
 

 

 

 
Int. J. Mol. Sci. 2022, 23, 3014. https://doi.org/10.3390/ijms23063014 www.mdpi.com/journal/ijms 

Article 

Fragments of rDNA Genes Scattered over the Human Genome 

Are Targets of Small RNAs 

Nickolai A. Tchurikov 1,*, Elena S. Klushevskaya 1, Ildar R. Alembekov 1, Anastasiia S. Bukreeva 1,  

Antonina N. Kretova 1, Vladimir R. Chechetkin 1, Galina I. Kravatskaya 1 and Yuri V. Kravatsky 1,2 

1 Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular 

Biology Russian Academy of Sciences, 119334 Moscow, Russia; giedre@inbox.ru (E.S.K.); 

alembeki@gmail.com (I.R.A.); asa192bukreeva@yandex.ru (A.S.B.); tonya_kretova@mail.ru (A.N.K.);  

vladimir_chechet@mail.ru (V.R.C.); galina.kravatskaya@gmail.com (G.I.K.); jiri@eimb.ru (Y.V.K.) 
2 Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of 

Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia 

* Correspondence: tchurikov@eimb.ru 

Abstract: Small noncoding RNAs of different origins and classes play several roles in the regulation 

of gene expression. Here, we show that diverged and rearranged fragments of rDNA units are 

scattered throughout the human genome and that endogenous small noncoding RNAs are pro-

cessed by the Microprocessor complex from specific regions of ribosomal RNAs shaping hairpins. 

These small RNAs correspond to particular sites inside the fragments of rDNA that mostly reside 

in intergenic regions or the introns of about 1500 genes. The targets of these small ribosomal RNAs 

(srRNAs) are characterized by a set of epigenetic marks, binding sites of Pol II, RAD21, CBP, and 

P300, DNase I hypersensitive sites, and by enrichment or depletion of active histone marks. In 

HEK293T cells, genes that are targeted by srRNAs (srRNA target genes) are involved in differen-

tiation and development. srRNA target genes are enriched with more actively transcribed genes. 

Our data suggest that remnants of rDNA sequences and srRNAs may be involved in the upregu-

lation or downregulation of a specific set of genes in human cells. These results have implications 

for diverse fields, including epigenetics and gene therapy. 

Keywords: small ribosomal RNAs (srRNAs); rDNA fragments; HEK293T; epigenetics; transcriptional 

silencing; transcriptional activation; differentiation 

 

1. Introduction 

RNA molecules are capable of recognizing complementary genomic regions [1]. The 

pervasive transcription of RNA likely gives rise to RNA copies of the entire genome [2]. 

Small RNAs of different classes (miRNA, siRNA, piRNA, tsRNA, srRNA, and others) 

and long noncoding RNAs (lncRNAs) play important roles in the regulation of gene ex-

pression in metazoan organisms [3–6]. Small rDNA-derived RNAs (srRNAs) bind to the 

AGO protein complex and may be involved in various signaling pathways and can affect 

the levels of ribosomal proteins [7–9]. Recently, it was shown that rDNA clusters shape 

inter-chromosomal contacts within different genomic regions in HEK293T cells and that 

the contact sites are enriched with small noncoding RNAs, suggesting the 

RNA-mediated nature of the contacts [10,11]. These data prompted us to study whether 

srRNAs are involved in these contacts, and thus we investigated the origin and the target 

sites of srRNAs. For this study, we used the 20–50-nt long RNAs associated with 

DGCR8—a Microprocessor-complex subunit—that was isolated by crosslinking im-

munoprecipitation in HEK293T cells [12]. DGCR8 (also known as Pasha) directly recog-

nizes the RNA substrates and is involved not only in the initial step of miRNA biogenesis 

but also in the fate of different classes of RNAs, including ribosomal RNAs and several 
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hundred mRNAs, as well as snoRNAs and lncRNAs [12]. srRNAs mostly correspond to 

the 28S gene [6] and are not random products formed during rRNA degradation, but 

correspond to a new class of small RNAs that deserves further investigation [13]. 

Here, we report that srRNAs in HEK293T cells correspond to short sequences (tar-

gets) from the transcribed portion of rDNA units in about 1500 srRNA target genes that 

are enriched in genes involved in differentiation. About one-third of srRNA target genes 

are involved in shaping the contacts with rDNA clusters. We observed that the level of 

expression of srRNA target genes varies widely. Surprisingly, some abundant srRNAs 

correspond to the targets in a single gene, suggesting high specificity toward the target 

gene. srRNA-target sites are enriched either with active or repressive epigenetic marks. 

Taken together, our data suggest that srRNAs may be involved in the transcriptional 

regulation of multiple genes. 

2. Results 

2.1. There Are Thousands of Unique srRNAs 

srRNAs were selected from the sequenced library of RNAs that were isolated by 

crosslinking immunoprecipitation using antibodies to DGCR8 (sample GSM955512) [12]. 

