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Abstract: Luteolin is one of the most common flavonoids present in edible plants and its potential
benefits to the central nervous system include decrease of microglia activation, neuronal damage and
high antioxidant properties. The aim of this research was to evaluate the neuroprotective, antioxidant
and anti-inflammatory activities of luteolin-7-O-glucoside (Lut7). Undifferentiated and retinoic acid
(RA)-differentiated SH-SY5Y cells were pretreated with Lut7 and incubated with 6-hydroxydopamine
(6-OHDA). Cytotoxic and neuroprotective effects were determined by MTT assay. Antioxidant
capacity was determined by DPPH, FRAP, and ORAC assays. ROS production, mitochondrial
membrane potential (∆Ψm), Caspase–3 activity, acetylcholinesterase inhibition (AChEI) and nuclear
damage were also determined in SH-SY5Y cells. TNF-α, IL-6 and IL-10 release were evaluated
in LPS-induced RAW264.7 cells by ELISA. In undifferentiated SH-SY5Y cells, Lut7 increased cell
viability after 24 h, while in RA-differentiated SH-SY5Y cells, Lut7 increased cell viability after 24
and 48 h. Lut7 showed a high antioxidant activity when compared with synthetic antioxidants.
In undifferentiated cells, Lut7 prevented mitochondrial membrane depolarization induced by 6-
OHDA treatment, decreased Caspase-3 and AChE activity, and inhibited nuclear condensation
and fragmentation. In LPS-stimulated RAW264.7 cells, Lut7 treatment reduced TNF-α levels and
increased IL-10 levels after 3 and 24 h, respectively. In summary, the results suggest that Lut7 has
neuroprotective effects, thus, further studies should be considered to validate its pharmacological
potential in more complex models, aiming the treatment of neurodegenerative diseases.

Keywords: 6-hydroxydopamine; apoptosis; mitochondrial membrane potential; neurodegenerative
diseases; oxidative stress; cell culture techniques; neurodegenerative disorders; neuroprotective effect;
biological products

1. Introduction

Neurodegenerative diseases (ND) are comprised of distinct and heterogeneous disor-
ders characterized by the progressive and selective loss of neurons. Usually, the prevalence
and symptoms worsening are intimately related with age, and as the global population
gets older, the need for new ND therapeutic alternatives and deeper knowledge of their
pathophysiology is urgent. The World Health Organization (WHO) estimates that by 2040,
ND such as Alzheimer’s disease (AD), and other types of dementia, or conditions that
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compromises motor function like Parkinson’s disease (PD) or amyotrophic lateral sclerosis
(ALS), will be the second most prevalent cause of death, after cardiovascular diseases [1].
However, due to the complexity and heterogeneity of NDs, most of the synthetic drugs
evaluated in in vitro models and/or clinical trials end up failing [2], and thus further efforts
must be conducted to develop an efficient disease-modifying treatment.

Luteolin, a phytochemical belonging to the flavone class of polyphenols, is one of
the most common flavonoids present in edible plants. Its potential benefits to the CNS
include the decrease of microglia activation and neuronal protection [3–5]. However,
the glycosylated form of luteolin, known as cyranoside or luteolin-7-O-glucoside (Lut7)
(PubChem ID 5280637), was reported as a selective JNK3 inhibitor, five times more selective
than luteolin [6], which plays a key role in neurodegenerative diseases [7–11], suggesting
that patients with neurodegenerative diseases might benefit from a natural or bio-inspired
product-based therapy [12–16].

The effects of herbal extracts containing Lut7 as a majority compound are extensively
explored in the literature. However, it is not possible to confirm that those reported effects
are a result of the Lut7 activity or if other components are mediating the observed effects.
Therefore, the aim of this study was to evaluate the antioxidant and anti-inflammatory
activities of Lut7, as well as its neuroprotective effects in an in vitro human neurode-
generative model (SH-SY5Y cells induced with 6-OHDA) in both undifferentiated and
differentiated cells.

2. Materials and Methods
2.1. Cell Lines and Reagents

Dulbecco’s modified Eagle medium (DMEM) (D5523), F12 (N6760), heat-inactivated
fetal bovine serum (FBS) (F4135), 6-hydroxydopamine hydrobromide (6-OHDA) (162957), 3-
[4,5-dimethylthiazol-2]-2,5 diphenyltetrazolium bromide (MTT) (M5655), Penicillin (P3032),
streptomycin (S9137), lipopolysaccharide (LPS) (from Escherichia coli, O111:B4, L2630),
trypsin-EDTA (T4049), 2′,7′-dichlorofluorescin diacetate (DCFDA) (D6883), Caspase-3
Activity Fluorimetric kit (CASP3F), 2,4,6-Tris(2-pyridyl-s-triazine (TPTZ) (T125), FCCP,
and oligomycin A were purchased from Sigma-Aldrich™ (St. Louis, MO, USA). DMEM
(1200-058) used to culture RAW264.7 cell line and enzyme-linked immunosorbent assay
(ELISA) kits for TNF-α, IL-6, and IL-10 were acquired from Gibco®, Invitrogen Life Science
Technologies (Grand Island, NY, USA). All-trans-retinoic acid (ATRA) (SC200898) was
purchased from Santa Cruz Biotechnology, (Dallas, TX, USA). Spectrophotometer analysis
was performed using a SpectraMax® i3 microplate reader (Molecular Devices, San Jose,
CA, USA). 5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide (JC-1)
staining was acquired from Molecular Probes (Eugene, OR, USA) and 4,6-diamidino-
2-phenylindole (DAPI) staining was obtained from Applichem (Darmstadt, Germany).
Photographs for the DAPI probe were taken with a fluorescence microscope Zeiss, model
Axio Vert. A1, (Oberkochen, Germany). Lut7 (26-S) was obtained from Extrasynthese
(Genay, Cedex, France). SH-SY5Y (ATCC® CRL-2266™) and RAW264.7 cell line (ATCC®

