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Abstract: Cancer stemness evinces interest owing to the resulting malignancy and poor prognosis.
We previously demonstrated that hepatic stem cell-like hepatocellular carcinoma (HpSC-HCC) is
associated with high vascular invasion and poor prognosis. Dickkopf-1 (DKK-1), a Wnt signaling
regulator, is highly expressed in HpSC-HCC. Here, we assessed the diagnostic and prognostic
potential of serum DKK-1. Its levels were significantly higher in 391 patients with HCC compared
with 205 patients with chronic liver disease. Receiver operating characteristic curve analysis revealed
the optimal cutoff value of DKK-1 to diagnose HCC and predict the 3-year survival as 262.2 and
365.9 pg/mL, respectively. HCC patients with high-serum DKK-1 levels showed poor prognosis. We
evaluated the effects of anti-DKK-1 antibody treatment on tumor growth in vivo and of recombinant
DKK-1 on cell proliferation, invasion, and angiogenesis in vitro. DKK-1 knockdown decreased
cancer cell proliferation, migration, and invasion. DKK-1 supplementation promoted angiogenesis
in vitro; this effect was abolished by an anti-DKK-1 antibody. Co-injection of the anti-DKK-1 antibody
with Huh7 cells inhibited their growth in NOD/SCID mice. Thus, DKK-1 promotes proliferation,
migration, and invasion of HCC cells and activates angiogenesis in vascular endothelial cells. DKK-1
is a prognostic biomarker for HCC and a functional molecule for targeted therapy.

Keywords: hepatocellular carcinoma; Dickkopf-1; angiogenesis; cancer stem cell

1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and
occurs in people with chronic liver disease (CLD). It is the fourth leading cause of cancer-
related deaths worldwide [1]. GLOBOCAN data revealed that approximately 841,000 new
cases of liver cancer and 782,000 related deaths were reported in 2018, which makes liver
cancer the sixth most commonly diagnosed cancer [2]. The global incidence of HCC is
heterogeneous due to the varying prevalence of the underlying risk factors. It has been
estimated that 72% of the cases occur in Asia (>50% in China), 10% in Europe, 7.8% in
Africa, 5.1% in North America, 4.6% in Latin America, and 0.5% in Oceania [3]. Moreover,
limited medical and social care resources may play a crucial role in the development of
HCC [1]. The incidence of HCC is presumed to increase over the next 10–20 years, with
5-year survival rates ranging from 50% to 75% in the early stages to as low as 3% in patients
with distant metastases [4,5].

Hepatitis B and C virus infection, alcohol use, nonalcoholic fatty liver disease, Budd–
Chiari syndrome, and aflatoxin are the known risk factors for HCC. In clinical practice,
quantitation of serum alpha-fetoprotein (AFP) level and ultrasonography is widely used
for the early detection of HCC [6]; however, the sensitivity and specificity of AFP detection
at a cutoff value of 20 ng/mL are 59% and 90%, respectively [7]. Thus, novel biomarkers
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are required to facilitate a better diagnosis of HCC [8]. Biomarkers for treatment are also
currently being explored [9,10].

Dickkopf-1 (DKK-1), a soluble secreted protein with low molecular weight, plays a
pivotal role in head induction and head embryogenesis in Xenopus [11]. DKK-1 negatively
regulates the Wnt/β-catenin pathway and competitively binds to LRP5/6, which shows
a higher affinity for DKK-1 than Wnt ligands, thereby inhibiting the formation of the
Fz-Wnt-LRP5/6 complex and interfering with Wnt signaling [11–13]. DKK-1 is associated
with carcinogenesis, metastasis, recurrence, and poor prognosis in HCC [14–17].

