◦C and 50 ◦C. At the higher
temperature, the perturbation of residues R37, Q84, and N86 was reduced, suggesting
that the charged and polar interaction with ssDNA decreases at high temperature, and
the hydrophobic interaction mainly remains. In the study from Kerr et al. [14], I30, W56,
W75, and F79 were shown by alanine substitution to be important for ssDNA binding at
50 ◦C. Among these point mutants, the ssDNA binding affinity of W56A was reduced the
most, but in our experiments, the sidechain of W56 did not interact with ssDNA at 50 ◦C
(Figure 5b,d). It can be inferred from this that W56 indirectly affects the protein’s ssDNA
binding at 50 ◦C.
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Figure 5. DNA binding site of SsoSSB1–114. (A,B) Chemical shifts of 15N-labeled SsoSSB1–114 at a
concentration of 500 µM were perturbed upon ssDNA titration. Average CSP values (∆δavg) for each
residue of SsoSSB1–114 with 1 mM ssDNA at (A) 25 ◦C and (B) 50 ◦C are shown. Trp sidechain CSPs
are indicated with hatched bars. The secondary structure from UniProt is shown at the top of each
graph. (C,D) The solution structure of SsoSSB1–114 (PDB ID: 7WCG) was colored based on CSP data
at (C) 25 ◦C and (D) 50 ◦C. Color coding is the same as in panels A and B. Sidechains are displayed
for residues with the largest CSPs.

2.4. Backbone Dynamics of SsoSSB1–114 at High Temperature and Room Temperature

To understand how the protein’s backbone dynamics change with temperature, spin-
lattice relaxation (R1), spin-spin relaxation (R2), and 1H-15N heteronuclear Overhauser
effect (hetNOE) experiments were performed at 25 ◦C and 50 ◦C. The average R1 at 25 ◦C
was 1.078 ± 0.067 Hz. Most residues had R1 values within 2 standard deviations of
the average. At 50 ◦C, the average R1 value (1.928 ± 0.141 Hz) was higher than that at
25 ◦C, and we found more deviations. This implies that the overall motion increases
at 50 ◦C. Residues N34, G35, and V36 in loop L12; residues S97 and E98 located in the
loop between β5’ and H3; residue N110 at the C-terminus had R1 values > 2 standard
deviations below the average (Figure 6a). Those regions have no secondary structural
elements in 7WCG (Figure S3). In the X-ray crystal structure [14], L12 and the region
containing residues 94–100 were also found to be flexible. It is characteristic that the lower
R1 values were observed in a flexible region at 50 ◦C, unlike at 25 ◦C. Figure 6b shows the
measured R2 values of each residue at 25 ◦C and 50 ◦C. At 25 ◦C, the average R2 value
was 17.66 ± 2.42 Hz. Residues in loop L12 and the C-terminal region showed reduced
R2 values, which indicate fast ps-ns dynamics [39]. At 50 ◦C, the average R2 decreased
significantly to 6.862 ± 0.797 Hz. This also suggests that the protein becomes more flexible
at 50 ◦C. Residues that had reduced R1 values at 50 ◦C also showed reduced R2 values.
From the R1 and R2 data, it was confirmed that the residues that experience fast dynamics
were more prominent at 50 ◦C, and the overall motion of the protein was faster at a higher
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temperature. From Figure 6c, we can observe higher R2/R1 values at 25 ◦C than 50 ◦C.
The average tumbling time (τc) values calculated from R2/R1 were 12.657 ns and 5.012 ns
at 25 ◦C and 50 ◦C, respectively [40,41], indicating that the protein tumbles twice as fast at
high temperature as it does at room temperature.
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Figure 6. SsoSSB1–114 backbone dynamics. Per residue (A) spin-lattice relaxation (R1), (B) spin-spin
relaxation (R2), (C) R2/R1 ratios, and (D) hetNOE values at 25 ◦C and 50 ◦C are shown. Errors of the
measurement are indicated by black and red lines. In panels A–C, average values of each parameter
are indicated with a black (25 ◦C) or red (50 ◦C) line. Residues that differed from the average by more
than 2 standard deviations are labeled. In panel (D), the hetNOE value 0.6 is indicated with a black
line. Residues with values lower than 0.6 are labeled in black (25 ◦C) or red (50 ◦C). The secondary
structure from UniProt is shown at the top of the graph.