TIB-71™) were acquired from American Type Culture Collection (ATCC). MAPK inhibitors
(SP600125 and SB203580) were synthesized by Prof. Dr. Stefan Laufer research laboratory
with a high purity grade (≥95%).

2.2. Cell Culture Methods
2.2.1. SH-SY5Y Cell Line

Undifferentiated human SH-SY5Y neuroblastoma cells were cultured in DMEM mixed
with F12 (1:1) and supplemented with 10% (v/v) FBS and 1% streptomycin/penicillin under
controlled conditions in a 95% humidified atmosphere, at 37 ◦C and 5% CO2. Culture
medium was replaced every two days until the cells reached confluence 4–5 days after the
initial seeding. For subculture, SH-SY5Y cells were dissociated with trypsin-EDTA, split
into a 1:3 ratio. Cells were grown to 80% confluence before treatment. Culture conditions
were performed according to ATCC recommendations.
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2.2.2. SH-SY5Y Differentiation Protocol

The differentiation of SH-SY5Y cells was carried out in two steps. Firstly, SH-SY5Y
cells were cultivated in media with 1% FBS supplemented with 10 µM of all-trans retinoic
acid (ATRA) for 4 days. At the 5th day, the cell culture medium was replaced by fresh
medium and cells were cultivated for 6 days.

2.2.3. RAW264.7 Cell Line

RAW264.7 cells were cultured in DMEM supplemented with 10% FBS (v/v) and 1%
streptomycin/penicillin. The medium was replaced every 2 to 3 days. Sub-culturing was
carried out with a cell scraper at a 1:4 split ratio. All procedures were performed according
with ATCC recommendations.

2.3. Determination of Cell Viability and Neuroprotection Potential by MTT Assay
2.3.1. Evaluation of Lut7 Cytotoxicity

Cell viability was assessed using the colorimetric MTT assay [17] with slight modifi-
cations as described by Rehfeldt et al. [11]. SH-SY5Y (differentiated and undifferentiated)
and RAW264.7 cells were seeded in 96-well dishes and left overnight for proper attachment.
Cells were exposed to different concentrations (10–0.1 µM) of Lut7 over 24 or 48 h. MTT
reagent was then added to each well at a final concentration of 5 mg/mL and the plate was
placed in a humidified incubator at 37 ◦C with 5% CO2 during 3 h. Formazan salts were
dissolved in DMSO and the colorimetric determination of MTT reduction was estimated at
570 nm wavelength using the SpectraMax® i3 microplate reader. Untreated cells were used
as control and considered as 100% viable.

2.3.2. Neuroprotection Potential

Neuroprotection effect was assessed using the colorimetric MTT assay with slight
adaptations [11,17,18]. To investigate the neuroprotective potential of the compound, SH-
SY5Y (differentiated and undifferentiated) cells were seeded at a density of 2 × 104 per
well in a 96-well dish and cultivated overnight. Cells were then treated with different
concentrations (1 or 0.1 µM) of Lut7 over 30 min before adding 6-OHDA (100 µM) stabilized
with 0.02% of ascorbic acid to avoid its auto-oxidation. Cells’ medium was then removed
following 24 or 48 h of treatment and MTT (5 mg/mL) solution was added and the cells
were incubated for 3 h. Following the MTT removal, DMSO was used to dissolve the
formazan salts and the absorbance read at 570 nm.

2.4. Determination of Antioxidant Activity

The antioxidant activity of Lut7 was evaluated by the means of different method-
ologies, namely (a) 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability [19];
(b) oxygen radical absorbance capacity (ORAC) [20]; and (c) ferric reducing antioxidant
power (FRAP) assays [21] with slight adaptations [15]. Butylated hydroxytoluene (BHT)
was used as a positive control for antioxidant activity.