Using comprehensive genetic analysis, we previously classified HCC into two types:
stem cell type (hepatic stem cell/hepatoblast-HCC, HpSC-HCC), characterized by epithe-
lial cell adhesion molecule (EpCAM) and AFP positivity, and hepatocyte type (mature
hepatocyte-HCC, MH-HCC), characterized by differentiated hepatocyte marker positiv-
ity [18]. We previously demonstrated that hepatic stem cell markers, EpCAM, AFP, DKK-1,
DLK1, CD133, and CK19, were upregulated in HpSC-HCC compared with that in MH-HCC.
Moreover, HpSC-HCC is associated with a high frequency of vascular invasion and poor
prognosis [19]. We also found that DKK-1 is highly expressed in HpSC-HCC and presented
it as a novel biomarker that regulates Wnt signaling [18,19]. DKK-1 expression has also
been reported to be elevated in HCC tissues [20], and DKK-1 is dysregulated in various
other malignant tumors, such as pancreatic cancer, colorectal cancer, multiple myeloma,
and chronic lymphocytic leukemia [21–24]. The diagnostic value of serum DKK-1 levels
for HCC has previously been determined [25–33]. However, although DKK-1 expression
is activated in HpSC-HCC with the activation of Wnt signaling, DKK-1 itself is known
to inhibit the Wnt signaling pathway, and the role of DKK-1 expression in the process of
HpSC-HCC development remains elusive.

In the present study, we assessed the diagnostic and prognostic value of serum DKK-1
levels in HCC using clinical samples. We further investigated the effects of DKK-1 on
cancer cell proliferation, invasion, and angiogenesis in vitro and of anti-DKK-1 antibody
treatment on tumor growth in vivo.

2. Results
2.1. Elevation of Serum DKK-1 Levels in HpSC-HCC

We re-analyzed the hierarchical clustering of 156 HCC samples using a microarray data
set of HpSC-HCC (n = 60) and MH-HCC (n = 96). We found that 793 genes were significantly
differentially expressed between HpSC-HCC and MH-HCC (p < 0.001) (Figure 1A). Of
these, the genes encoding EpCAM, AFP, and DKK-1 in HpSC-HCC were highly expressed.
As EpCAM is a marker of liver cancer stem cells, we further evaluated the expression
of genes encoding EpCAM and DKK-1 using EpCAM+/− cells sorted from Huh7 cells.
The expression of DKK-1 was higher in isolated EpCAM+ cancer stem cells compared
with that in EpCAM− cells (Figure 1B). This pattern of DKK-1 expression was confirmed
using Western blot analysis (Figure 1C). We further evaluated the expression of DKK-1
using surgically resected HCC specimens. Among 58 HCC specimens (14 HpSC-HCC and
44 MH-HCC), DKK-1 expression could be evaluated in 8 HpSC-HCC and 36 MH-HCC cases
by qRT-PCR. We found that DKK-1 expression was upregulated in HpSC-HCC compared
with that in MH-HCC (p = 0.002, Figure 1D). Serum DKK-1 levels could be further evaluated
in 11 HpSC-HCC and 36 MH-HCC cases by enzyme-linked immunosorbent assay (ELISA)
and were found to be higher in HpSC-HCC samples compared to MH-HCC samples
(p = 0.003, Figure 1E). HpSC-HCC significantly correlated with poor overall and recurrence-
free survival compared with MH-HCC (p = 0.0005, Figure 1F and p = 0.008, Figure 1G). Thus,
using the microarray data set and a small HCC cohort, we found that DKK-1 expression
and serum DKK-1 levels were elevated in HpSC-HCC with poor survival outcomes.
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Figure 1. Activation of Dickkopf-1 (DKK-1) in hepatic stem cell-like hepatocellular carcinoma (HpSC-HCC).
(A) Heatmap images of 793 genes differentially expressed between HpSC-HCC and mature hepatocyte-
HCC (MH-HCC). HpSC-HCC and MH-HCC cases are indicated as yellow or blue boxes, respectively. Each
cell in the matrix represents the expression level of a gene in an individual sample. Orange and blue cells
depict high and low expression levels, respectively, as indicated by the scale bar. Genes encoding epithelial
cell adhesion molecule (EpCAM), alpha-fetoprotein (AFP), and DKK-1 were activated in HpSC-HCC.
(B) qRT-PCR analysis of genes encoding EpCAM and DKK-1 in sorted EpCAM+/− Huh7 cells. (C) DKK-1
levels were higher in EpCAM+ cells than in EpCAM− cells as assessed by Western blot analysis (D) qRT-
PCR analysis of DKK-1 expression in HpSC-HCC (red circle) and MH-HCC (blue circle). (E) Serum DKK-1
levels in HpSC-HCC (red circle) and MH-HCC (blue circle). (F) Kaplan–Meier curves of overall survival in
HpSC-HCC (red line) and MH-HCC (blue line). (G) Kaplan–Meier curves of recurrence-free survival in
HpSC-HCC (red line) and MH-HCC (blue line).
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2.2. Serum DKK-1 as a Diagnostic Marker for HCC