About 20% of the reads correspond to rDNA sequences [12]. The isolation of total 

small-RNA reads and the selection of srRNAs and the corresponding genes were per-

formed as described in Section 4. Figure 1A shows that more than 99% of srRNAs cor-

respond to the sense strand of the 43-kb rDNA unit. There are about 75,000 unique 

srRNA molecules, which comprise overlapping 19–50-nt rRNA molecules that align with 

2047 regions of rDNA (Table S1). Most srRNAs have numerous exact copies. The violin 

plot presenting the length distribution of all srRNAs shows that the number of nucleo-

tides ranges from 19 to 50 with a mean value of 29 nt. There are also major peaks at 25 

and 26 nt. Interestingly, the scarce antisense srRNAs are shorter and have a mean value 

of 27 nt, with a major peak at 25 nt. 

 

Figure 1. Characterization of srRNAs and their target genes. (A) Violin presentation of srRNA 

lengths and abundance, including all isolated molecules, unique molecules (without exact copies), 
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and sense and antisense molecules. The complete data are presented in Table S1. (B) The distribu-

tion of sense (red curve) and antisense (blue curve) srRNAs along the length of a 43 kb rDNA unit. 

The vertical line rising from the 28S gene indicates the highest peak of srRNAs. (C) The top ten 

Gene Ontology (GO) biological process associations of srRNA target genes. The values to the right 

of the bars show the number of srRNA target genes associated with a process. The complete list of 

srRNA target genes is shown in Table S1. Table S2 shows the results of the GO search. (D) A Venn 

diagram showing the intersections between srRNA target genes and rDNA-contacting genes [9]. 

Table S3 shows the list of overlapping genes. (E) The top ten GO biological process associations of 

426 genes are shown in (D). The values to the right of the bars show the number of srRNA target 

genes associated with a process. Table S4 shows the results of the corresponding GO search. 

Figure 1B shows the distribution of the relative amounts of srRNAs along the length of 

the rDNA unit. Small noncoding sense RNAs are distributed almost exclusively within the 

transcribed portion of the rDNA gene. Small peaks of antisense srRNAs were observed in 

intergenic spacer (IGS) regions (Figure 1B). srRNAs are non-randomly distributed through-

out the rDNA, and we detected ten main peaks in the transcribed rDNA region. These in-

clude a peak from the 18S gene, a prominent peak from the 5.8S gene, and several large peaks 

from the 28S gene. The strongest peak corresponds to the 5′ region of the 28S gene. 

2.2. Detection of srRNA target Genes 

Next, we searched for non-rDNA genes that may correspond to these srRNAs and 

share homologous nucleotide stretches. We found 1584 genes possessing sequences cor-

responding to the selected srRNAs (srRNA target genes). The list of these genes is shown 

in Table S1. In order to study whether srRNA target genes share biological properties, we 

used the Gene Ontology (GO) search and revealed that these genes in HEK293T cells 

were most frequently associated with a number of GO Biological Process items relating to 

cell development and neuron differentiation (Figure 1C, Table S2), which could probably 

be explained by the neuronal origin of HEK293T cells [14]. About 25% of srRNA genes 

overlapped with the list of rDNA-contacting genes [9] (Figure 1D, Table S3). These 

overlapping genes are highly associated with neuron development (Figure 1E, Table S4). 

The data indicate that srRNAs may be involved in RNA-mediated interchromosomal 

contacts of rDNA units with some genes; however, other RNAs or other mechanisms are 

responsible for a major part of these contacts. 

2.3. Abundant srRNAs in the UNC45B Gene 

We selected several genes that are targeted by multiple srRNAs for detailed analysis 

and observed that srRNA target sites often correspond to genomic regions containing 

fragments of diverged and heavily rearranged rDNA sequences. Figure 2 shows one 

example in the UNC45B gene, which specifies a co-chaperone required for folding and 

accumulation of type II myosins. 

There are many small fragments similar to rDNA sequences in this region (Figure 

2A), which mostly correspond to rearranged sequences of IGS (Figure S1). Only one 

161-nt region corresponds to four blocks of 23–43-nt overlapping srRNAs from the main 

peak in the 28S gene (Figure 2B). The region demonstrates 96.32% identity with the 28S 

gene and is located in the antisense orientation inside the fourth intron of the UNC45B 

gene. This narrow region is characterized by the prominent H3K27ac mark in seven cell 

lines and by DNase I hypersensitive sites in 125 cell lines (Figure 2A). In H1-hESCs cells, 

there are active H3K27ac and H3K36me3 marks and the repressive chromatin mark 

H3K27me3 in this region. The reciprocal changes of H3K27ac and H3K27me3 marks were 

previously described in the promoter regions of endometrial cells [15]. Chromatin-state 

segmentation data indicate that the UNC45B gene is repressed in six cell lines. About 2.7 

kb upstream from the region corresponding to srRNAs, there are CpG methylation 

marks. Similar results were obtained for several different srRNA target genes, but some 

genes were transcriptionally active and possessed CpG-methylated regions correspond-

ing to srRNAs, e.g., PMF1 (Figure S2). We observed that the targets of srRNAs are often 
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methylated (Figure S2, Supplementary Text). Many of the same epigenetic marks (CpG 

methylation marks, H3K27ac, H3K27me3, H3K36me3, and CTCF marks, as well as DNase I 

hypersensitive sites) were observed in different combinations at srRNA targets in different 

genes, including ANKRD30BL, RYR2, RELN, PID1, and HFM1 (Figures S4–S8). 