2.5. Mechanisms of Cell Recovery after 6-OHDA-Induced Damage
2.5.1. Mitochondrial Membrane Potential (MMP) Assay

Cells were seeded in 96-well plates and left overnight in the incubator. SH-SY5Y cells
were then treated with 6-OHDA (100 µM) for 6 h, in the absence or presence of Lut7 (0.1 or
1 µM). After exposure, cells were washed with PBS 1× and incubated with JC-1 at 37 ◦C
for 30 min. Then, the reagent was gently removed, and cells were washed with PBS 1×.
100µL/well PBS 1× was added and the fluorescence was measured at 490/595 nm (red
fluorescence) and 490/530 nm (green fluorescence) of excitation and emission wavelengths,
respectively [11,22]. FCCP (2.5 µM) plus oligomycin A (1 µg/mL) conjugate solution was
used as positive control. Mitochondrial membrane potential was estimated by measur-
ing the fluorescence of free JC-1 monomers (green) and JC-1 aggregates in mitochondria
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(red) and the results were expressed as the ratio of the monomers/aggregates of JC-1 in
percentage of control.

2.5.2. ROS Production

The levels of reactive oxygen species (ROS) were determined using the 5-(and-6)-
carboxy-2′, 7′-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) probe as pre-
viously described [11,22] with slight modifications. Briefly, SH-SY5Y cells were treated
with Lut7 at different concentrations (0.1 or 1 µM) and 6-OHDA (100 µM) over 6 h. Fol-
lowing treatment, cells were washed with PBS (1×) and20 µM carboxyH2DCFDA so-
lution, previously dissolved in serum-free medium, and cells were incubated for 1 h at
37 ◦C. The fluorescence was read at 527 nm and 495 nm wavelength of emission and
excitation, respectively.

2.5.3. Caspase 3 Activity

The enzyme was assessed using the Caspase-3 Activity Fluorometric kit, according
to manufacturer’s instructions. SH-SY5Y cells were cultured in 6-well plates and treated
with 6-OHDA (100 µM) for 6 h in the presence or absence of Lut7 (0.1 or 1 µM). Caspase-3
activity was calculated from the slope of the linear phase of the fluorescence resulting from
the rhodamine 110 accumulation and expressed in arbitrary fluorescence units per mg
protein per minute (∆ fluorescence (a.u.)/mg protein/min) [22].

2.5.4. DAPI Staining

The nucleic condensation and/or fragmentation was determined by 4,6-diamidino-2-
phenylindole (DAPI) staining. SH-SY5Y cells were cultured in 6-well plates and treated
with 6-OHDA (100 µM) for 24 h in the presence or absence of Lut7 (0.1 or 1 µM). The
cells were fixed in paraformaldehyde (4%) over 30 min. After this time, the solution was
removed, and cells were incubated in Triton X-100 (0.1%) over 30 min. Then, Triton X-100
was removed, followed by the addition of DAPI (1 µg/mL) solution. After a 30 min
reaction, DAPI was removed, and 1 mL PBS (pH 7.4) was added to each well. Then, the
cells were observed using an Axio Vert. A1 fluorescence microscope (Zeiss, Oberkochen,
Germany) [22].

2.5.5. AChE Activity

AChE activity was measured spectrophotometrically in a 96-well microplate according
to a modified Ellman assay [23,24]. SH-SY5Y cells were cultured in 6-well plates overnight
and treated with 6-OHDA (100 µM) for 6 h, in the absence or presence of Lut7 (0.1 or 1 µM).
Then, cells were trypsinized with PBS (1×) + 0.1% Triton X-100. The supernatant was
transferred to a 96-well microplate and incubated with DTNB (0.5 mM) and acetylcholine
(Ach; 1 mM). The absorbance was measured at λ = 414 nm.

2.6. Cytokine Levels in RAW264.7 Cell Line

RAW264.7 cells were seeded at a density of 5 × 105 cells per well in a 24-dish plate.
After adherence time, cells were pretreated for 1 h before LPS (1 µg/mL) treatment. The
supernatant was collected at different times as described by Rehfeldt and co-workers [11].
To evaluate TNF-α release, samples of supernatant were collected after 3 and 24 h of
treatment. For IL-6 analysis, samples were collected after 12 h of treatment, and for IL-10
after 48 h of treatment. All samples were frozen at−80 ◦C until further analysis. ELISA was
performed according to the manufacturer’s instructions. The absorbances were measured
at 450 nm and 570 nm using a spectrophotometer (SpectraMax® i3). Values of 570 nm were
subtracted from those of 450 nm to remove background interference. TNF-α, IL-6 and IL-10
standard curves were used to quantify the release from each cytokine by the cells.
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2.7. Data and Statistical Analysis

The statistical analysis was performed on GraphPad Prism 6.0 software (GraphPad soft-
ware, San Diego, CA, USA) using ANOVA. The results are expressed in mean ± standard er-
ror of the mean (SEM). Differences were considered significant at level of 0.001 (*** p < 0.001),
0.01 (** p < 0.01), and 0.05 (* p < 0.05). At least three independent experiments carried out
in triplicate were performed.

3. Results
3.1. Cytotoxic and Neuroprotective Effect of Lut7 in Undifferentiated and RA-Differentiated
SH-SY5Y Cells

The first set of experiments examined the impact of Lut7 on cell viability. The results
shown in Figure 1A indicate that 10 µM Lut7 reduced SH-SY5Y cells viability by 33%
(p < 0.05). At 1 µM and 0.1 µM, the compound did not significantly decrease the cells’
viability, thus, these concentrations were selected for the neuroprotective assays.

