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Abstract: Percutaneous coronary intervention (PCI) effectively treats obstructive coronary artery
syndrome. However, 30–40% patients continue to have angina after a successful PCI, thereby
reducing patient satisfaction. The mechanisms underlying persistent angina after revascularisation
therapy are still poorly understood; hence, the treatment or guideline for post-PCI angina remains
unestablished. Thus, this study aimed to investigate the mechanisms underlying effort angina in
animals following myocardial ischaemia-reperfusion (I/R) injury. Phosphorylated extracellular signal-
regulated kinase (p-ERK), a marker for painful stimulation-induced neuronal activation, was used for the
investigation. After a forced treadmill exercise (FTE), the number of p-ERK-expressing neurons increased
in the superficial dorsal horn of the I/R model animals. Moreover, FTE evoked hydrogen peroxide (H2O2)
production in the I/R-injured heart, inducing angina through TRPA1 activation on cardiac sensory fibres.
Notably, the treatment of a TEMPOL, a reactive oxygen species scavenger, or TRPA1−/− mice successfully
alleviated the FTE-induced p-ERK expression in the dorsal horn. The production of H2O2, a reactive
oxygen species, through physical exercise contributes to angina development following I/R. Hence, our
findings may be useful for understanding and treating angina following revascularisation therapy.

Keywords: angina post PCI; exercise-induced cardiac pain; p-ERK; hydrogen peroxide; TRPA1;
myocardial I/R injury

1. Introduction

Percutaneous coronary intervention (PCI) is a nonsurgical revascularisation strategy
that has been effective in treating obstructive coronary artery disease (CAD), especially for
ST-segment elevation myocardial infarction (STEMI). Although PCI significantly improves
the clinical outcomes of patients with CAS, approximately 30–40% of these patients still
suffer from persistent or recurrent angina after a successful PCI, leading to reduced patient
satisfaction [1–3]. Recently, Crea et al. reviewed the clinical significance of angina post-PCI
and suggested that the total healthcare costs of patients with persistent or recurrent angina
after PCI in the first year were 1.8 times greater than those with the usual angina [4]. In
addition, guidelines for the diagnosis or treatment of chest discomfort symptoms after PCI
remain unestablished [1].

An important issue about persistent or recurrent angina post-PCI is whether and
how cardiac ischaemia recurs in the coronary artery following PCI treatment. Risk factors

Int. J. Mol. Sci. 2022, 23, 2820. https://doi.org/10.3390/ijms23052820 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23052820
https://doi.org/10.3390/ijms23052820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0949-2673
https://orcid.org/0000-0003-2547-9073
https://orcid.org/0000-0001-6408-626X
https://orcid.org/0000-0003-1349-9886
https://doi.org/10.3390/ijms23052820
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23052820?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 2820 2 of 17

responsible for cardiac ischaemia recurrence have been clinically investigated. These factors
include stent thrombosis and in-stent restenosis, which have incidence rates of <1% and 5%
at 1-year follow-up, respectively [5]. Moreover, they could be the cause of recurrent angina.
The potential mechanism of persistent angina is coronary microvascular dysfunction based
on blood flow reduction or epicardial/microvascular spasm. This putative mechanism has
never been examined by basic research, and the detailed molecular mechanisms underlying
persistent angina have remained unclear. Importantly, cardiac pain from stable angina is a
warning sign of myocardial infarction, acting as a safety alarm in the daily lives of patients
with CAD. For a better quality of life, as well as for healthcare cost reduction, medical
treatment is necessary to control persistent angina occurring after a successful PCI.

Angina is induced by imbalance between myocardial oxygen supply and demand. It
evokes cardiac pain or discomfort, such as squeezing, burning, and tightness. This pain
sensation is elicited by spinal cardiac afferent fibres originating from dorsal root ganglions
(DRGs) [6,7]. The nociceptive C-fibres of spinal cardiac afferent are distributed in the
ventricle, expressing many ion channels or receptors, such as acid-sensing ion channels,
transient receptor potential vanilloid-1 (TRPV1), and P2X purinergic receptors [8–10]. Al-
though these molecules might contribute to the processing of general cardiac nociception,
most experiments have never elucidated the mechanism of angina. The transient receptor
potential ankyrin-1 (TRPA1) channel, which is a nonselective cation channel, is abundantly
expressed in the nociceptive sensory neurons in DRG, serving as a pain sensor in the periph-
eral nervous system [11]. Particularly, TRPA1 is involved in the generation of chemically
induced pain and is activated by reactive oxygen species (ROS) such as hydrogen peroxide
(H2O2), hydroxyl radicals, and 4-hydroxynonenal (4-HNE) [12]. As an important function,
TRPA1 mediates hypoxia-induced dysaesthesia in the somatosensory system; however, this
putative mechanism in the onset of angina remains obscure.

Reperfusion is the most effective treatment for STEMI, and revascularisation therapies,
including PCI, can recover the supply of oxygen and blood flow. However, blood flow
restoration itself inflicts massive ischaemia-reperfusion (I/R) injury, which is common in
ischaemic disease [13,14]. Although several mechanisms, such as inflammation, apoptosis,
microvascular dysfunction, and oxidative stress, are involved in I/R injury [15], the relation-
ship of angina and I/R injury is still insufficiently understood. Even though vasopressin,
methacholine, and isoproterenol, which evoke vasospasm, have been used as experimental
animal models for angina [16–18], they have less translational potential.