 

Figure 2. Characterization of srRNA targets inside the intron of the UNC45B gene. (A) Divergent 

rDNA stretches in the region are shown at the top. The colors indicate the alignment score of NCBI 

BLAST. The dot plot in Figure S1 shows the position of a short rearranged 5′ fragment of the 28S gene 

inside a segment of chr17. The distribution of layered H3K27ac marks, genome segmentation from 

ENCODE, histone modifications, nucleosome position, and CpG methylation inside a region of chr17 

are shown as in the UCSC Browser. (B) Four groups of overlapping sequences of srRNAs of length 

23–43 nt correspond to the main peak of sense srRNAs from the 28S gene, as shown in Figure 1B. 

Remarkably, the most abundant srRNAs targeting the UNC45B gene (Figure 2B) 

have no other gene targets in HEK293T cells (Table S1). There are further examples 

demonstrating unique targeting (Table S1). Figures S2 and S3 show the actively tran-

scribed PMF1 gene, which possesses stretches from the external transcribed spacer (ETS) 

regions that are targeted by srRNAs. 

2.4. Epigenetic Features at srRNA Targets 

These results suggest a putative regulatory role of srRNAs, which prompted us to 

perform a genome-wide study of epigenetic marks and transcription factor-binding sites 

±1.5 kb around the regions corresponding to srRNAs in HEK293T cells. We expected that 

there would be enrichment with active and repressive marks at these sites and we ob-

served enrichment or depletion of several factors at the srRNA targets or immediately 

around them. srRNA target sites are enriched with DNase I hypersensitive sites, binding 

sites of DDX21 RNA helicase (a sensor of the transcriptional status of Pol I and Pol II RNA 

polymerases), and binding sites of the subunits of RNA Polymerase I and II (Figure 3A). 
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Figure 3. Properties of srRNA targets in HEK293T cells. (A) Profiles of DNase I sites, binding sites 

of different factors, histone marks, and rDNA-contacting sites around srRNA targets. The z-scored 

signals ±1.5 kb around srRNA targets are indicated. (B) The percentage of chromatin states (15-state 
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model) in H1-derived neuronal progenitor-cultured cells in the whole genome (left dark bars) and 

at srRNA targets (right light bars) is shown. The color codes of the epigenetic states are shown in 

the order they appear at the srRNA sites. The labels present a state number and the percentage of 

the corresponding state. The statistical significance of the difference between epigenome states is 

tested with the independent-samples unequal-variances t-test. All cases with statistically signifi-

cant differences (p < 0.005) are marked by an asterisk. 

The data on the enrichment of srRNA targets by binding sites for CBP (the tran-

scriptional coactivator of many transcription factors) and P300 histone acetyltransferase 

(acetylates core histones in nucleosomes and provides epigenetic tags for transcriptional 

activation) suggest that there are srRNA target genes that are activated by 

RNA-mediated mechanisms. ZNF384 and ZNF263—a modifier of the transcription of 

specific gene sets transcribed by RNA polymerase II and a transcriptional repressor, re-

spectively—have contrasting profiles (Figure 3A). These data may indicate that srRNA 

target genes are not repressed by ZNF263 and may be regulated by ZNF384. There is en-

richment of UBF and POLR1B at srRNA targets in the whole hg38 genome, which does 

not currently include rDNA genes (see Section 4). However, their role in these regions 

outside of rDNA clusters is not known. 

Among the core histone modifications at targets of srRNAs, we observed depletion 

of the H3K9me3 mark, suggesting that srRNAs escape the constitutive heterochromatin 

regions. The target sites are also depleted of the H3K4me1 mark, which is characteristic of 

enhancers. Nevertheless, we observed some enrichment with active marks (H3K4me3 

and H3K27ac, which are characteristic of promoters and super-enhancers) but only 

around ±300 bp of srRNA targets. These data suggest a connection between the activation 

of transcription and srRNA sites. Figure 1D demonstrates that about 10% of 

rDNA-contacting genes overlap with srRNA target genes. In our 4C-rDNA experiments 

[10], we used EcoRI and FaeI enzymes, which is why we expected that the 4C-rDNA pro-

file would reflect the distance between the midpoints of srRNA targets and the midpoints 

of EcoRI–FaeI restriction fragments of about 200–500 bp in length. We observed that the 

peak of the 4C-rDNA profile was at some distance from the zero points in the srRNA 

targets in HEK293T cells (Figure 3A). The profile is shown in more detail in Figure S9. 