The capacity of undifferentiated SH-SY5Y cells to recover from 6-OHDA stimuli was
evaluated. Cells were pretreated with Lut7 at sub-toxic concentrations over 1 h before
6-OHDA treatment. The exposition of SH-SY5Y cells to 6-OHDA (100 µM) significantly
reduced the cell viability after 24 h when compared to the untreated cells. However,
when cells were treated with 0.1 µM Lut7, there was a 13% increase in cell viability when
compared with 6-OHDA treatment (Figure 1B). However, this effect was not observed after
48 h (Figure 1C).

After differentiation, cells start to upregulate genes involved with antioxidant defense.
This modified profile of gene expression reflects directly in the capacity of cells to recover
from the oxidative stress caused by 6-OHDA. To confirm this higher resistance, one positive
control with doxorubicin (10 µM) was included. The mechanism of action of doxorubicin
is achieved by specifically blocking the activity of the enzyme topoisomerase II, which is
involved in DNA replication during mitosis, and does not interfere in oxidative stress and,
therefore, does not impact the damage caused by 6-OHDA. In this sense, SH-SY5Y cells
were differentiated 10 days before neuroprotective assay. RA-differentiated SH-SY5Y cells
pretreated with Lut7 at 1 and 0.1 µM increased cell viability in 27.4 and 27.1%, respectively
(p < 0.001) (Figure 1D). On the other hand, after 48 h, RA-differentiated SH-SY5Y cells
pretreated with 1 and 0.1 µM Lut7 increased cell viability in 112% (p < 0.001) and 67.5%
(p < 0.001), respectively, when compared with 6-OHDA treatment (Figure 1E).

3.2. Lut7 Antioxidant Activity

The antioxidant activity of Lut7 was evaluated by three different chemical methods:
(a) DPPH assay to determine the capacity of Lut7 scavenging potential; (b) FRAP to
determine the Lut7 capacity to reduce ferric ions; (c) ORAC method to evaluate the presence
of antioxidant molecules with the ability to neutralize the peroxyl radicals. The results are
presented in Table 1 and Figure 2.

Table 1. Antioxidant activity of Lut7 and BHT.

DPPH (A) FRAP (B) ORAC (C)

Lut7 6.8 (0.76–0.9) 19,570.78 ± 291.48 8804.19 ± 409.99

BHT >100 2821.50 ± 63.03 143.70 ± 23.36
BHT (butylated hydroxytoluene) was used as a standard. The values in the table represent the mean ± SEM
from 3 independent experiments. (A) radical scavenging activity (EC50 µg/mL); (B) µM of FeSO4 per gram of
compound; (C) µM of Trolox equivalent (TE)/g of compound.
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Figure 1. Cytotoxicity induced by Luteolin-7-O-glucoside (Lut7) in SH-SY5Y cells after 24 h of treat-
ment (A); Neuroprotective effects of Lut7 against 6-OHDA induced neurotoxicity on undifferenti-
ated SH-SY5Y cells: 24 h incubation (B); 48 h incubation (C). Neuroprotective effects of Lut7 against 
6-OHDA induced neurotoxicity on RA-differentiated SH-SY5Y cells: 24 h incubation (D); 48 h incu-
bation (E). The values in each column represent the mean ± SEM of at least three independent ex-
periments carried out in triplicate. Statistical calculations were performed with ANOVA via the 
Tukey post hoc test and significant differences were considered for *** p < 0.001; ** p < 0.01 (vs. 
control); ### p < 0.001 and # p < 0.05 (vs. 6-OHDA). Doxorubicin was used as positive control; DMSO 
0.1% was used as vehicle. Negative control (untreated cells) was considered to be 100% viable. 

  

Figure 1. Cytotoxicity induced by Luteolin-7-O-glucoside (Lut7) in SH-SY5Y cells after 24 h of
treatment (A); Neuroprotective effects of Lut7 against 6-OHDA induced neurotoxicity on undiffer-
entiated SH-SY5Y cells: 24 h incubation (B); 48 h incubation (C). Neuroprotective effects of Lut7
against 6-OHDA induced neurotoxicity on RA-differentiated SH-SY5Y cells: 24 h incubation (D); 48 h
incubation (E). The values in each column represent the mean ± SEM of at least three independent
experiments carried out in triplicate. Statistical calculations were performed with ANOVA via the
Tukey post hoc test and significant differences were considered for *** p < 0.001; ** p < 0.01 (vs. control);
### p < 0.001 and # p < 0.05 (vs. 6-OHDA). Doxorubicin was used as positive control; DMSO 0.1%
was used as vehicle. Negative control (untreated cells) was considered to be 100% viable.
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Figure 2. DPPH scavenging ability of Lut 7 and BHT—dose response analysis.

It was observed that Lut7 presented the highest potential of scavenging DPPH radical
with an EC50 value of 6.80 µM when compared to the standard BHT (EC50 > 100 µM). In the
ORAC method, Lut7 showed the highest antioxidant activity with 8804.19 ± 409.99 µmol
of Trolox/g compound, when compared with BHT (143.70 ± 23.36 µmol of Trolox/g
compound). Lut7 was also effective in reducing ferric ions (19,570.78± 291.48 µM FeSO4/g
of compound) when compared with the synthetic antioxidant.