From the hetNOE data (Figure 6d), residues T32, N34, G35, and V36 located in L12;
residues S97 and D99 in the loop between β5 and H3; N110 at the C-terminus had hetNOE
values lower than 0.6 at 25 ◦C. Residues T32, N34, G35, E98, D99, N110, and A114 had
hetNOE values lower than 0.6 at 50 ◦C. Thus, these regions are unstructured and more
flexible, consistent with previous studies [14,15] and our R1, R2 relaxation experiments.
The average hetNOE values were 0.780 and 0.766 at 25 ◦C and 50 ◦C, respectively, showing
that the overall rigidity of the protein is maintained at 50 ◦C. Unlike the R1 and R2 values,
the hetNOE values did not show a significant difference by temperature. Because the
hetNOE value reflects the motion within the protein rather than the global motion of
the protein within its chemical environment, this suggests that the internal motion of the
protein is not changed much at increased temperatures [42].

2.5. Thermostability and ssDNA Binding Property of SsoSSB12–114

It was already known that the helix between β3 and β4 in the OB-fold family is well
conserved and makes a significant contribution to structural stabilization [17]. However, studies
on the importance of the helix near the N-terminus are lacking. Because the N-terminal
region of SsoSSB is not conserved among bacterial SSBs (Figure 1) and TmaSSB lacking this
region has higher Tm [22], we hypothesized the N-terminal region of SsoSSB is not crucial
for the structural stabilization. The structure of SsoSSB (PDB ID: 7WCG) and TmaSSB (PDB
ID: 1Z9F [43]) ss shown in the Supplementary Materials (Figure S4). To investigate the
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role of the N-terminal region, an N-terminal deletion mutant (SsoSSB12–114) was prepared.
DSC was used to measure the Tm value of SsoSSB12–114 as 53.12 ◦C (Figure 7a). This was
~30 ◦C lower than the Tm value of SsoSSB1–114 and in a similar range to the mesophilic
SSB, hRPA (70A subunit; 56.69 ◦C, Figure S5). CD spectroscopy was performed at 20 ◦C to
confirm the secondary structure of the protein (Figure S1a). The overall pattern was very
similar to SsoSSB1–114, except that lower molar ellipticities were observed at 215 nm and
228 nm. The molar ellipticity was not fully recovered after heating and cooling (Figure 7b).
Unlike the SsoSSB1–114, molar ellipticity at 228 nm also changed significantly between 50 ◦C
and 60 ◦C (Figure S1b). This is consistent with the DSC data. Together, these findings imply
that SsoSSB12–114 entirely loses thermostability. To monitor the structural changes that
occur upon deletion of the N-terminal helix, we performed an 1H-15N HSQC experiment
on SsoSSB12–114 at 25 ◦C (Figure S6a). The NMR spectra showed that the structure was
not disordered, but when comparing the 1H-15N HSQCs of SsoSSB1–114 and SsoSSB12–114,
we observed that more than half of the peaks shifted due to the N-terminal deletion
(Figure S6b).
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Figure 7. Thermostability of SsoSSB12–114. (A) Melting temperature of SsoSSB12–114 measured by
differential scanning calorimetry. (B) Circular dichroism spectroscopy was used to investigate the
effect of temperature on the secondary structure of SsoSSB12–114.

A DNA titration was performed to see if SsoSSB12–114 could still interact with ssDNA.
There were some chemical shift changes observed due to the added ssDNA (Figure S6c).
ITC experiments were also performed to measure the binding affinity. The dissociation
constant (Kd) and stoichiometry (n) of SsoSSB1–114 in the presence of dA(15) were 1.75 µM
and 1.009 (Figure S7a), respectively, but we did not observe enough heat from the inter-
action of SsoSSB12–114 and dA(15) to determine thermodynamic parameters (Figure S7b).
Taken together, the deletion of the N-terminal 11 amino acids from SsoSSB dramatically
affected its thermostability, structure, and DNA binding capability.

3. Discussion

In this study, we investigated the solution structure, DNA binding properties, and
dynamic properties of the thermophilic SsoSSB at high temperature (50 ◦C). While the
protein contains a well-conserved OB-fold domain and its structural aspects were already
studied at room temperature [14,15], the structural and dynamic origins of thermophilicity
were still not clearly understood. In this study, we collected NMR data to analyze the
structure and backbone dynamics at 50 ◦C. We believe that this approach provides unique
information to understand this thermophilic protein.