Next, we evaluated the diagnostic and prognostic utility of serum DKK-1 levels by
investigating in a relatively large cohort. The clinical characteristics of the patients with
HCC enrolled in this study are summarized in Table 1 (n = 391). HCV infection is the most
common cause of HCC, accounting for approximately 55.5% of HCC cases. Liver function
tests showed that 73.1% and 62.7% of the patients were classified as Child–Pugh A and
albumin-bilirubin (ALBI) grade 1/2a, respectively. A total of 75% of the patients were
diagnosed with Union for International Cancer Control (UICC) stage I/II, and 52% were
diagnosed with Barcelona Clinic Liver Cancer (BCLC) stage 0/A cancer. The median serum
DKK-1 level was 330.8 pg/mL. The median serum AFP and protein induced by vitamin K
absence-II (PIVKA-II) values were 24.0 ng/mL and 50.0 mAU/mL, respectively.

Table 1. Characteristics of patients with hepatocellular carcinoma (HCC).

Patients with HCC (n = 391)

Age, years 68 (61–74)
Sex, male, n (%) 260 (66.5)

Etiology, HCV/HBV/HBV+HCV/Alcohol/Others, n (%) 216 (55.5)/69 (17.6)/3 (0.8)/48 (12.3)/54 (13.8)
Child–Pugh, A/B+C, n (%) 286 (73.1)/105 (26.9)

ALBI grade, 1/2a/2b/3, n (%) 156 (39.9)/89 (22.8)/122 (31.2)/24 (6.1)
UICC (8th) stage, I/II/III/IV, n (%) 164 (41.9)/131 (33.5)/63 (16.1)/33 (8.4)

BCLC stage, 0/A/B/C/D, n (%) 54 (13.8)/149 (38.2)/109 (27.9)/59 (15.1)/19 (4.9)
Serum DKK-1 (pg/mL) 330.8 (272.8–409.5)

Serum AFP (ng/mL) 24.0 (10.0–200.0)
Serum PIVKA-II (mAU/mL) 50.0 (23.0–74.0)

Median (IQR).

The characteristics of patients with CLD are shown in Table 2 (n = 205). Serum
DKK-1 levels were significantly higher in HCC (median, 330.8 pg/mL) than in CLD
(median, 253.8 pg/mL) (Figure 2A). We evaluated the receiver operating characteristic
(ROC) curve of the serum DKK-1, AFP, and PIVKA-II levels in 391 patients with HCC and
in 205 patients with CLD and determined the optimal cutoff values for the diagnosis of
HCC to be 262.2 pg/mL, 24.5 ng/mL, and 43.5 mAU/mL, respectively (Figure 2B). The
sensitivity of the diagnostic evaluation of DKK-1, AFP, and PIVKA-II levels was 80.5%,
49.0%, and 53.7%, respectively. The specificity of the diagnostic evaluation of DKK-1, AFP,
and PIVKA-II levels was 53.2%, 91.1%, and 97.2%, respectively. The area under the ROC
curve (AUC) of serum DKK-1, AFP, and PIVKA-II levels was 0.708 (95% confidence interval
(CI), 0.664–0.752), 0.750 (95% CI, 0.711–0.789), and 0.756 (95% CI, 0.717–0.795), respectively
(Figure 2B).