3.3. Lut7 Effects on Cellular Hallmarks Associated with ND

Hallmarks of apoptotic cell death include the activation of caspases, the disruption
of mitochondrial membrane potential and DNA fragmentation. These same events are
also present during neurodegenerative diseases. To verify if the neuroprotective effect
demonstrated by Lut7 on undifferentiated SH-SY5Y cells was associated with these hall-
marks, different in vitro assays on cells treated with neurotoxin 6-OHDA in the absence or
presence of Lut7 were carried out (Figure 3).

Firstly, the Caspase-3 activity was measured to understand if the Lut7 had capability
to prevent the cell death mediated by apoptosis when exposed to the 6-OHDA neurotoxin.
At 1 µM, Lut7 was able to decrease Caspase-3 activity by 57.6% (Figure 3A).

Secondly, the ability of Lut7 to prevent a condition of oxidative stress was evaluated
through ROS quantification. After exposing SH-SY5Y cells to 6-OHDA (100 µM, 6 h) a
two-fold increase in ROS levels was verified when compared to vehicle. However, Lut7
was not able to decrease ROS levels induced by 6-OHDA treatment (Figure 3B).

Thirdly, the MMP was determined to evaluate mitochondrial dysfunction and to
understand if the neuroprotective effects of Lut7 were mediated by biological events
that usually take place on mitochondria. Treatment with 6-OHDA at 100 µM for 6 h
increased depolarization of SH-SY5Y cells mitochondrial membrane potential in 359.2%
when compared to vehicle. On the other hand, the treatment with Lut7 (1 µM) exhibited
a protective effect against cell depolarization induced by 6-OHDA treatment in 320%
(139.2% vs. 459.2% of 6-OHDA). At 0.1 µM, Lut7 showed a similar effect decreasing the
monomers/aggregates ratio of JC-1) in 192% (Figure 3C).

Considering the mechanism of action of many FDA-approved drugs to treat AD, the
AChE activity was evaluated after Lut7 treatment. It is well documented that the AChE
inhibition decreases the breakdown and promotes the accumulation of ACh, therefore,
compensating the loss of functional cholinergic neurons and alleviating cognitive symptoms
of AD. The results presented here showed that 6-OHDA treatment increased AChE activity
in 43.47%. On the other hand, cells treated with 1 µM Lut7 reduced AChE activity in
77.49 ± 8.63% when compared with 6-OHDA treatment (Figure 3D). Cells pre-treated with
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0.1 µM Lut7 followed by 6-OHDA exposure showed approximately 1-fold increase in AChE
activity (242.67 ± 8.9%) when compared to the neurotoxin.

Finally, to understand if Lut7 had the ability to prevent the DNA fragmentation
induced by 6-OHDA treatment, the integrity of SH-SY5Y DNA was observed following
DAPI staining (Figure 4).
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Figure 3. Effect of Luteolin-7-O-glucoside (Lut7) on SH-SY5Y cells after exposition to 6-OHDA
(100 µM) over 6 h. (A) Effect on Caspase-3 activity (∆ Fluorescence (U.A)/mg of protein/min);
(B) ROS production; (C) MMP (ratio of monomers/aggregates of JC-1); and (D) AChE activity
(nmol/min/mg of protein). The values in each column represent the mean ± standard error of the
mean (SEM) of at least 3 independent experiments carried out in triplicate. Statistical calculations
were performed with ANOVA via the Tukey post hoc test and significant differences were considered
for *** p< 0.001 (vs. control); ### p < 0.001 and ## p < 0.01 (vs. 6-OHDA). Negative control (untreated
cells) was considered to be 100% viable and is represented by the red dashed line. DMSO 0.1% was
used as a vehicle.

The exposition of SH-SY5Y cells to 100 µM 6-OHDA over 24 h led to nuclear conden-
sation and fragmentation, which are characteristic features of apoptosis. However, it was
possible to verify that Lut7 decrease the occurrence of those events induced by 6-OHDA.
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3.4. Cytokines Levels on LPS-Induced RAW264.7 Cells Treated with Lut7

Cytokines play a crucial role in the inflammatory response. Before evaluating the
effects of Lut7 treatment over cytokine release, its cytotoxic effects on the RAW267.4 cells
viability were evaluated (Figure 5).
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Figure 4. Nuclear morphology of SH-SY5Y cells stained with DAPI probe. SH-SY5Y cell stained with
DAPI showing the anti-apoptotic effect of the Lut7 (0.1 or 1 µM) against neurotoxicity mediated by
6-OHDA (100 µM; 24 h). Arrows show nuclear abnormalities (fragmentation pattern), which is an
indicator of apoptosis. Red Boxes represent the amplified zone where is visible nuclear changes.