One of the main reasons for the delay in the elucidation of angina mechanism is the
lack of established methods for evaluating cardiac pain in animals. Considering that pain
is subjective, several experimental behaviour tests have been developed to detect pain.
However, no behavioural test is currently available for cardiac pain evaluation. In 1999, Ji
et al. reported that noxious stimulation specifically induces phosphorylated extracellular
signal-regulated kinase (p-ERK) in superficial dorsal horn neurons [19]. Accumulating
evidence indicates that p-ERK can be a useful marker for pain signalling in the spinal
cord [20–23]. Here, we used a myocardial I/R injury animal model to study angina
following revascularisation therapy for the first time. This study shows that the I/R
animal model presents p-ERK expression elevation in the spinal cord after applying forced
treadmill exercise (FTE). Moreover, exercise induces H2O2 production in the I/R-injured
heart, thereby evoking angina through TRPA1 activation on cardiac sensory fibres. Notably,
the treatment of a ROS scavenger or TRPA1−/− mice successfully alleviates exercise-
induced angina after an I/R injury. Hence, our study provides molecular, functional, and
behavioural evidence to understand how physical activities induce angina following an
I/R injury.

2. Results
2.1. Myocardial Ischaemic/Reperfusion Produces Potential Cardiac Dysfunction

We used the myocardial I/R model to reproduce I/R injury in patients who underwent
revascularisation therapy [15]. First, we confirmed the impact of I/R injury on daily life
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activities and cardiac function 2 days after the I/R surgery. Daily life activities were not
affected by I/R injury in light and dark periods and in the total period of 24 h (Figure 1A,B).
However, the heart of the I/R model animals showed that approximately 36.8% of its area
was at risk along with a small portion (6.1%) of the infarcted area (Figure 1C,D). Moreover,
cardiac function was assessed using an electrocardiogram (ECG). ECG recording showed
that the PR interval was more prolonged in the I/R group compared with that of the sham
group (Figure 1E,F). Additionally, the R amplitude was lower in the I/R group than in
the sham group (Figure 1E,G). These ECG data suggested a decreased function in the left
ventricle. Table 1 presents other ECG parameters. Taken together, these results indicated
that although the I/R model animals showed normal activities of daily life, they presented
cardiac dysfunctions. Meanwhile, T amplitude did not change in the I/R model group
2 days after reperfusion (Figure 1E,H), suggesting that cardiac ischaemia does not exist
under the basal activity.
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Figure 1. Myocardial ischaemia-reperfusion produces potential cardiac dysfunction in rats. (A) The
average number of animal activities within 24 h in the sham group (n = 4, black) and I/R model group
(n = 4, green). Shaded areas represent the dark period of the 12 h light/12 h dark cycle. (B) Summary
of animal activities for light period (left), dark period (middle) and total activity (right). (C) Image
shows the Evan’s blue- and 2,3,5-triphenyltetrazolium chloride (TTC)-stained heart samples of the
sham group (top) and I/R model group (bottom) 2 days after the surgery. (D) Percentage of area
at risk (red) and infarction (white) in the heart samples of the sham group (n = 4) and I/R model
group (n = 4). (E) Sample traces illustrate the average waveform of electrocardiogram in the sham
group (n = 6) and I/R model group (n = 8). (F–H) Summary of PR interval (F), R amplitude (G) and T
amplitude (H) of the sham group (n = 6) and I/R model group (n = 8). All animals were used for the
experiment 2 days after the surgery. Data are expressed as mean ± standard error of mean. * p < 0.05,
*** p < 0.001, unpaired Student’s t-test. I/R: ischaemia-reperfusion; ns: not significant.
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Table 1. ECG parameters of sham and I/R groups.

Sham I/R p-Value a

Sample size, n 6 8

Heart Rate (BPM) 421.0 ± 8.4 407.0 ±7.0 0.25

RR Interval (ms) 142.8 ± 3.0 147.8 ± 2.7 0.28

P Duration (ms) 20.0 ± 1.0 24.0 ± 1.5 0.08

QRS Interval (ms) 13.0 ± 1.0 11 ± 0.9 0.22

QT Interval (ms) 63.4 ± 3.0 40.6 ± 8.5 0.06

Q Amplitude (µV) 12.0 ± 2.0 51.1 ± 23.2 0.20
All animals were used for the experiment 2 days after surgery. Abbreviation: BPM, beats per minute. a: Data are
presented as mean ± standard error of mean. Unpaired Student’s t-test.

2.2. FTE Evokes Angina in I/R Model Animals

In patients, a consistently high level of physical activities often triggers angina. Con-
sidering that angina is a dysaesthesia that includes chest pain or discomfort, we questioned
whether physical activity could evoke angina on I/R model animals. To quantify angina in
animals, we conducted an immunohistochemistry of p-ERK, which is a neuronal activation
marker following noxious stimuli [20], to visualise the nociceptive processing in the dorsal
horn. Firstly, we examined the distribution of cardiac sensory neurons in the thoracic DRG.
The cardiac sensory neurons were labelled, and Fluoro-Ruby was injected into the left
ventricular wall. We found that these cardiac sensory neurons were primarily distributed
on the left side of T3–T5 DRGs (Figure 2A,B). Hence, we assessed angina by analysing
p-ERK expression on the left T4–T5 dorsal horn.
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labelled DRG neurons by the intracardiac injection of 4% Fluoro-Ruby (FR) in the right side (left) and
left side (right) T4 DRGs. (B) Distribution of FR-positive DRG neurons in the left and right DRGs
among the T1–T6 levels (n = 8). (C) Double immunofluorescence histochemistry of p-ERK (magenta)
and IB4 (green) in the T4–T5 dorsal horn of sham, I/R model, sham + FTE (20 m/min) and I/R
model + FTE (20 m/min). Lamina II inner layer was marked by IB4. (D) Summary of the number
of p-ERK-immunoreactive spinal neurons in lamina I–II per section in the sham group (n = 6), I/R
model group (n = 6), sham + FTE group (10 m/min, n = 6), I/R model + FTE group (10 m/min, n =6),
sham + FTE group (20 m/min, n = 6) and I/R model + FTE group (20 m/min, n = 8). (E,F) Time (E)
and number (F) of immobility during FTE in the sham + FTE group (n = 6) and I/R + FTE group
(n = 8). All animals were used for the experiments 2 days after the surgery. Scale bar = 50 µm. Data
are expressed as mean ± standard error of mean. ** p < 0.01, one-way ANOVA with Bonferroni
analysis or unpaired Student’s t-test. I/R, Ischaemia–reperfusion; ns, not significant; FTE, forced
treadmill exercise; DRG, dorsal root ganglion; p-ERK, phosphorylated extracellular signal-regulated
kinase; IB4, Isolectin B4; #, number.