It is usually considered that a sufficient number of NOE (i.e., 10–20 NOEs per residue)
are required for the reliable protein NMR structure calculation [44]. However, a recent
study showed that the restraints per residue do not guarantee the accuracy of the structure.
At the same time, Ramachandran analysis could be considered the accuracy indicator of
the NMR structures [45]. While we used a relatively low number of NOE on average, we
could collect a substantial number of long-range NOE using AUDANA algorithms for
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the structure calculation. The structural statistics (Table 1) showed that our structure is
acceptable and reflects the protein’s nature.

Overall, our solution structure was similar to the previously described structures,
while local differences in L12 were revealed (Figure 8a–c). It is assumed that these dif-
ferences were caused by the conformational change upon ssDNA binding, and that the
flexibility of the region could contribute to the differences. Similar conformational dif-
ferences were observed in hRPA70A, a eukaryotic OB-fold protein. The X-ray crystal
structure of the apo form of hRPA70A (PDB ID: 1FGU [46]) and the ssDNA bound form of
hRPA70A (PDB ID: 1JMC [47]) showed that the L12 gets closer to the DNA and has a ‘closed’
conformation in the presence of ssDNA (Figure 8d–f). In the apo versus the DNA-bound
form, the α carbon of S215, located at the top of L12, shifts by 6.8 Å (Figure 8f), which
is larger than the equivalent difference in SsoSSB (3.4 Å). In this regard, we suggest that
our solution structure at high temperature represents the apo form of SsoSSB under near
physiological conditions.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 17 
 

 

3. Discussion 

In this study, we investigated the solution structure, DNA binding properties, and 

dynamic properties of the thermophilic SsoSSB at high temperature (50 °C). While the 

protein contains a well-conserved OB-fold domain and its structural aspects were already 

studied at room temperature [14,15], the structural and dynamic origins of thermophilic-

ity were still not clearly understood. In this study, we collected NMR data to analyze the 

structure and backbone dynamics at 50 °C. We believe that this approach provides unique 

information to understand this thermophilic protein.  

It is usually considered that a sufficient number of NOE (i.e., 10–20 NOEs per resi-

due) are required for the reliable protein NMR structure calculation [44]. However, a re-

cent study showed that the restraints per residue do not guarantee the accuracy of the 

structure. At the same time, Ramachandran analysis could be considered the accuracy 

indicator of the NMR structures [45]. While we used a relatively low number of NOE on 

average, we could collect a substantial number of long-range NOE using AUDANA algo-

rithms for the structure calculation. The structural statistics (Table 1) showed that our 

structure is acceptable and reflects the protein’s nature.  

Overall, our solution structure was similar to the previously described structures, 

while local differences in L12 were revealed (Figure 8a–c). It is assumed that these differ-

ences were caused by the conformational change upon ssDNA binding, and that the flex-

ibility of the region could contribute to the differences. Similar conformational differences 

were observed in hRPA70A, a eukaryotic OB-fold protein. The X-ray crystal structure of 

the apo form of hRPA70A (PDB ID: 1FGU [46]) and the ssDNA bound form of hRPA70A 

(PDB ID: 1JMC [47]) showed that the L12 gets closer to the DNA and has a ‘closed’ confor-

mation in the presence of ssDNA (Figure 8d–f). In the apo versus the DNA-bound form, 

the α carbon of S215, located at the top of L12, shifts by 6.8 Å  (Figure 8f), which is larger 

than the equivalent difference in SsoSSB (3.4 Å ). In this regard, we suggest that our solu-

tion structure at high temperature represents the apo form of SsoSSB under near physio-

logical conditions.  

 

 

Figure 8. Protein structures of OB-fold proteins apo form and ssDNA bound form. NMR structure 

of SsoSSB (A) apo form (PDB ID: 7WCG; indicated with red) and (B) with ssDNA (PDB ID: 2MNA 

[15]; indicated with blue). (C) Zoom of the structure overlapping of (A) and (B). X-ray structure of 

hRPA70A (D) apo form (PDB ID: 1FGU [46]; indicated with yellow-orange) and (E) with ssDNA 

(PDB ID: 1JMC [47]; indicated with lime). (F) Zoom of the structure overlapping of (D) and (E). 

Aromatic residues which interact with ssDNA show with sidechain stick structure. The zoomed 

areas are indicated by a dotted square in each figure. 