Since at 10 µM, Lut7 reduced SH-SY5Y cells’ viability, the cytotoxic effect of Lut7 in
RAW264.7 cells was only tested at 1 and 0.1 µM. It was verified that at 0.1 and 1 µM, Lut7
did not induce cytotoxicity in RAW 264.7 cells (Figure 5A), and thus, these concentrations
were used in the following assays. It was verified that, at both concentrations, Lut7 did not
stimulate IL-6 release (Figure 5B). On the other hand, after 3 h, cells pretreated with 1 µM
and 0.1 Lut7 decreased TNF-α levels in 30.97% and in 43.02%, respectively (Figure 5C).
Lut7 treatment showed no effect over TNF-α levels after 24 h (Figure 5D). Concerning IL-10
release, which is delayed, the supernatant was collected after 24 and 48 h of treatment.
Only after 24 h, Lut7 at 0.1 µM was able to stimulate the IL-10 release in 96.9% (Figure 5E).
However, these effects were not maintained over 48 h (Figure 5F).
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Figure 5. (A) Cytotoxicity of luteolin-7-O-glucoside (Lut7) on RAW264.7 cells viability after treatment
for 24 h; (B) IL-6 levels were determined after 12 h of treatment; (C) TNF-α levels were determined
after 3 h and (D) 24 h of treatment. IL-10 levels were estimated (E) after 24 h; and (F) 48 h of treatment.
The values represent the mean± SEM of at least three experiments carried out in triplicate. ** p < 0.01;
*** p < 0.001; (vs. control); ### p < 0.001 and # p < 0.05 (vs. LPS). Doxorubicin was used as positive
control; DMSO 0.1% was used as vehicle.
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4. Discussion

Pre-clinical studies reported that luteolin, a flavonoid present in many fruits and veg-
etables, has anti-inflammatory and antioxidative properties [25–28]. However, the impact
on neuroprotection using the RA-differentiated SH-SY5Y cell line has been poorly explored.
Despite both differentiated and undifferentiated SH-SY5Y cells being used in experiments
as suitable in vivo models of NDs, authors suggest that cells should be differentiated since
undifferentiated cells are prevenient from a metastatic tumor and continuously undergo
division, making it difficult to predict the effect of protective agents against neurotoxins.
Indeed, differences in gene expression profiles, antioxidant capacity, synthesis of neuro-
transmitters and other phenotypic aspects have been observed between differentiated and
undifferentiated cells [29–31]. Additionally, authors evaluated the enzymatic activity of
AChE and choline acetyltransferase (ChAT) (cholinergic markers) in both differentiated
and undifferentiated SH-SY5Y cells and demonstrated that cells show a different pattern
of AChE activity when treated with RA [32]. Those findings suggest that the SH-SY5Y
cell line may respond to the 6-OHDA stimuli differently, depending on whether they are
differentiated or not.

In undifferentiated SH-SY5Y cells, our findings did not reveal a significant neuropro-
tection effect. These results are in line with a previous study performed with Lut7, in which
the compound also did not show significant differences in SH-SY5Y cells’ viability when
treated with an amyloidogenic molecule [33]. On the other hand, on RA-differentiated cells,
Lut7 showed a marked protective effect against 6-OHDA-induced damage, probably due
to its increased ability to promote the expression of genes related to antioxidant defenses.
This is consistent with previous studies where RA-induced differentiation of SH-SY5Y cells
has been related with resistance to oxidants, possibly due to modulation of ROS production
and oxidative stress responses [34–37]. This result ties well with a previous study wherein
intensified oxidative phosphorylation in differentiated SH-SY5Y was observed [38].

The results herein presented show that Lut7 display high antioxidant capacity. This
potential is especially relevant since neuronal cells present a high metabolic rate, continu-
ously generating reactive oxygen species (ROS) during aerobic metabolism, as a result of
electron transport chain (ETC) action during oxidative phosphorylation. As a consequence,
brain tissue is particularly susceptible to oxidative stress [39,40]. Several events have been
associated with neurodegeneration such as synaptic dysfunction, excitotoxicity, and oxida-
tive stress. Indeed, because of its high metabolic rate combined with a limited capacity of
cellular regeneration, the brain is particularly sensitive to oxidative damage.

The neurotoxin 6-OHDA is a potent inhibitor of complex I and causes direct oxidative
damage through superoxide and hydrogen peroxide production and indirect damage
after suffering auto-oxidation, generating even more ROS [41–44]. In order to evaluate
ROS production and the capacity of Lut7 to promote cell recovery from 6-OHDA-induced
damage, undifferentiated SH-SY5Y cells were used. Our findings revealed that Lut7 did
not affect ROS production. Another study reported that Lut7 did not interfere on hepatitis
B virus-induced intracellular ROS accumulation in HepG2 cells [45]. However, in contrast
to our results, previous studies reported that Lut7 decreases ROS in many cell lines or
in vivo models. Palombo et al. evaluated ROS production in IL-22 or IL-6-stimulated
human keratinocytes (HEKn cells) and verified that at 20 µM, Lut7 treatment reduced ROS
generation [46]. Similarly, in HUVEC cells (human umbilical vein endothelial cells) Lut7 at
20 µM reduced ROS generation and downregulated genes involved in inflammation [47].
The divergent results found in literature may derive from different cellular responses to
different Lut7 concentrations, and/or different cell lines.