The data support the view that rDNA contacts might be RNA-mediated [10,11]. 

We also found a high enrichment of RAD21-binding sites directly at srRNA targets, 

as well as the presence of CTCF at about ±300 bp from the targets. RAD21 is a key com-

ponent of the multiprotein cohesin complex. As cohesin and CTCF are involved in the 

formation of TADs and loop boundaries [16], we suggest that the observed genomic dis-

tribution of srRNA sites suggests the involvement of srRNAs in the organization of 

looped chromatin structures. 

To further elucidate the epigenetic states that are characteristic of srRNA sites, we 

performed a search of the available human epigenome data based on the analysis of the 

core set of five chromatin marks (H3K4me3, H3K4me1, H3K36me3, H3K27me3, and 

H3K9me3) [17]. There are no corresponding data for the HEK293T cells, which originate 

from a human embryonic kidney yet have an unexpected relationship with neurons but 

not typical kidney epithelial cells. Therefore, we selected the available data for the H1-der 

(H1-derived neuronal progenitor cultured cells) human embryonic stem-cell line. Figure 

3B shows the comparison of the epigenetic states at the srRNA sites and in the whole 

genome in this cell line. The srRNA target sites are enriched for ZNF genes and flanking 

bivalent TSS/Enh, as well as for genomic regions with a quiescent/low state, which are 

characterized by a chromatin structure largely devoid of the histone modifications in-

cluded in the segmentation analysis [18]. In contrast, srRNA sites are depleted for heter-

ochromatin, strongly transcribed and weakly repressed PolyComb regions, enhancers, 

flanking active TSS, and genic enhancers. The data on the depletion of H3K9me3 marks 

at srRNA targets (Figure 3A) are supported by the data on the reduced representation of 

heterochromatin states (Figure 3B). 
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2.5. Expression of srRNA target Genes 

Taken together, the epigenetic profiling data suggest that srRNAs could be involved 

in both activation and repression of gene expression. Therefore, we next investigated the 

possible link between the numbers of srRNA per gene and the expression rate of the 

target genes in HEK293T cells. Although there are many factors controlling transcrip-

tional and post-transcriptional gene expression in nuclei and cytoplasm, we attempted to 

find the putative link between expression levels of srRNA target genes and the abun-

dance of the corresponding srRNAs. The plot of the RNA-Seq data and the numbers of 

srRNAs per gene (Figure 4A, Table S5) demonstrate that most srRNA target genes are 

targeted by one srRNA. Interestingly, the region in the plot with more than 11 srRNAs 

corresponds to single genes (the genes shown by dots without whiskers in Figure 4A), 

suggesting the high specificity of srRNAs. In this part of the plot, there are silenced and 

actively transcribed genes. The result suggests that srRNAs may be associated with both 

activation and repression of transcription. 

 

Figure 4. Analysis of expression of srRNA target genes. (A) The scatter plot presents the expression 

levels of 1584 srRNA target genes and the numbers of corresponding srRNAs. The red dots indicate 

srRNA target genes. The median position and whiskers are shown in blue. The X-axis is not to 

scale. The list of all srRNAs is shown in Table S1. The names of genes are indicated if a single gene 

is targeted by a particular set of isolated srRNAs (see Section 4). (B) Violin plots showing the dis-

tribution of genes with respect to their expression levels for all HEK293T genes (red), random genes 

(violet), and srRNA target genes (blue). The numbers of corresponding genes are shown at the top. 

For a better visualization of the relative proportions of active and repressed srRNA 

target genes, we used a violin plot to show the distribution of genes in relation to their 

expression levels. We observed that srRNA target genes have a larger proportion of ac-

tively transcribed genes than the bulk genes in HEK293T cells (Figure 4B). A set of 1575 

randomly selected genes was also used for the comparison. The transcription pattern of 

the random genes shows a similar distribution to that of the full HEK293T gene set and 

differs from the transcription pattern of the srRNA target genes. Together with the data 

on the enrichment of srRNA sites with Pol II, CBP, P300, and active histone marks, as 

well as the depletion within heterochromatin regions (Figure 3), these findings demon-

strate that srRNA targets mainly occur in the more actively transcribed genes. 

3. Discussion 

Almost exclusively, srRNAs originate from sense rRNA transcripts, including cod-

ing sequences and spacers (ETS, ITS1, ITS2, and 3′ ETS), which are present only in 

pre-rRNA molecules (Figure 1B). This suggests that the processing of pre-rRNA by the 

Microprocessor complex occurs in the nucleus. We assume that in the complex, DGCR8 
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recognizes the secondary structures in the pre-rRNA and Drosha cleaves in these regions, 

similar to the biogenesis of miRNAs. Figure S10 shows that the most abundant srRNA 

targeting the UNC45B gene corresponds to the stem-loop structure inside the 5′ end re-

gion of the 28S gene. We observed that IGS-homologous sequences often occur in various 

non-rRNA genes (Figures S1 and S3), but only a small number of srRNAs originate from 

the IGS (Figure 1B). The nature of antisense srRNAs derived from the IGS is still to be 

determined and we are currently studying the srRNAs detected in the enhancer se-

quences inside the IGS. 