We analyzed the correlation between serum DKK-1, AFP, and PIVKA-II levels in
HCC cases using linear regression curve analysis. The correlation (r) between serum
DKK-1 and serum AFP levels was 0.44 (p < 0.001; Figure 2C), indicating a weak positive
correlation, whereas that between serum DKK-1 and serum PIVKA-II levels was 0.27
(p < 0.001; Figure 2D).

Table 2. Characteristics of patients without hepatocellular carcinoma (HCC).

Patients without HCC (n = 205)

Age, years 58 (50–64)
Sex, male, n (%) 114 (55.6)

Etiology, HCV/HBV/Alcohol/Others, n (%) 131 (63.9)/40 (19.5)/6 (2.9)/28 (13.7)
Liver cirrhosis, n (%) 28 (13.7)

Serum DKK-1 (pg/mL) 253.8 (204.3–331.5)
Median (IQR).
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Figure 2. Serum Dickkopf-1 (DKK-1) levels as a diagnostic marker for hepatocellular carcinoma
(HCC). (A) Serum DKK-1 levels were significantly higher in patients with HCC than in those without
HCC. (B) A receiver operating characteristic (ROC) curve of serum DKK-1, alpha-fetoprotein (AFP),
and protein induced by vitamin K absence-II (PIVKA-II) levels. The optimal cutoff value of serum
DKK-1 levels for the diagnosis of HCC was 262.2 pg/mL. The area under the ROC curve of serum
DKK-1 levels was 0.708. The sensitivity and specificity of DKK-1 were 80.5% and 53.2%, respectively.
(C,D) The correlation (r) between serum DKK-1 and serum AFP levels was 0.44 (p < 0.001; C), whereas
that between serum DKK-1 and serum PIVKA-II levels was 0.27 (p < 0.001; D).

2.3. Serum DKK-1 Levels and Clinicopathological Characteristics of HCC

The serum DKK-1 level was elevated according to HCC size (p < 0.001, Figure 3A).
In contrast, no difference was observed between solitary (median, 333.8 pg/mL) and
multinodular (median, 327.9 pg/mL) HCC cases (Figure 3B). Serum DKK-1 levels were
higher in the massive/diffuse type (median, 446.4 pg/mL) than in the nodular type (median,
323.3 pg/mL) (p < 0.001; Figure 3C), according to Eggel’s classification.

Serum DKK-1 levels were elevated in portal vein invasion (Vp)-positive patients
(median, 445.9 pg/mL) compared with those in Vp-negative patients (median, 326.8 pg/mL)
(p < 0.001; Figure 3D). In particular, the serum DKK-1 levels were elevated in Vp3/4 patients
compared with those in Vp- or Vp1/2 patients (p < 0.001, Vp3/4: median, 487.8 pg/mL;
Vp1/2: median, 391.8 pg/mL; Vp-: median, 326.8 pg/mL) (Figure 3E). Serum DKK-1 levels
were significantly higher in patients in advanced stages classified by the BCLC and UICC
(p < 0.001) (Figure 3F, G). Serum DKK-1 levels were not related to the hepatic reserve in
terms of the Child–Pugh score and ALBI grade (Figure 3H, I). Taken together, the above
data indicated that the serum DKK-1 level was elevated in HCC with a proliferative and
invasive nature characterized by advanced stages with a high frequency of Vp.
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Figure 3. Relationship between serum Dickkopf-1 (DKK-1) levels and clinicopathological characteris-
tics of hepatocellular carcinoma (HCC) and liver function. (A) Serum DKK-1 levels were elevated
according to HCC size (p < 0.001). (B) No difference was observed between solitary and multinodular
HCC cases. (C) Serum DKK-1 levels were higher in the massive/diffuse type than in the nodular type,
according to Eggel’s classification. (D,E) Serum DKK-1 levels were elevated in portal vein invasion
(Vp)-positive patients compared with that in Vp-negative patients (p < 0.001; D). Serum DKK-1 levels
were elevated in Vp3/4 patients compared with those in Vp- or Vp1/2 patients (*** p < 0.001 and
* p < 0.05; E). (F,G) Serum DKK-1 levels were significantly higher in advanced-stage patients classified
according to the BCLC (F) and UICC stages (G). (H,I) Serum DKK-1 levels were not related to hepatic
reserve assessed by using the Child–Pugh score (H) and albumin-bilirubin (ALBI) grade (I).