A correlation between mitochondrial membrane potential (∆Ψm) and reactive oxygen
species (ROS) production has been demonstrated [48–50]. Additionally, ∆ψm depolari-
sation is usually correlated with neuronal death [51,52]. In this case, the present results
indicate that Lut7 reverted the 6-OHDA-induced ∆ψm depolarisation but it was not able
to reduce the ROS production [45]. The MMP recovery mediated by Lut7 observed in
SH-SY5Y cells after 6-OHDA-induced cell injury was similar to a previous study conducted
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with cisplatin in HK-2 cells (human proximal tubule cell line). According to Nho et al.,
(2018) Lut7 decreased cell death, promoted a recovery in MMP and abolished Caspase-3 ac-
tivity [53]. In this study, Lut7 also decreased Caspase-3 activity in SH-SY5Y cells exposed to
6-OHDA. In H9c2 cells (rat cardiomyoblast cell line), Lut7 pretreatment reduced apoptosis,
intracellular ROS, chromatin condensation and DNA damage, and reverted mitochondrial
dysfunction induced by doxorubicin [54]. Another study reported similar results in H9c2
cells (reduction of apoptosis, ROS generation and mitochondrial dysfunction) but also
showed downregulation of Caspase-3, p-ERK1/2, p-JNK and p-P38 inhibition, and p-ERK5
activation in angiotensin II-induced cells [55].

It was reported that mitochondrial dysfunction is mediated by JNK activation, while
its inhibition prevent both the loss of ∆ψm and apoptotic events [56–59]. One possible
explanation for these findings is that JNK plays a significant role in apoptosis via the
intrinsic pathway (also known as the ‘mitochondrial pathway’), which is activated by
extracellular or intracellular perturbations usually found in AD, such as oxidative stress. In
response to a deleterious stimulus (such as ROS), JNK phosphorylates 14-3-3 protein, and
induces the translocation of pro-apoptotic proteins (Bax and Bad) from the cytoplasm to
the mitochondria, the major source of ROS in cells. The translocation of these pro-apoptotic
proteins induces mitochondrial outer membrane permeabilization (MOMP), allowing the
cytosolic release of pro-apoptogenic factors that normally reside in the mitochondrial
intermembrane space, such as cytochrome c and Smac/DIABLO [60,61]. Cytochrome c
then associates with Apaf-1, pro-Caspase 9 (CASP9), (and possibly other proteins) to form
an apoptosome, which activates CASP9. When activated, CASP9 catalyzes the proteolytic
activation of CASP3 and CASP7 (known as ‘executioner caspases’), which handle cell
demolition during intrinsic and extrinsic apoptosis pathways. However, DNA damage can
also activate JNK. p53 is another JNK substrate that induces expression of pro-apoptotic
genes (puma, fas and bax), leading to apoptosis in a mitochondrial-independent manner.
On the other hand, p53 can trigger the MOMP as well in a transcription-independent
manner by activating pro-apoptotic Bcl-2 proteins (Bax or Bak) or by inactivating anti-
apoptotic Bcl-2 proteins (Bcl-2 and Bcl-X1) [62,63].

Recently, the role of JNK3 in Alzheimer’s disease (AD) was reviewed [64]. It was
demonstrated that synthetic JNK3 inhibitors have a promising future as therapeutic alter-
natives for AD treatment as they appear to attenuate many neurodegenerative-associated
phenomena in different models. Interestingly, Lut7 also showed important JNK3 selectivity.
The IC50 for JNK3 was reported to be as low as 2.45 ± 0.1 µM, while the IC50 for p38α was
87.1 ± 2.1 µM, indicating a 35-fold increase of selectivity to JNK3 over p38. Authors hy-
pothesized that the selectivity for JNK3 is a result of the interaction of Lut7 and the residues
Asn152, Gln155, Asn 194 and Ser 193 of JNK3 [6]. Therefore, according to our results,
it is possible that the main mechanism of Lut7 in preventing mitochondrial-dependent
apoptosis may be related with JNK3 inhibition.

Although many drugs have been evaluated as AD treatment in vivo, in vitro and in
silico models, one of the best pharmacological alternatives by far, still consist in AChE
inhibitors (AChEI), such as galantamine, rivastigmine or donepezil. It is believed that
in early or mid-stages of AD, the increase of ACh induced by AChEI compensates the
loss of cholinergic neurons and prolongs the cholinergic sinalization, improving cognitive
symptoms, such as learning and memory impairment [65–67]. Indeed, AChEIs have been
used for over 30 years to increase the levels of ACh in muscarinic and nicotinic receptors,
and interestingly, galantamine, an AChEI which has been approved since 2001 by the FDA
in the treatment of AD, was first isolated from botanical sources back in the 1950s [68],
which reinforces the potential of natural products in providing efficient treatments to
several diseases.