Compared with sham, I/R manipulation did not affect basal p-ERK expression in the
superficial dorsal horn (Figure 2C,D). Thus, the I/R model animals did not present cardiac
pain with basal activity, as confirmed by the results of physical activity and T amplitude
shown in Figure 1. Notably, by applying FTE (20 m/min, 10 min) on the I/R model group,
we successfully detected exercise-induced cardiac pain (Figure 2C,D). The I/R + FTE group
(6.4 ± 0.6 cells, n = 8) had more p-ERK-immunoreactive cells significantly than the sham
group (3.4 ± 0.4 cells, n = 6) or the I/R-without-FTE group (4.3 ± 0.3 cells, n = 6). Exercise-
induced angina was observed at least 7 days after the I/R injury (Figure S1). Furthermore,
the lower intensity of FTE (10 m/min, 10 min) did not induce p-ERK expression elevation
in the spinal cord (Figure 2D). The time (s) and number of immobilities during FTE were
not significantly different between the sham and I/R groups (Figure 2E,F), indicating that
the I/R model animals performed the same amount of exercise via FTE. Therefore, effort
angina can be induced by FTE on I/R model animals, suggesting that this model is suitable
and clinically relevant in the study of angina after revascularisation therapy.

2.3. Hydrogen Peroxide Release Provokes Exercise-Induced Angina in the I/R Model

H2O2, a member of ROS, is generated via oxidative phosphorylation in the mitochon-
dria [24]. Considering that H2O2 contributes to the CAD pathogenesis [25], we examined
whether H2O2 is produced in the heart during FTE. H2O2 was visualised using a fluores-
cent indicator (Bes-H2O2-Ac) via whole-mount cardiac staining. Interestingly, the dense
fluorescent signal was distributed in the apex of the left ventricle after FTE in the I/R
model group (Figure 3A). Conversely, no fluorescent signals were observed before FTE
in this group (Figure 3A). H2O2 assay showed that FTE significantly increased H2O2 con-
centration in the left ventricle area of the I/R model (40.7 ± 1.1 nmol/g, n = 4) compared
with that of the sham group (33.1 ± 0.5 nmol/g, n = 4) or the I/R-without-FTE group
(21.7 ± 2.6 nmol/g, n = 4) (Figure 3B). To determine whether H2O2 release induces angina,
we confirmed p-ERK expression in the spinal cord after the direct intracardiac injection of
100 µM H2O2 into the left ventricle. As early as 3 min after the H2O2 injection, the p-ERK-
immunoreactive cells were markedly elevated in the dorsal horn (Figure 3C,D). Therefore,
H2O2 is produced in the heart following physical activity, stimulating nociceptive sensory
neurons and mediating angina development.
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Figure 3. Hydrogen peroxide release mediates exercise-induced cardiac pain in I/R model rat.
(A) Fluorescent images show the distribution of H2O2 in the whole-heart preparation of the I/R
model (left) and I/R + FTE (right) detected by Bes-H2O2-ac. (B) Concentration of cardiac H2O2

in the sham, I/R model, sham + FTE, and I/R model + FTE groups (n = 4 each). (C) Double
immunofluorescence histochemistry of p-ERK (magenta) and IB4 (green) in the T4–T5 dorsal horn
following the intracardiac injection of vehicle (left) and 100 µM H2O2 (right). (D) Summary of the
number of p-ERK-immunoreactive spinal neurons in lamina I–II per section in the vehicle-treated
and H2O2-treated groups (n = 4 each). (E,F) Double immunofluorescence histochemistry of p-ERK
(magenta) and IB4 (green) in the T4–T5 dorsal horn of the I/R, I/R + FTE + vehicle and I/R + FTE
+ TEMPOL (250 mg/kg) groups, and summary of p-ERK-immunoreactive spinal neurons (n = 4
each). (G,H) Time (G) and number of immobility (H) during I/R + FTE + vehicle group (n = 5)
and I/R + FTE + TEMPOL group (n = 4); such parameters in rats were recorded in the last 5 min
of FTE. All animals were used for the experiments 2 days after the surgery. Data are presented
as mean ± SE and examined by unpaired Student’s t-test and one-way analysis of variance with
Bonferroni analysis. * p < 0.05, ** p < 0.01. Scale bar = 1 mm (A) and 50 µm (C,E). I/R, ischaemia-
reperfusion; ns, not significant; FTE, forced treadmill exercise; DRG, dorsal root ganglion; p-ERK,
phosphorylated extracellular signal-regulated kinase; IB4, Isolectin B4; TEMPOL, 4-hydroxy-2,2,6,6-
tetramethyl-1-piperidinyloxy; #, number.
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These findings raised another question, as to whether H2O2 is involved in angina
induced by FTE. To answer this question, we systematically administered the ROS scavenger
TEMPOL 30 min before the FTE and evaluated the p-ERK-immunoreactive spinal neurons in
the dorsal horn. Although the p-ERK expression was significantly increased by FTE in the
vehicle-treated I/R group (7.3 ± 0.9 cells, n = 4), TEMPOL significantly suppressed the FTE-
induced p-ERK expression (4.3± 0.5 cells, n = 4) (Figure 3E,F). We did not find any differences
in the time (s) and number of immobilities by TEMPOL treatment (Figure 3G,H). Clearly,
exercise-induced angina can be provoked by endogenous H2O2. Thus, this mechanism has a
high translational potential to manage angina in patients undergoing post-revascularisation
therapy, and ROS may be a critical target for clinical medication.