About 90% of srRNA targets are located in intergenic regions, inside introns, and at 

promoters, including unidirectional and bidirectional TSS, in all human chromosomes 

(Figures S11–S13). The origin of the rDNA sequences that are scattered across the human 

genome is not clear. One possible mechanism is translocation, because rDNA genes are 

the most fragile sites in the human genome and they shape frequent contacts with dif-

ferent genomic regions also possessing DSBs [19–21]. In the course of evolution, highly 

divergent and rearranged rDNA remnants could be selected as the mechanism of regu-

lation of a set of genes associated with the activity of rDNA clusters. srRNAs coim-

munoprecipitate with AGO proteins [6], which supports our conclusion that srRNAs 

may participate in the regulation of a particular set of genes. Further studies using dif-

ferent cell types are required to support our conclusion regarding the regulatory function 

of srRNAs. HEK293T is an aneuploid transformed cell line that possesses multiple 

chromosomal translocations, and the spectra of srRNAs in normal human cells are yet to 

be determined. Although transcripts from rDNA genes are the most abundant transcripts 

in various cell types, their processing into srRNAs could differ between tissues. It is 

known that cancer cells boost rDNA expression [22], which potentially could result in 

changes in the spectra of srRNAs. It will be of interest, therefore, to study srRNAs in 

other human cell types. 

Changes in rRNA transcription are associated with differentiations in human, 

mouse, and Drosophila cells [11,19,23]. Our data support these observations and suggest 

one possible mechanism of gene regulation by rDNA-related small RNAs. 

Recent studies of expression signatures suggest that the origin of HEK293 cells is 

from the adrenal gland adjacent to the kidney [24] and is associated with the sympathetic 

nervous system. The data on rDNA-contacting genes in HEK293T cells strongly indicate 

that this cell line is associated with the development of neurons [10]. The GO associations 

of srRNA target genes shown in Figure 1C–E support this conclusion. The role of small 

RNAs in transcriptional regulation has been discussed for a long time (for a review, see 

[3]). Small RNAs can target protein complexes to the complementary nascent transcripts, 

leading to the deposition of H3K9me2/3 repressive marks in the corresponding chroma-

tin regions, or could directly recognize genomic regions subjected to methylation [25]. 

Our data argue in favor of a regulatory role for srRNAs in the expression of numerous 

genes throughout the human genome. However, direct experiments are required to test 

the capacity of srRNAs to induce the active or repressive epigenetic marks and to change 

expression levels of the srRNA target genes. In further studies, we will test the effects of 

transfected srRNAs and srRNA targets on activation or repression of particular genes. 

4. Materials and Methods 

4.1. Isolation of srRNAs 

The HEK293T small-RNA NGS dataset was obtained from GEO accession 

GSM955512/SRR518497 (37 065 975 reads). The dataset was processed by Trimmomatic 

[26] 0.36 to remove reads shorter than 20 bp, to remove low-quality ends, and to sustain 

acceptable read quality throughout all read lengths (options: LEADING:18 TRAILING:18 

SLIDINGWINDOW:4:22 MINLEN:20, 36 625 832 reads left). The next step was to obtain a 

deduplicated dataset in which all complete copies of reads were removed so only unique 

reads remained. This was achieved by dedupe.sh from BBtools [27] 38.62 with options to 
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remove only exact copies and to remove low-quality ends (ac = f qtrim = rl trimq = 18, 3, 

931,671 unique reads left). All further processing was completed in parallel for both da-

tasets with all reads (36,625,832) and with unique reads (3,931,671) only. 

To separate srRNA reads from all small RNA data, we aligned the dataset to the 

rDNA sequence (Genbank accession U13369) by bowtie2 [28] 2.3.4.1 with preset 

--end-to-end --very-sensitive to find the maximum possible amount of rDNA-aligned 

sequences. All unaligned sequences were removed from the alignment file (--no-unal 

option), and the file was sorted by coordinate (samtools sort [29]) and converted to the 

BAM format (568 364 aligned reads). The initial reads that aligned to rDNA were recov-

ered from this BAM file by the bedtools [30] 2.29.1 bamToFastq tool. Then, srR-

NA-associated reads were aligned to the GRCh38/hg38 p.12 human genome by bowtie2 

[28] with preset --end-to-end --sensitive, all unaligned reads were removed from the 

alignment file (--no-unal), and the alignment file was sorted by coordinate (samtools sort 

[29]) and then converted simultaneously both to the resulting table (with genome coor-

dinates, number of reads, coverage, and sequence per mapping) by ad hoc in-house bash 

and Perl scripts and to the genome-wide srRNA profile by genomeCoverageBed [30] and 

bedGraphToBigWig [31] tools. 