2.4. Serum DKK-1 Level as a Prognostic Marker of HCC

We evaluated the prognostic utility of serum DKK-1 levels in 271 cases with available
3-year survival information. From the ROC curve analysis, a cutoff value of 365.9 pg/mL
was determined (AUC 0.601, sensitivity 71.9%, specificity 52.9%; Figure 4A) to differen-
tiate between patients with HCC who survived for more than 3 years and those who
did not. Kaplan–Meier survival analysis indicated that elevated serum DKK-1 levels
(≥365.9 pg/mL) were significantly correlated with poorer prognosis (p < 0.001, hazard ratio
(HR) 2.40 (95% CI 1.59–3.62)) (Figure 4B).
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Figure 4. Overall (3-year) survival. (A) The receiver operating characteristic (ROC) curve analysis
for survival showing the cutoff value of serum Dickkopf-1 (DKK-1) levels to be 365.9 pg/mL; area
under the ROC curve (AUC) is 0.601, sensitivity is 71.9%, and specificity is 52.9%. (B) Kaplan–Meier
survival analysis, indicating statistically significant correlation of elevated serum DKK-1 levels
(≥365.9 pg/mL) with worse prognosis (p < 0.001). (C,D) In both albumin-bilirubin (ALBI) grade 1/2a
(good liver function) and 2b/3 (poor liver function) cohorts, the high-serum DKK-1 group showed a
statistically significant worse prognosis (p < 0.001). (E,F) The prognosis was significantly worse in
patients with elevated DKK-1 levels in early stages treated by surgical resection (p = 0.045) as well as
in those in an advanced stage treated by systemic therapy (p = 0.024).

The characteristics of patients with/without an elevated serum DKK-1 level
(365.9 pg/mL as cutoff) are presented in Table 3. Significant differences were observed in
sex, etiology of liver diseases, UICC stage, and BCLC stage between the two groups.

We evaluated the effect of serum DKK-1 levels on prognostic stratification according to
the hepatic reserve. In both ALBI grade 1/2a (good hepatic reserve) and 2b/3 (poor hepatic
reserve) cohorts, the high-serum DKK-1 group showed a significantly worse prognosis
(ALBI grade 1/2a; p < 0.001, HR 3.29, 95% CI 1.81–5.97; Figure 4C) (ALBI grade 2b/3. For
ALBI grade 2b/3, p < 0.001, HR 3.59, 95% CI 1.79–7.20; Figure 4D).

The prognosis was further evaluated in early-stage patients with HCC who received
surgery or in those with advanced-stage HCC who received systemic therapy. The progno-
sis was significantly worse in patients with elevated DKK-1 levels in both early (p = 0.045,
HR 6.55, 95% CI 1.49–28.8; Figure 4E) and advanced (p = 0.024, HR 2.49, 95% CI 1.29–4.79;
Figure 4F) stages.
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Table 3. Characteristics of patients in the groups with serum DKK-1 < 365.9 and ≥ 365.9 pg/mL.

Serum DKK-1 < 365.9 (n = 169) Serum DKK-1 ≥ 365.9 (n = 102) p

Age, years 65.0 (61.0–74.0) 65.0 (58.0–74.0) n.s.
Sex, male, n (%) 106 (62.7) 81 (79.4) ** 0.007

Etiology, HCV/HBV/HBV+HCV/Alcohol/Others,
n (%)

111 (65.7)/24 (14.2)/3 (1.8)/20
(11.8)/11 (6.5)