2.4. TRPA1 Channels Expressing Cardiac Sensory Neurons Mediate Cardiac Pain

Although we successfully proved the participation of H2O2 in the process of angina
through exercise, the molecular mechanism involved in H2O2-related cardiac pain in vivo
is still unknown. The TRPA1 channel serves as a pain sensor that is activated by various
endogenous agonists, including H2O2 [26]. We hypothesised that the release of H2O2 from
the I/R-injured cardiac tissue stimulates the TRPA1 expression in the cardiac sensory fibres
to mediate cardiac pain. To confirm whether cardiac sensory neurons functionally express
TRPA1 channels, we conducted a whole-cell patch-clamp on DRG neurons. The cardiac
sensory neurons were specifically visualised by injecting DiI, a neural tracer, into the left
ventricular wall (Figure 4A). DiI-positive cardiac sensory neurons were identified under
fluorescence microscopy, and 21 cardiac sensory neurons were used for the electrophysio-
logical experiment (Figure 4B). AITC, a potent TRPA1-selective agonist, was bath-applied
to DiI-positive neurons, and approximately 50% of neurons showed AITC-induced inward
currents (Figure 4C,D). Furthermore, small-diameter neurons, which have a whole-cell
capacitance of <30 pF, primarily expressed functional TRPA1 channels, but not the medium-
diameter neurons (30–70 pF) and large-diameter neurons (>70 pF) (Figure 4E). To determine
whether TRPA1 channel activation in the heart evokes cardiac pain in vivo, we directly
stimulated the peripheral nerve terminal by injecting AITC into the myocardium. The
AITC injection significantly increased p-ERK-immunoreactive spinal neurons in the dorsal
horn compared with the vehicle treatment (Figure 4F,G). Therefore, cardiac sensory fibres
may respond to endogenous H2O2 through TRPA1 activation, leading to angina.

Our data demonstrated that H2O2, an endogenous agonist of TRPA1, causes cardiac
pain in naïve animals. To determine whether TRPA1 contributes to angina after FTE, we
systemically applied A-967079, a selective TRPA1 antagonist, to the animals 30 min be-
fore FTE. Although the vehicle-treated group showed increased p-ERK expression after
FTE (6.2 ± 0.6 cells, n = 4), systemic administration of A96 inhibited the upregulation of
p-ERK after FTE compared with before FTE (5.3 ± 0.5 cells, n = 6) (Figure 5A,B). Never-
theless, no difference was found between the vehicle-treated group and the A96-treated
group (p = 0.34). To further determine the essential role of TRPA1 in angina, we used
TRPA1−/− mice for the additional experiment. We built an I/R model on wild-type (WT)
and TRPA1−/− mice and applied FTE to evoke angina. Consistent with the results of rats,
FTE markedly increased the number of p-ERK-immunoreactive cells in the dorsal horn
of the WT I/R model mice. However, the p-ERK expression was suppressed after FTE
in the TRPA1−/− I/R group (5.2 ± 0.7 cells, n = 5) compared with that in the WT I/R
group (8.6 ± 0.6 cells, n = 6) (Figure 5C,D). Deletion of TRPA1 channel in TRPA1−/− mice
did not affect the time (s) and number of immobility compared with that in the WT mice
(Figure 5E,F). Overall, these results strongly suggest that TRPA1 channels, which are ex-
pressed on cardiac sensory neurons, are involved in exercise-induced angina development.



Int. J. Mol. Sci. 2022, 23, 2820 8 of 17

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 18 
 

 

2.4. TRPA1 Channels Expressing Cardiac Sensory Neurons Mediate Cardiac Pain 
Although we successfully proved the participation of H2O2 in the process of angina 

through exercise, the molecular mechanism involved in H2O2-related cardiac pain in vivo 
is still unknown. The TRPA1 channel serves as a pain sensor that is activated by various 
endogenous agonists, including H2O2 [26]. We hypothesised that the release of H2O2 from 
the I/R-injured cardiac tissue stimulates the TRPA1 expression in the cardiac sensory 
fibres to mediate cardiac pain. To confirm whether cardiac sensory neurons functionally 
express TRPA1 channels, we conducted a whole-cell patch-clamp on DRG neurons. The 
cardiac sensory neurons were specifically visualised by injecting DiI, a neural tracer, into 
the left ventricular wall (Figure 4A). DiI-positive cardiac sensory neurons were identified 
under fluorescence microscopy, and 21 cardiac sensory neurons were used for the 
electrophysiological experiment (Figure 4B). AITC, a potent TRPA1-selective agonist, was 
bath-applied to DiI-positive neurons, and approximately 50% of neurons showed AITC-
induced inward currents (Figure 4C,D). Furthermore, small-diameter neurons, which 
have a whole-cell capacitance of <30 pF, primarily expressed functional TRPA1 channels, 
but not the medium-diameter neurons (30–70 pF) and large-diameter neurons (>70 pF) 
(Figure 4E). To determine whether TRPA1 channel activation in the heart evokes cardiac 
pain in vivo, we directly stimulated the peripheral nerve terminal by injecting AITC into 
the myocardium. The AITC injection significantly increased p-ERK-immunoreactive 
spinal neurons in the dorsal horn compared with the vehicle treatment (Figure 4F,G). 
Therefore, cardiac sensory fibres may respond to endogenous H2O2 through TRPA1 
activation, leading to angina. 