The resulting table was converted to GFF format for further processing by the Perl 

script. The mapping areas from the resulting table were assigned to genes by the fol-

lowing procedure. Ensembl genome annotation GRCh38/hg38 p.12 v.97 was used to ob-

tain the list of H. sapiens genes. The gene names, IDs, and chromosome coordinates were 

extracted from the GTF file by the R script with the help of refGenome and dplyr librar-

ies. The intersectBed [30] tool was applied to find intersections between the srRNA 

mappings file and the H. sapiens genes list. Thus, the list of srRNA target genes was gen-

erated. The complete bioinformatic flowchart is shown in Figure S15. 

The srRNA profile along the rDNA was generated from the aligned srRNAs to 

rDNA BAM file by the genomeCoverageBed [30] tool. Alignment BAM files are available 

at the following link: http://epigen.eimb.ru/IJMS2022/ (accessed on 10 March 2022). 

4.2. Genome-Wide Profiles 

The following genome-wide HEK293 profiles were downloaded from the ENCODE 

project (see Table S6): CTCF (ENCSR000DTW/ENCFF924LOC), DNAseI (HEK293T) 

(ENCSR000EJR/ENCFF716SFD), H3K4me1 (ENCSR000FCG/ENCFF717JWL), H3K4me3 

(ENCSR000DTU/ENCFF756EHF), H3K36me3 (ENCSR910LIE/ENCFF704SBO), H3K27ac 

(ENCSR000FCH/ENCFF631VZK), ZNF263 (ENCSR000EVD/ENCFF367HGG), H3K9me3 

(ENCSR000FCJ/ENCFF902RQI), and ZNF384 (HEK293T) 

(ENCSR882ICT/ENCFF128ERM). 

The following HEK293 data were downloaded from NCBI GEO/SRA database: 

DDX21 (SRR1910478/SRR1910479), CBP (SRR1001897, SRR1001898/SRR1001900), p300 

(SRR1001893, SRR1001894/SRR1001900), RAD21 (HEK293T) (SRR710096/SRR710097), 

POLR2A (GSM935534/GSM935533), RPA116/POLR1B (HEK293T) 

(SRR087747/SRR087753), and UBF (HEK293T) (SRR087746/SRR087753). 

The data were processed uniformly by the following pipeline. In the first step, all 

short and/or low-quality reads were removed, and low-quality ends were trimmed by 

Trimmomatic [26] (options: LEADING:18 TRAILING:18 SLIDINGWINDOW:4:22 

MINLEN:20). In the second step, all data were aligned to the hg38 genome by bowtie [32] 

1.2.3 with options --best --strata -m 1. The resulting SAM files were converted to BAM 

files and sorted, and unaligned reads were removed. Samtools [29] fixmate/markdup 

tools were used to find and mark complete duplicates that were ignored in further pro-

cessing. MACS2 [33] 2.1.2 was applied as a peak caller (options --bdg --gsize hs 

--call-summits) and later to build fold-enrichment profiles (options bdgcmp -m FE). Re-

sulting fold-enrichment profiles were converted to bigWig format by the bedGraph-

ToBigWig tool [31]. 
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An HEK293T 4C-rDNA-contacting regions genome-wide profile was created in the 

following way. The HEK293T line was provided by Dr. V. S. Prassolov (Engelhardt In-

stitute of Molecular Biology). Raw data for HEK293T cells were downloaded from GEO 

GSM3434713 and GSM3434714, and adapters were removed according to the description 

in the GEO. The filtered replicas were aligned to the GRCh38/hg38 p.12 human genome 

that did not include rDNA clusters by the bwa [34] 0.7.17-r1188 mem algorithm. Una-

ligned reads were removed and alignment files were sorted and converted to BAM for-

mat by samtools [29]. BAM files were converted to bedGraph profiles by the genome-

CoverageBed [30] tool. The subtractBed [30] tool was used to subtract mappings that 

were mapped completely to low complexity and/or repeat regions that were present in 

the DFAM [35] database from the profiles. A mean profile was created by WiggleTools 

[36] and converted to bigWig format by the bedGraphToBigWig [31] tool. All the epige-

netic plots were created interactively by the SeqPlots [37] package. 

Profile plots were created at 10 bp binning size with mean values from the 

z-score-normalized (in the plot range) data and the midpoints of the srRNA ge-

nome-wide mappings applied as the plot center. Z-score normalization was performed 

by SeqPlot’s built-in function. srRNA input data for profiles were processed according to 

the procedure described in Methods for each genome strand separately (options --norc 

and --nofw for bowtie2) and then united into a single GFF file with strand information. 