Here, we demonstrated that Lut7 is able to inhibit AChE activity in 6-OHDA-treated
cells. Corroborating with our results, the role of flavonoids (including Lut7) as potential
AChEI have been reviewed elsewhere [13,69,70]. The AChE inhibitory capacity of Lut7
has been also demonstrated by in vivo and in silico studies [71–73] despite other studies
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having reported a wide range of IC50 values, probably due to distinct methodologies. The
in vitro study conducted by Liu et al. (2020) indicated an IC50 of 18.24± 2.33µM [73], while
the in vitro and in silico study of Sevindik et al. (2015) identified an IC50 of 1.65 µM to
AChEI [72].

Both toxic protein accumulation and oxidative stress are main hallmarks of NDs and
contribute to neuroinflammation, further worsening the disease. Previously, studies had
already reported that luteolin suppressed the production of proinflammatory cytokines
in macrophages by blocking kappa B (NF-KB), and activator protein 1 (AP1) nuclear
signaling pathways, and inhibited the production of nitric oxide and proinflammatory
eicosanoids. In addition, luteolin decreased the release of TNF-α and superoxide after
LPS induced in microglial cell cultures, and reduced the production of LPS-induced IL-6
in cerebral microglia in vivo and in vitro [74,75]. In the CNS, it decreased inflammation
and axonal damage by preventing monocyte migration through the blood–brain barrier
(BBB) [3–5]. Since both microglia cells and RAW264.7 cells are capable of expressing major
histocompatibility complex (MHC) antigens, as well as T and B cell markers and share other
phenotypic traits and innate immunological functions with other mononuclear phagocytes,
we also demonstrated that Lut7 can reduce TNF-α after 3 h, and increase IL-10 after 24 h.
In the past two decades, neuroinflammation has been considered an important component
of the NDs’ pathogenesis. It is well established that the CNS is composed of distinct kinds
of cells that perform specific roles in brain homeostasis and therefore, may contribute
differently to the worsening of symptoms or progression of ND.

A previous study reported that pretreatment with Lut7 suppressed the induction
of nitrite, ROS, PGE2, and TNF-α in a dose-dependent manner in IL-1β-stimulated rat
primary chondrocytes [76], suggesting that Lut7 has a potent anti-inflammatory effect.
Additionally, Lut7 inhibited the IL-1β-induced nuclear accumulation of NF-κB subunit
p65 by suppressing phosphorylation and degradation of IκB-α and significantly inhibited
the IL-1β-induced phosphorylation of ERK, JNK, and p38 MAPK in a dose-dependent
manner [76].

Despite the promising potential of Lut7, there are some limitations in our study that
should be addressed in future research. The primary focus of our study was to evaluate
the neuroprotective, antioxidant and anti-inflammatory effect of Lut7 in in vitro models
of neurodegenerative diseases, yet, further studies are necessary to attest the results here
described. Therefore, evaluation of inflammatory mediators such as iNOS and COX-2,
as well as the expression of transcription factors (e.g., Nrf2, AP1, NF-KB), antioxidant
enzymes (e.g., SOD, GSH-Px), and other apoptosis-related proteins (e.g., Caspase-9 and
-8, Bax, cytochrome C, JNK, p38) would be of extreme value to fully elucidate the anti-
inflammatory, anti-apoptotic and antioxidant mechanisms of Lut7, especially based on
co-culturing systems (e.g., neuron and microglia-derived cells co-culture, 3D) or more
complex models (e.g., in vivo models) of neurodegenerative diseases.

5. Conclusions

In summary, our results suggested that Lut7 protected SH-SY5Y cell line against 6-
OHDA-induced damage and protected differentiated SH-SY5Y cells against neurotoxicity
induced by 6-OHDA over 48 h. Although we did not observe a reduction of ROS production,
Lut7 protected SH-SY5Y cells against 6-OHDA-induced mitochondrial and nuclear damage
and reduced Caspase-3 and AChE activity. In RAW264.7 cell line, Lut7 was able to decrease
TNF-α and to increase IL-10 levels (Figure 6).

Several questions remain unanswered but we believe this is an interesting topic for
future work and may be a good starting point for further investigation in in vivo models of
neurodegenerative diseases to validate Lut7 pharmacological potential.
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Figure 6. Proposed mechanism of action of Luteolin-7-O-glucoside (Lut7). Regarding the mito-
chondria, Lut7 prevented membrane depolarization induced by 6-OHDA and indirectly reduced
mitochondrial dysfunction and oxidative stress. Lut7 also decreased Caspase-3 activity protecting
cells against 6-OHDA-induced apoptosis. Additionally, at low concentrations, Lut7 was able to
inhibit AChE activity, which may contribute to alleviating AD symptoms. In RAW264.7 cells, Lut7
was able to reduce TNF-α production (after 3 h), and induce IL-10 release (after 24 h), which may
contribute to modulate the neuroinflammation.

Author Contributions: S.C.H.R., J.S., C.A. and S.P. did main experiments (antioxidant, cytotoxicity,
neuroprotective, signaling pathways mechanisms and anti-inflammatory activity) and wrote the
manuscript. M.I.G., S.L. and R.P. participated in designing and coordinating the study. All authors
have read and agreed to the published version of the manuscript.
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