 
Figure 4. Cardiac sensory neurons express TRPA1 channels that mediate cardiac pain. (A) 
Illustration of the intracardiac injection of DiI in the left ventricle. DIL was injected 7 days before 
the patch-clamp recording experiments. (B) Fluorescent image shows a small-sized DiI-labelled 
DRG neuron in a whole-mount ex vivo DRG preparation. (C) Sample traces of AITC-nonresponsive 
neurons (top) and AITC-responsive neurons (bottom) following 100 µM AITC bath application 
under voltage clamp configuration. (D) Percentage of AITC sensitivity in DiI-labelled cardiac 
sensory neurons (n = 21). (E) Distribution of AITC sensitivity classified by cell capacitance. (F) 

Figure 4. Cardiac sensory neurons express TRPA1 channels that mediate cardiac pain. (A) Illustration
of the intracardiac injection of DiI in the left ventricle. DIL was injected 7 days before the patch-clamp
recording experiments. (B) Fluorescent image shows a small-sized DiI-labelled DRG neuron in a
whole-mount ex vivo DRG preparation. (C) Sample traces of AITC-nonresponsive neurons (top)
and AITC-responsive neurons (bottom) following 100 µM AITC bath application under voltage
clamp configuration. (D) Percentage of AITC sensitivity in DiI-labelled cardiac sensory neurons
(n = 21). (E) Distribution of AITC sensitivity classified by cell capacitance. (F) Double immunoflu-
orescence histochemistry of p-ERK (magenta) and IB4 (green) in the T4–T5 dorsal horn following
the intracardiac injection of vehicle (left) and 100 µM AITC (right). (G) Summary of the number of
p-ERK-immunoreactive spinal neurons in lamina I–II per section in the vehicle-treated and AITC-
treated groups (n = 4 each). Data are presented as mean ± standard error of mean. *** p < 0.001,
unpaired Student’s t-test. Scale bar = 10 µm (B) and 50 µm (F). DRG, dorsal root ganglion; AITC,
allyl isothiocyanate; TRPA1, transient receptor potential ankyrin 1; DiI, 1.1′-dioctadecyl-3,3,3′,3′-
tetramethyl-indocarbocyanine perchlorate; p-ERK, phosphorylated extracellular signal-regulated
kinase; IB4, Isolectin B4; #, number.
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Figure 5. Pharmacological and genetic inhibitions of TRPA1 attenuate exercise-induced angina in
I/R model animals. (A,B) Double immunofluorescence histochemistry of p-ERK (magenta) and
IB4 (green) in the T4–T5 dorsal horn of the I/R group (n = 4), I/R + FTE + vehicle group (n = 4)
and I/R + FTE + A96 group (A-967079, 20 mg/kg, n = 7), and summary of p-ERK-immunoreactive
spinal neurons in rats (n = 4 each). (C,D) Immunofluorescence histochemistry of p-ERK (red) in the
T4–T5 dorsal horn of WT I/R group (n = 6), TRPA1−/− I/R group (n = 5), WT I/R + FTE group
(n = 6), and TRPA1−/− I/R + FTE group (n = 5), and summary of p-ERK-immunoreactive spinal
neurons. (E,F) Time (E) and number (F) of immobility during FTE in WT I/R + FTE group (n = 6)
and TRPA1−/− I/R + FTE group (n = 5). All animals were used for the experiments 2 days after
the surgery. Data are presented as mean ± SE, unpaired Student’s t-test and one-way analysis on
variance with Bonferroni analysis. * p < 0.05, ** p < 0.01, *** p < 0.001. Scale bar = 50 µm (A,C). I/R,
ischaemia–reperfusion; ns, not significant; FTE, forced treadmill exercise; p-ERK, phosphorylated
extracellular signal-regulated kinase; #, number.

3. Discussion

Revascularisation therapy is the most effective approach to restore the blood flow
of patients with STEMI. Although reperfusion of the coronary artery is important to
resuscitate the ischaemic myocardium, it can result in I/R injury. I/R injury may occur
following various clinical settings, including thrombolytic therapy and PCI [27,28]. Thus,
preventing I/R injury and managing a good quality of life are necessary after such therapies.
Approximately 90% of patients with CAD have improved daily movements after receiving
PCI; however, 30–40% still experience persistent or recurrent angina [1]. In the present
study, the I/R model animals showed a normal daily activity and did not present cardiac
ischaemia and pain; however, they presented potential cardiac dysfunctions, increased area
at risk, and ECG abnormality. Importantly, these animals had an effort angina, which is
a typical clinical symptom of patients with persistent angina following revascularisation
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therapy. This angina persisted for at least 7 days following I/R, and it was reproducible
across different animal species. Therefore, the I/R injury model may be more suitable for
studying angina after revascularisation therapy in patients with STEMI.

Angina refers to cardiac pain or discomfort triggered by strenuous activities. Sev-
eral experimental angina models, such as vasopressin-, methacholine- and isoproterenol-
induced angina models, have been used for studying angina [16–18]. Further, several
indirect indicators such as ST-segment, blood pressure, and biochemical markers of myocar-
dial injury are used to evaluate angina [29–31]. Although these hormones or chemicals cause
vasospasm, leading to ST-segment deviation, the occurrence of chest pain and ST-segment
deviation is not always consistent in human patients [32]. Thus, angina symptoms such as
cardiac pain or discomfort have never been studied in animal models. To our knowledge,
this study is the first to show a quantified cardiac pain induced by FTE on I/R animal mod-
els. ERK, which belongs to the mitogen-activated protein kinase family, is phosphorylated
by a noxious peripheral stimulus in the lamina I–II of the dorsal horn [19]. Thus, p-ERK has
been used as a marker of neuronal activation following noxious stimulation in pain research
to detect somatosensory pain and visceral pain [33]. Therefore, p-ERK could be a useful tool
for further study on angina to visualise and quantify cardiac pain in animals.