Figure 8. Protein structures of OB-fold proteins apo form and ssDNA bound form. NMR structure of
SsoSSB (A) apo form (PDB ID: 7WCG; indicated with red) and (B) with ssDNA (PDB ID: 2MNA [15];
indicated with blue). (C) Zoom of the structure overlapping of (A,B). X-ray structure of hRPA70A
(D) apo form (PDB ID: 1FGU [46]; indicated with yellow-orange) and (E) with ssDNA (PDB ID:
1JMC [47]; indicated with lime). (F) Zoom of the structure overlapping of (D,E). Aromatic residues
which interact with ssDNA show with sidechain stick structure. The zoomed areas are indicated by a
dotted square in each figure.

The aromatic residues involved in the stacking interaction with the DNA are shown in
Figure 8a,b. Even though W56 is well conserved in bacterial SSBs (Figure 1), the structure
showed that it contributes less than the other two residues (W75 and F79). This structure is
consistent with our CSP analyses (Figure 5). Furthermore, we observed subtle differences in
the DNA binding interface depending on the temperature. More electrostatic interactions
were involved at room temperature, while hydrophobic interactions were more crucial at
high temperature. This suggests that the nonspecific DNA binding of SsoSSB is mediated
by an optimal combination of noncovalent interactions depending on the environment.

Because protein backbone dynamics are not usually assessed at a high temperature, it
is not easy to compare our data with others. At or near room temperature, regions with
ps-ns dynamics usually have higher R1 (reduced T1) and lower R2 (elevated T2) values [40].
At 50 ◦C, we observed that the average R1 increased and R2 decreased compared to the
values at 25 ◦C (Figure 6a,b). This could reflect the general physical phenomena of proteins:
the overall motion increases with elevated temperature. This interpretation is consistent
with the rotational correlation time at 50 ◦C, being shorter than that at 25 ◦C. Unlike at
25 ◦C, the per residue R1 value at 50 ◦C showed that the flexible regions such as the L12 loop
and the C-terminus have lower R1 value than average (Figure 6a). This might be related to
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the shortened rotational correlation time at 50 ◦C. One of the possible explanations is that
the R1 of the flexible region decreases in the same way as R2 under conditions where τc is
faster than the value expected from the protein’s molecular weight [48]. Remarkably, the
per residue hetNOE values were similar at both temperatures. Our data clearly showed
that the overall protein folding was well maintained even at 50 ◦C, consistent with our DSC
and CD data.

Previous studies found that electrostatic and hydrophobic interactions play an essential
role in the thermal stabilization of thermophilic proteins [49–53]. We discovered that the
N-terminus (residues 1 to 11) of SsoSSB is important for maintaining thermostability, even
though it is located at the terminus of the protein and is not conserved across bacterial
SSBs. An N-terminal deletion caused Tm to decrease ~30 ◦C. The absence of the N-terminus
resulted in partial destabilization of the protein (Figure 7b), affecting thermostability
(Figure 7a) and DNA binding interaction (Figure S7b). These large disruptions led us to
speculate that the N-terminus might contribute to the stability of the protein by acting
as the lid of the β-barrel of the OB-fold. Since the binding affinity to ssDNA was so
significantly reduced due to the absence of the N-terminal sequence (Figure S7b), which
does not directly interact with ssDNA, it is reasonable to propose that the presence of
the N-terminus is essential for maintaining the tertiary structure. From point mutation
studies of the Thermotoga maritima acyl carrier protein [49], the Tm decreases significantly
by removing particular noncovalent interactions, while the mutant had a similar structure.
Our study showed a different way to modulate the thermostability of these proteins, namely
by truncating a region that is not included in the core structure. Further studies of the
deletion mutant and other point mutants are required to reveal the complete origins of the
thermostability of SsoSSB.

Based on our current understanding of the important residues and regions for ther-
mostability, it is expected that it will be possible to make proteins with improved ther-
mostability. For decades, efforts to improve protein stability and thermostability by protein
engineering have continued. Introducing new disulfide bonds [54,55], optimizing metal
chelation sites [56], and amino acid substitutions [57,58] have been thoroughly researched.
However, improving thermal stability requires a lot of time and money. Recently, several
computational studies [59,60] have been used to overcome these difficulties in biolog-
ical research. In addition, deep learning and machine learning techniques have been
employed to improve protein stability and thermostability [60–62]. Our study provides de-
tailed information on the structure and ssDNA interactions of SsoSSB at high temperature.
This information can provide fundamental insights into SSoSSB’s industrial applications,
such as increasing polymerase chain reaction efficiency [63], detecting viral nucleic acid [64],
and potentially increasing the stability of mRNA vaccines [65].