4.3. Epigenome Statistics 

Epigenome chromatin-state statistics were calculated for the core 15-state model 

(five marks) for the data that were downloaded from the “NIH Roadmap Epigenomics” 

[38] for the H1-derived neuronal progenitor cells (E007 epigenome) as the closest cell 

type to HEK293T cells from the Epigenome atlas. Intersections between srRNA mappings 

and chromatin states were found by intersectBed [30] tools and statistics were calculated 

by an in-house Perl script. Donut charts were created by the R script with the help of 

ggplot2 and ggrepel R libraries. 

4.4. RNA-Seq Analysis 

We performed HEK293T expression analysis using both iTPM values for each experi-

ment and as a raw-value matrix for the differential RNA-Seq (as required by DESeq2). 

HEK293T RNA-Seq data (two replicates, GSE130262) were used. Figure S14 shows the con-

sistency between the RNA-Seq replicates. All RNA-Seq data were processed uniformly. 

Trimmomatic [26] was applied to remove low-quality reads with the following options: 

LEADING:18 TRAILING:18 SLIDINGWINDOW:4:22 MINLEN:20. The filtered reads were 

aligned to the GRCh38/hg38 genome with Ensembl v.97 annotation using the STAR 

RNA-Seq aligner 2.6.1c [39]. The package featureCounts [40] 1.5.1 was applied to quantify 

alignments to the GRCh38/hg38 Ensemble v.97 list of genes with the options: -a hg38.97.gtf -t 

exon -g gene_id *.bam. Next, the list of quantified genes was filtered using the list of srRNA 

target genes. For further analysis, we excluded 13 genes corresponding to the rDNA gene 

family (RNA5-8SN1, RNA5-8SN3, RNA5-8SN2, FP671120.4, FP671120.2, FP236383.3, 

FP236383.1, FP236383.2, RNA5-8SP6, FP671120.1, RF00002, RNA5-8SP2, AC010970.1). 

To obtain accurate transcript quantification from the RNA-Seq data, the RSEM [41] 

software package was applied. The resulting gene tables were combined and 13 genes cor-

responding to the rDNA family of genes were also excluded. Gene expression values (in 

TPM) were assigned to the previously obtained srRNA mappings and were used to create 

violin plots and scatterplots with box-and-whiskers plots. All charts were created by R scripts 

with the help of the ggplot2 library. 

4.5. Transcription Start-Site Analysis 

Transcription start sites (TSSs) were obtained from the NCBI RefSeq Curated [42] 

database as follows. All genes from the ncbiRefSeqCurated table for the hg38 genome 
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were downloaded from the genome-mysql.cse.ucsc.edu server by SQL request. In the 

next step, all complete gene duplicates were removed, and then the list of genes was 

converted to the TSS list. We selected only those TSSs that are expressed in HEK293T 

cells by filtering the TSS list according to CAGE/Phantom5 [43] genome-wide expression 

data (downloaded from EPD [43] server ftp://ccg.epfl.ch/mga/hg38/fantom5/) (accessed 

on 10 March 2022). In the case of multiple gene TSSs, the minor TSSs that had an expression 

level of less than 1% of the major TSS were excluded from further consideration. The list 

was then divided into the list of bidirectional promoter TSSs (i.e., the distance between 

TSSs should be less than 1000 bp, the TSSs should be located on the opposite strands, and 

transcription from these TSSs should not intersect) and the list of unidirectional promoter 

TSSs. The lists were converted to GFF format and srRNA profiles around bidirectional and 

unidirectional promoter TSSs were created by the SeqPlots [37] package. 

4.6. Permutation Analysis 

To ensure the specificity of the srRNA mapping, we performed a permutation test in the 

following way. A Perl in hoc program was developed to shuffle FastQ records in the source 

SRR518497 file. This program employs BioPerl’s Seq::Quality module for input/output and 

the Mersenne Twister pseudorandom generator [44] Math::Random::MT::Auto, and imple-

ments Durstenfeld’s version of the Fisher–Yates shuffling algorithm [45] for sequence let-

ter/quality value pairs (so sequence letters are shuffled together with their quality values). 

This approach ensures that the GC content and amounts of all letters in the sequence remain 

the same while their order becomes random. Coupling quality values with letters ensures 

that all sequence letters keep their quality values. The permuted dataset was processed ac-

cording to the section “Isolation of srRNAs” in Section 4. The intersections between the re-

sulting mapping tables of nonpermuted and permuted datasets were found by the inter-

sectBed tool. The intersections of the gene lists were calculated by a Unix shell one-liner: in-

tersectBed-a srRNA_table.txt-b permuted_table.txt|cut-f 12|sort|uniq|wc–l Permutation 

and mapping procedures were performed ten times. The mean number of mapped reads 

was 96 ± 3.8 (in the non-permuted dataset the number of mapped reads equals 555,385). The 

mean number of mapped regions was equal to 96 ± 3.8 (in the nonpermuted dataset, this 

number is equal to 2961). The number of intersected nonpermuted and permuted mapped 

regions did not exceed eight. We performed Jaccard intersection tests using the bedtools jac-

card tool. The mean value of Jaccard statistics was 0.00067 ± 0.00035, while the maximum ob-

served value 2qs 0.00115. These data mean that the intersection by the length of permuted 

and non-permuted dataset mappings was statistically negligible (<0.115%). We performed 

correlation tests between nonpermuted and permuted mapped regions by AnCorr [46]. The 

mean value of |z| = 1.032 ± 0.397, p = 0.3345 ± 0.171, and the maximum value z = 1.762, p = 