Generally, ROS are toxic by-products of aerobic metabolism and have been widely
implicated in several ischaemic diseases [34]. I/R injury occurs following the restoration
of blood flow in the ischaemic tissues, leading to a ‘burst’ of ROS production [35]. The
overproduced ROS not only damage tissues by oxidising cellular components but also
affect vascular permeability and cell viability [36–38]. Although the pathological function
of ROS during I/R has been thoroughly investigated, the relationship between ROS and
angina is still unclear. In this study, H2O2 increased in the injured left ventricle following
FTE. Furthermore, the scavenging of endogenous H2O2 after FTE reversed the exercise-
induced cardiac pain, and the cardiac injection of exogenous H2O2 directly evoked cardiac
pain. Clearly, H2O2 has an important role in the development of angina. Although we
have not conclusively identified the source of H2O2 following exercise, one probable
source is the myocardium, which generates H2O2 during low-flow ischaemia through
the mitochondrial production or nicotinamide adenine dinucleotide phosphate oxidase-
dependent mechanisms [14]. However, we do not have direct evidence whether I/R model
animals induce low-flow ischaemia during FTE because of technical limitations of ECG
recording from the moving animals. According to a clinical study involving patients
with angina, ST-segment depression or vasospasm occurred during exercise, indicating
myocardial ischaemia [39]. Considering such evidence, low-flow myocardial ischaemia
caused by increased oxygen demand following increased physical activities might trigger
H2O2 production in the I/R-injured myocardium.

To translate our findings into angina management in patients after revascularisation
therapy, we suspect that antioxidants may be a promising therapeutic agent for angina
that occurs after revascularisation therapy. Edaravone (Radicava), a clinically applicable
medication, efficiently scavenges oxygen free radicals by providing a hydrogen atom [40].
In 2017, the U.S. Food and Drug Administration approved edaravone to treat patients with
amyotrophic lateral sclerosis (ALS) [41]. Indeed, edaravone has a neuroprotective effect
as is thus used for treating acute cerebral ischaemia in Japan [42]. Therefore, antioxidants
such as an edaravone may alleviate angina to a great extent by preventing ROS production.

In addition to the generation of angina, H2O2 is essential for the regulation of coronary
blood flow. Thromboxane A2 is a potent vasoconstrictor that mediates coronary vasospasm,
and its release from the endothelium is stimulated by H2O2 [26]. Thus, the inhibition of
H2O2 production may prevent not only angina but also cardiac ischaemia, which is induced
by physical activities. Therefore, this study provides a new perspective in the management
of angina after revascularisation therapy by preventing H2O2 or ROS production after
physical activities. Additionally, it encourages researchers to further examine whether
antioxidants have a potent therapeutic effect on post-PCI patients clinically.
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The role of non-neuronal TRPA1 in cardiomyocyte following I/R injury has already
been extensively studied. However, the role of TRPA1 on cardiomyocytes remains contro-
versial because TRPA1 activation reportedly has either a cardioprotective or cytotoxic effect
in the processing of I/R injury [43,44]. In the present study, we focused on neuronal TRPA1
expressed by cardiac afferents. TRPA1 functions as a pain sensor, thus playing a critical
role in pain perception [12]. Approximately 40% of DRG neurons express TRPA1, which
is generally limited to small-diameter nociceptive neurons [45]. Consistently, the TRPA1
channel was functionally expressed by approximately 50% of cardiac sensory neurons, and
its activation evoked cardiac pain. Therefore, cardiac sensory neurons may detect harm-
ful cardiac abnormalities through TRPA1 activation. H2O2 is an endogenous agonist of
TRPA1 [46], and our study successfully demonstrated its role in angina following exercise.
Moreover, pharmacological blocking or gene knockout of TRPA1 significantly attenuated
cardiac pain following FTE. A recent study suggested that TRPA1 has no functional expres-
sion in both mouse and human cardiomyocytes [47]. Overall, TRPA1 may play a critical
role in the generation of exercise-induced angina after a myocardial I/R injury.

H2O2 has multiple biological activities in physiological and pathophysiological con-
ditions [48–51]. Thus, H2O2 stimulates not only the TRPA1 channel but also other H2O2-
sensitive TRP channels, such as TRPV1, TRPM2, and TRPC5 [52–54]. Among them, TRPV1
and TRPC5 are involved in pain perception; TRPV1 is activated by noxious heat and
acidic pH, whereas TRPC5 is activated by extracellular calcium, nitric oxide, and lipid
mediators [55,56]. Therefore, these TRP channels may also be involved in ROS-mediated
angina. However, H2O2-mediated TRPA1 activation has a pivotal role in hypoxia-induced
painful dysaesthesia in the hindlimb, and hypoxia-induced pain behaviour was dimin-
ished in TRPA1−/− mice rather than in TRPV1−/− mice [57]. Our study revealed that
TRPA1−/− mice displayed a completed anti-angina effect following exercise. Meanwhile,
TRPC5 is involved in inflammatory pain in various disease models [58]; hence, this chan-
nel may contribute to cardiac inflammatory pain such as in endocarditis, myocarditis, and
pericarditis, instead of contributing to ischaemic pain. Taken together, the TRPA1 channel
mediates angina following exercise, suggesting a possible molecular mechanism of angina
after revascularisation therapy.