4. Materials and Methods
4.1. Protein Expression and Purification

SsoSSB1–114 and SsoSSB12–114 were cloned into a pET C-terminal TEV His6 cloning
vector with BioBrick polycistronic restriction sites (9Bc) and transformed into BL21(DE3)
cells. We cultivated cells for more than 12 h in 10 mL LB medium (25 g/L) with ampicillin
(0.3 mM, final concentration) at 37 ◦C. Into 1 L of LB medium containing ampicillin, 15 mL
of overnight cultured cells was poured. Cells were grown at 37 ◦C until the optical density
at 600 nm reached 0.5–0.6, and then isopropyl β-D-1-thiogalactopyranoside was added to
a final concentration of 0.5 mM. Cells were incubated for an additional 14–18 h at 18 ◦C.
Cells were centrifuged for 15 min at 7500 rpm at 4 ◦C. For separating endogenous nucleic
acids from protein, we used a high salt binding buffer (50 mM NaH2PO4, 2 M NaCl, pH 8.0)
and a high salt wash buffer (50 mM NaH2PO4, 2 M NaCl, 40 mM imidazole, pH 8.0).
Cells were resuspended and sonicated in the high salt binding buffer. The sample was
centrifuged for 15 min at 13,000 rpm, 4 ◦C, and the supernatant put into an Ni-NTA column
(Cytiva, Marlborough, MA, USA). The high salt wash buffer and an elution buffer (50 mM
NaH2PO4, 300 mM NaCl, 300 mM imidazole pH 8.0) were used sequentially to purify
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the proteins. The proteins were further purified by gel filtration chromatography using a
Hi-Load 16/600 75 pg column (Cytiva, Marlborough, MA, USA) with buffer A (100 mM
NaCl, 20 mM 2-(N-morpholino)ethanesulfonic acid (pH 6.5). For expression of 15N- and
13C-labeled protein, cells were grown in M9 minimum media that included 15NH4Cl and
13C-D-Glucose (Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA) as nitrogen
and carbon sources. The composition of M9 minimum media was 870 mL of distilled water,
1 g of 15NH4Cl, 100 mL of M9 10X salt, 20 mL of 10% glucose (13C-labeled) solution, 2 mL
of 1 M MgSO4 solution, 0.3 mL of 1 M CaCl2 solution, 0.33 mL of vitamin solution, and
10 mL of trace metal solution.

4.2. NMR Experiments

The 15N- and 13C-labeled SsoSSB1–114 sample was dissolved to a final protein concen-
tration of 0.5–1.2 mM with 10% D2O in buffer A. A Bruker 900 MHz NMR spectrometer
equipped with a cryogenic triple-resonance probe at the Korea Basic Science Institute
(Ochang, Korea), Bruker AVANCE Neo 600 MHz spectrometers at GIST Central Research
Facilities with a cryogenic triple-resonance probe (Gwangju, Korea), and an Agilent DD2
700 MHz NMR spectrometer at Gyeongsang National University (Jinju, Korea) were used
to collect NMR spectra. Backbone and sidechain assignments were performed in previous
studies [28,66]. 15N- and 13C-edited NOESY-HSQC were collected at 50 ◦C with 150 ms
and 300 ms mixing times for structure calculation. In CSP experiments, ssDNA composed
of 15 adenines (dA(15)) was added at molar ratios ranging from 0:1 to 2:1 to 15N-labeled
SsoSSB1–114. Average CSP values (∆δavg) were calculated using the following equation

∆δavg =

√
(

∆δN
5.88

)
2
+ (∆δH)2 (1)

4.3. Solution Structure Calculation

The 3D structure of SsoSSB1–114 at 50 ◦C was calculated using Xplore-NIH-based
computations in the PONDEROSA-C/S package [35], and NOE assignments were per-
formed using NMRFAM-Sparky [37]. Following that, the 20 lowest energy structures were
determined. PONDEROSA-Analyzer software [67] was used to assess and refine all angle
and distance violations of the best 20 constructions. PSVS [36] was used to analyze the
final 20 lowest energy structures. PyMOL (http://www.pymol.org, accessed on 8 March
2022) was used to create the protein structural diagrams and align the protein structures.
The NOE constraints and final coordinates were deposited in the RCSB PDB under the
accession number 7WCG (BMRB ID: 50523).