0.078, which means that there was no statistically significant correlation observed in any test 

between permuted and nonpermuted dataset mappings. The mapping tables obtained from 

nonpermuted and permuted datasets and associated with genes intersected in 2.70 ± 1.57 

genes (the median number of overlapping genes was two and the maximum number of 

overlapping genes was six). We tested the probability of obtaining these numbers of over-

lapping genes by chance using the hypergeometric test p = phyper (2, 1575, 60522-1575, 67, 

lower.tail = FALSE) = 0.2534 (p > 0.05). Therefore, intersections in gene lists that were obtained 

from the permuted datasets with the srRNA-associated gene list could be obtained by chance 

and should be ignored. 

Thus, we can conclude that the srRNA mappings (SRR518497 accession) to the hu-

man rDNA and genome-wide to the human hg38.p12 genome build are robust to the 

shuffling permutations. Therefore, the results based upon these mappings could not be 

obtained by chance and are nonrandom. 

4.7. Analysis of the Distribution of Genes versus Their Expression Levels by Violin Plots 

Gene expression datasets do not follow a normal distribution [47] and, therefore, 

nonparametric statistical criteria should be used for their analysis. We tested the non-
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parametric independent two-group Mann–Whitney U-test applicability for this task. We 

performed the following tests. 

1. Test with subsets of the same size—Two gene subsets of equal size were created, and 

the gene expression values were shuffled randomly using Durstenfeld’s version of 

the Fisher–Yates shuffling algorithm [45]. Appropriate amounts of values were se-

lected from the shuffled lists. The Mann–Whitney U-test was applied to test if these 

two randomly selected subsets originated from the same distribution. The proce-

dure was performed 10,000 times. FDR = 0.0483 for subsets containing 1575 genes. 

2. Test with the full gene set and a smaller subset—A subset was created by randomly 

shuffling all gene expression values by Durstenfeld’s version of the Fisher–Yates 

shuffling algorithm and then selecting 1575 appropriate values from the shuffled 

list. The Mann–Whitney U-test was applied to test if the full expression set and cre-

ated subset originate from the same distribution. The procedure was performed 

100,000 times. FDR = 0.0453 for the subset with 1575 genes. 

In all cases, the FDR values corresponded to the theoretical value 0.05 ± 0.005 and so 

the Mann–Whitney U-test can be applied to the gene expression datasets. 

We applied the Mann–Whitney U-test to detect whether the srRNA-associated gene 

expression subset and the full expression dataset originate from the same distribution. The 

independent two-group Mann–Whitney U-test between the complete gene expression set 

and the srRNA-associated gene expression subset yielded a p-value of 1.152 × 10−52. 

We also tested whether the difference in expression distributions could be obtained 

by chance in the case of equally sized datasets by Monte Carlo (MC) simulations. The test 

was performed using the same design as the tests in test 1, above, except that the first 

gene set was the srRNA-associated gene expression dataset (1575 unique genes) and the 

second expression dataset was the expression set of the same number (1575) of randomly 

selected genes. The test was repeated 10,000 times. In all cases, the results were negative, 

i.e., the srRNA-associated gene expression dataset and the randomly picked gene da-

tasets do not originate from the same distribution and are independent. Maximum ob-

served p-value = 1.493 × 10−11, i.e., <<0.01. We can conclude that at the level of p = 0.0001, 

the expression of the srRNA-associated genes dataset cannot be obtained from the gene 

expression dataset by chance. 

Thus, we can conclude that the srRNA-associated gene expression dataset is signif-

icantly different from the full expression set. 

The middle violin plot in Figure 4B represents the dataset that was obtained by av-

eraging 10,000 randomly selected datasets from the full dataset by shuffling 1575 gene 

dataset expression values, which were sorted and then summed up to the storage array. 

After 10,000 MC trials, all members of the storage array were divided by 10,000. The av-

eraged random dataset was created for presentation purposes only and the main con-

clusion about the independence of the full expression dataset and the srRNA-associated 

genes dataset is made on the basis of the statistical tests. 

4.8. Availability of Data Sources and Applied Scripts 

The sources and accession numbers of all data mentioned in the paper are collected 

in Table S6. Figure S15 illustrates the bioinformatics pipeline flowcharts. All scripts that 

were developed and applied for this article are deposited in the public Github repository: 

https://github.com/lokapal/IJMS2022.srRNA (accessed on 10 March 2022). 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/ijms23063014/s1. 
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