4. Materials and Methods
4.1. Animals

Male Sprague Dawley rats at 7 weeks old and C57BL/6 mice at 10 weeks old were pur-
chased from SLC Inc. (Shizuoka, Japan). These rats and mice were housed in plastic cages
on a reversed light cycle (12 h light/12 h dark cycle) with water/food provided ad libitum
in a temperature-controlled animal facility (23 ◦C± 1 ◦C). Makoto Tominaga (Okazaki Insti-
tute for Integrative Bioscience, Okazaki, Japan) provided TRPA1-deficient mice, which were
originally produced by David Julius (University of California, San Francisco, CA, USA).
The Hyogo University of Health Sciences Committee on Animal Research approved all our
animal experimental procedures, which conformed to the NIH Guide for the Care and Use
of Laboratory Animals.

4.2. Myocardial I/R Injury Model

Preoperatively, the rats or mice were anaesthetised by injecting medetomidine, mida-
zolam, and butorphanol (0.15 or 0.3 mg/kg, 2 or 4 mg/kg, and 2.5 or 5 mg/kg, respectively)
intraperitoneally. They were intubated and mechanically ventilated using a rodent respira-
tor device (NARCOBIT KN-472, Natsume Seisakusho Co., Tokyo, Japan); the ventilation
rate and volume were 85–90 bpm and 500 mL/min for the rats and 95–100 bpm and
300 mL/min for the mice. The animals underwent thoracotomy at the left fourth intercostal
space to expose the heart. Ischaemia was achieved by left anterior descending coronary
artery (LAD) ligation with PE-10 tubing (Becton Dickinson, Tokyo, Japan) using a silk
suture (6-0 or 7-0; Natsume Seisakusho Co., Tokyo, Japan). Reperfusion was achieved by
releasing the ligature 30 min after occlusion. The same procedure was applied for the sham
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surgery, except for the LAD ligation. The air in the thoracic cavity was removed using a
syringe, and the intercostal space, muscles, and skin were sutured with 3-0 silk. The model
rats and mice were used for experiments 2 or 7 days after reperfusion.

4.3. Intracardiac Injection

Rats were anaesthetised and ventilated in the same processes described above. To
avoid the effect of surgical invasion, we incised the skin from the right side of the chest for
thoracic cavity exposure. Using a Hamilton microsyringe (72–1001, Sansyo Co., Tokyo, Japan),
we injected 20 µL of allyl isothiocyanate (AITC, 100 µM) (5% dimethyl sulfoxide [DMSO] in
saline) or 100 µM of hydrogen peroxide (in saline) into the cardiac muscle of the left ventricle.
After 3 min from the intracardiac injection, we fixed the animals by 4% paraformaldehyde
(PFA) for immunohistochemical analysis. For the retrograde labelling of cardiac sensory
neurons, 5 µL of 4% Fluoro-Ruby (in saline, Fluorochrome, Denver, CO, USA) or 4% of
1.1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate (DiI) (in 5% DMSO in
saline) was injected into the cardiac muscle of the left ventricle. The rats were used for
immunohistochemical analysis or patch-clamp experiment 7 days after the injection.

4.4. Electrocardiography

The rats inhaled 2.5% isoflurane (Fujifilm Co., Osaka, Japan) and were placed in a
supine position. The cardiogram waveform was monitored by a 3-point guidance method.
We placed the negative electrode, positive electrode, and earth electrode on the right front
paw, left hind paw, and left front paw, respectively. The electrical signal was recorded
at 1 kHz using an amplifier (Bio Amp FE232; ADInstruments, Dunedin, New Zealand).
Furthermore, the ECG waveform was analysed using a specific software (ECG Analysis
Module V8, LabChart Pro, ADInstruments, Dunedin, New Zealand).

4.5. FTE

After 2 days postoperatively, FTE experiments were conducted using the I/R model or
sham rats with an animal treadmill apparatus (TMS-2B, MELQUEST Co., Toyama, Japan).
We set the exercise intensity according to the animal’s maximal oxygen uptake and applied
a speed of 20 m/min for rats or 15 m/min for mice for 10 min. During the FTE, the animals’
behaviour was monitored using a camera (HDR-CX470, SONY, Tokyo, Japan). The time (s)
and number of immobility (rest) were analysed during the last 5 min of FTE. After FTE, we
immediately fixed with 4% PFA within 3 min.

4.6. Drug Application

Drugs were systemically administered via intravenous infusion through a catheter
30 min before the FTE. We used 1 mL of 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPOL) (250 mg/kg, H0865; Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) and its
vehicle (0.9% saline), or A967079 (A96, 20 mg/kg, A-225, Alomone Labs) and its vehicle
(10% DMSO, 5% Tween 80, 0.5% methylcellulose).

4.7. Perfusion Fixation through the Abdominal Aorta

To avoid chest pain from the surgical manipulation for PFA perfusion, we conducted
the PFA perfusion via the abdominal aorta. A 22 G (for rats) or 30 G (for mice) needle was
inserted into the abdominal aorta and perfused with 1% PFA in 0.1 M phosphate buffer (PB),
followed by 4% PFA in 0.1 M PB. In some experiments, the rats were fixed transcardially to
dissect out thoracic spinal cord and thoracic DRGs. The samples were post-fixed with 4%
PFA in 0.1 M PB at 4 ◦C overnight and embedded using the O.C.T compound (4583; Sakura
Finetek Japan Co., Tokyo, Japan) and frozen by powdered dry ice.