4.4. NMR Backbone Relaxation Experiment

R1 and R2 of 15N, and 1H-15N hetNOE data, were recorded on the Bruker AVANCE
Neo 600 MHz spectrometers at GIST Central Research Facilities with cryogenic triple-
resonance probes (Gwangju, Korea). Pseudo-3D NMR spectra were collected with relax-
ation delays of 20, 60, 100, 200, 400, 600, 800, 1000, 1200, and 1600 ms at 25 ◦C and 50 ◦C for
the 15N R1 measurements, and with relaxation delays of 16.96, 33.92, 67.84, 101.76, 135.68,
203.52, 271.36, 339.2, 407.04, and 547.72 ms at 25 ◦C and 50 ◦C for the 15N R2 measurements.
POKY was used to extract the relaxation rate constants by fitting the decay of peak height
as a function of the relaxation delay to a single exponential function [38]. For the hetNOE
measurement, interleaved 2D 1H-15N HSQC spectra were acquired with and without an
initial proton saturation of 2.5 s at 25 ◦C and 50 ◦C. hetNOE values were obtained from
the ratios of peak heights between pairs of spectra, calculated with a POKY script [38].
For more accurate analysis, overlapping peaks were excluded from the data. The rotational
correlation time (τc) was calculated by this equation [39,40]

τc = (
1

4πνN
)

√
(6

R2

R1
− 7) (2)

http://www.pymol.org
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where νN is the resonance frequency of 15N in Hz.

4.5. Differential Scanning Calorimetry

The Tms of SsoSSB1–114, SsoSSB12–114, and hRPA70A were measured by DSC using
a NanoDSC system (TA instruments, New Castle, DE, USA). The protein samples were
prepared at concentrations of 5 mg/mL in buffer A. The thermograms were recorded as the
temperature was increased at a rate of 1 ◦C/min from 50 ◦C to 110 ◦C (SsoSSB1–114) or 20 ◦C
to 80 ◦C (SsoSSB12–114 and hRPA70A). The pressure was kept constant at 3 atm to prevent
evaporation of the solvent. Individual component peaks were resolved from the complex
profiles after polynomial baseline correction, and the two-state scaled curve fittings were
performed by the NanoAnalyze software (TA Instrument, New Castle, DE, USA).

4.6. Circular Dichroism Spectroscopy

The secondary structure of SsoSSB at various temperatures was assessed by far-UV
CD experiments using a J-815 spectropolarimeter (Jasco, Tokyo, Japan). It was measured
under two different conditions. A 100 µM protein sample was dissolved in buffer B (20 mM
NaHPO4, pH 6.5) and placed in a cuvette with a 0.2 mm path length. CD spectra were
measured from 190 to 250 nm at 0.5 nm intervals at 20 ◦C. A 50 µM protein sample was
dissolved in buffer A and placed in a cuvette with a 1 mm path length. CD spectra were
measured from 210 to 250 nm at 0.5 nm intervals. The temperature was increased from 20
to 80 ◦C in 2 ◦C increments. After heating, the temperatures were decreased from 80 ◦C
to 20 ◦C in 5 ◦C decrements. Every measurement was performed after waiting for 1 min
between temperature changes. Temperature-dependent ellipticity changes at 228 nm were
observed to monitor the heat denaturation of the protein. θ was calculated as described in
previous papers [23,25–27].

4.7. Isothermal Titration Calorimetry

ITC experiments were carried out in buffer A with a Nano-ITC SV instrument (TA
Instruments, New Castle, DE, USA). Twenty-four aliquots of 10 µL of 500 µM dA(15)
were titrated at 25 ◦C into 50 µM of SsoSSB1–114 and SsoSSB12–114. The stirring speed was
300 rpm, and the interval between titrations was 250 s. The dissociation constant (Kd) and
stoichiometry (n) were calculated by fitting to the independent model in the NanoAnalyze
software (TA Instruments, New Castle, DE, USA).
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CSP chemical shift perturbation
CD circular dichroism
DSC differential scanning calorimetry
dA(15) single-stranded DNA composed of 15 adenines
dsDNA double-stranded DNA
hetNOE heteronuclear Overhauser Effect
HSQC heteronuclear single-quantum coherence
ITC isothermal titration calorimetry
NMR nuclear magnetic resonance
NOE nuclear Overhauser effect
OB-fold oligonucleotide/oligosaccharide binding fold domain
PDB protein data bank
RMSD root-mean-square deviation
R1 spin-lattice relaxation
R2 spin-spin relaxation
SSB single-stranded DNA binding protein
ssDNA single-stranded DNA
Sso Sulfolobus solfataricus
Tm melting temperature
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