4.8. Immunohistochemistry

The samples were sectioned by cryostat (NX70; Thermo Fisher Scientific Inc., MA,
USA) at 25 µm of free-floating sections for rats or 14 µm of mounting sections for mice.
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The sections were incubated with a blocking buffer (0.1 M TBS with 0.5% Tween-20) in
10% normal donkey or goat serum with 0.1 M tris-buffered saline (TBS, pH = 7.4) and 0.5%
Tween-20 for 1 h at room temperature. The sections were applied with anti-p-ERK (1:500,
Cat# 4370s, RRID: AB_2315112) and Isolectin B4 (IB4, 1:500, Cat# L2140, RRID: AB_2313663)
in 5% serum in 0.1 M TBS with 0.5% Tween-20 at 4 ◦C overnight. We incubated the
sections with Alexa Fluor 594-conjugtated goat anti-donkey (1:1000, Cat# A-21207, RRID:
AB_141637) or Alexa Fluor 594-conjugtated donkey anti-ribbit antibody (1:1000, Cat#
A11037, RRID: AB_2576217) and Alexa Fluor 488-conjugated streptavidin (1:1000, Cat#
S-11223, RRID: AB_2336881) for 1 h at room temperature. The sections were mounted with
an anti-fade reagent (H-1200; Vector Labs, Burlingame, CA, USA). Images were obtained
using a microscope (Eclipse 80i; Nikon Instruments Inc., Tokyo, Japan) equipped with a
digital camera and operated by NIS-Elements D 3.2 software (RRID: SCR_014329). IB4
immunoreactivity was used as an indicator of inner lamina II of the superficial dorsal
horn. In quantifying the number of p-ERK-immunoreactive cells in the lamina I–II layers,
four or five sections per animal were used for the analysis using ImageJ software (RRID:
SCR_003070).

4.9. Patch-Clamp Recording

One week after retrograde labelling with DiI, T4–T5 DRGs were dissected out and
affixed in a recording chamber by a tissue anchor and submerged in a Krebs solution that
contained the following (in mM): 117 NaCl, 3.5 KCl, 2.5 CaCl2, 1.2 MgCl2, 1.2 NaH2PO4,
25 NaHCO3, and 11 glucose. In addition, pH was adjusted to 7.35 with NaOH, and osmo-
larity was adjusted to 324 mOsm with sucrose. The DRGs were treated by a mixture of
0.07% dispase II (Godo Shusei Co., Tokyo, Japan) and 0.07% collagenase (Nacalai Tesque,
Kyoto, Japan) in Krebs solution for 5 min at room temperature.

DiI-positive cardiac sensory neurons were visualised under a 40× (NA 0.80) objective
and with CCD camera (C4742-80; Hamamatsu Photonics K.K., Shizuoka, Japan). Recording
electrodes were filled with an internal solution containing the following (in mM): 105 K-
gluconate, 30 KCl, 0.5 CaCl2, 2.4 MgCl2, 5 EGTA, 10 HEPES, 5 Na2ATP, and 0.33 GTP-TRIS
salt; the pH was adjusted to 7.35 with KOH, and osmolality was adjusted to 330 mOsm
with sucrose; the electrode resistance was 5 MΩ. After the whole-cell mode was established,
the cell was held at −60 mV. The signals were amplified using an Axopach 200B amplifier,
filtered at 2 kHz, and sampled at 10 kHz using the pCLAMP 10 software (MOLECULAR
DEVICES, San Jose, CA, USA).

4.10. Hydrogen Peroxide Assay

After the rats were anaesthetised with isoflurane, we collected 0.2 g of heart from
four groups (sham, I/R model, sham with 10 min FTE and I/R with 10 min FTE). The
samples were homogenised in 0.7 mL of saline, and the supernatant was corrected after
the centrifuge (15,000× g at 4 ◦C for 15 min). The concentration of hydrogen peroxide
assay was analysed with Bioxytech H2O2 560TM Quantitative Peroxidase Assay Kit (CL-204;
Cosmo Bio Co., Tokyo, Japan) In addition, the concentration of each sample was read by a
spectrophotometer (Molecular Devices, San Jose, CA, USA) at 560 nm.

4.11. Assessment of Myocardial Infarct Size and the Risk Area

The myocardial infarct size and risk area of the heart were measured by combin-
ing Evans blue (EB, 054-0406; Fujifilm Wako Chemicals Co., Osaka, Japan) and 2,3,5-
triphenyltetrazolium chloride (TTC, 205-05833; Fujifilm Wako Chemicals Co., Osaka, Japan).
Two days after the surgery, 1% EB (in 0.9% saline, 5 mL/kg) was injected via the lateral
tail vein. Within 2–3 min, they were sacrificed, and their hearts were removed, which
were then placed in the freezer at −30 ◦C for 1 h. The frozen hearts were incised into five
1–2 mm-thick parallel transverse slices, incubated in 1% TTC (in 0.9% saline) at 37 ◦C for
15 min, and post-fixed with 4% formalin solution for 10 min. The infarct size and risk area
were evaluated by ImageJ (RRID: SCR_003070).
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4.12. Recording of Daily Animal Activity

Two days after the I/R surgery, the rats were placed in plastic cages individually on a
reversed light cycle (12 h light/ 12 h dark cycle) with water/food provided ad libitum in
a temperature-controlled animal facility (23 ◦C ± 1 ◦C). The cages were placed under the
infrared detectors connected to a telemetry transmitter (DAS64; Neuroscience Inc., Tokyo,
Japan). Animal activities were counted for 24 h using an activity measurement tool (Act-1
software; Nikon Co, Tokyo, Japan).

4.13. Statistics

All statistical data were analysed using Prism software (version 7; GRAPH PAD, San
Diego, CA, USA). For each group, differences were assessed using one-way analysis of
variance with Bonferroni analysis. Two groups were compared by Student’s t-test. All
the statistical results are represented as mean ± standard error of mean. Differences were
considered to be significant if * p < 0.05, ** p < 0.01, and *** p < 0.001.

5. Conclusions

To the best of our knowledge, this study provided the first evidence of exercise-induced
angina following myocardial I/R in rats. We found that the production of H2O2 through
physical exercise contributes to the angina development following I/R. ROS may provide a
desirable pharmacological target for the clinical treatment of post-PCI angina. Considering that
the TRPA1-selective antagonist is not a clinically applicable medication, free radical scavengers
might have the potential to treat patients with angina after revascularisation therapy.
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