37 (36.3)/28 (27.5)/0 (0.0)/16
(15.7)/21 (20.6) *** < 0.001

UICC (8th) stage, I/II/III/IV, n (%) 75 (44.4)/64 (37.9)/24 (14.2)/6 (3.6) 28 (27.5)/27 (26.5)/25 (24.5)/22
(21.6) *** < 0.001

BCLC stage, 0/A/B/C/D, n (%) 26 (15.4)/71 (42.0)/46 (24.2)/17
(10.1)/9 (5.3)

9 (8.8)/27 (26.5)/30 (29.4)/32
(31.4)/4 (3.9) *** < 0.001

Serum AFP (ng/mL) 25.0 (11.0–170) 49.1 (10.0–1918) n.s.
Serum PIVKA-II (mAU/mL) 40.0 (22.0–215) 397.0 (36.3–8555) *** < 0.001

Median (IQR). ** p < 0.01; *** p < 0.001.

We performed univariate and multivariate analyses using the Cox proportional
hazards model (Table 4). The cutoff value of serum DKK-1 level was determined as
365.9 ng/mL, as described above. The cutoff value of serum AFP and PIVKA-II levels was
set as 400 mg/mL and 90 mAU/mL, respectively, according to previous studies [34–38].
Univariate analysis indicated that hepatic reserves (Child–Pugh classes and ALBI grades),
tumor stages (UICC and BCLC stages), and tumor markers (DKK-1, AFP, and PIVKA-II
levels) were risk factors for poor survival outcomes. Multivariate analysis indicated that
ALBI grades, UICC stages, DKK-1 levels, and PIVKA-II levels were independent prognostic
factors for poor survival outcomes in HCC patients.

Table 4. Multivariate analysis of clinical characteristics for overall survival using the Cox proportional
hazards model.

Univariate HR (95% CI) Multivariate HR (95% CI)

Sex n.s. —
Age ≥ 65 n.s. —
Etiology n.s. —

Child–Pugh (A/B+C) *** < 0.001 2.08 (1.40–3.08) n.s. —
ALBI grade (1/2a/2b/3) *** < 0.001 1.64 (1.34–2.00) *** < 0.001 1.78 (1.45–2.17)

UICC (8th) stage (I/II/III/IV) *** < 0.001 2.46 (2.02–3.00) *** < 0.001 1.93 (1.55–2.40)
BCLC stage (0/A/B/C/D) *** < 0.001 2.21 (1.76–2.49) n.s. —

DKK-1 (<365.9/≥365.9) *** < 0.001 2.4 (1.64–3.54) ** 0.0015 2.02 (1.31–3.12)
AFP (<400/≥400) ** 0.0017 2.21 (1.46–3.35) n.s. —

PIVKA-II (<90/≥90) *** < 0.001 3.76 (2.49–5.67) *** < 0.001 2.59 (1.68–4.00)

** p < 0.01; *** p <0.001.

We also examined the effect of treatment in patients who were subsequently treated
with chemotherapy or molecular targeted therapy using sorafenib on the level of DKK-1
at the time of initial treatment. For this analysis, 94 patients subjected to chemotherapy
and 41 patients subjected to molecular targeted therapy were selected. The serum DKK-
1 levels were higher in patients with progressive disease than in those with complete
response/partial response/stable disease in the chemotherapy (p = 0.002; Figure S1A) and
molecularly targeted therapy (p = 0.023; Figure S1B) groups.

2.5. DKK-1 Expression in HCC Tissues is Correlated with Recurrence

To clarify whether the increase in serum DKK-1 levels could really be attributed to
DKK-1 production in HCC cases with poor prognosis, we evaluated the expression of
DKK-1 using immunohistochemistry (IHC) in 58 HCC samples obtained from patients
who received surgery. DKK-1 expression was classified as low (n = 28) or high (n = 30) as
described in Section 4.4 (Figure 5A,B). The Kaplan–Meier survival analysis indicated that
patients with high DKK-1 levels showed significantly worse recurrence-free survival than
those with low DKK-1 levels (p = 0.026, HR 3.07, 95% CI 1.18–8.00: Figure 5C). The overall
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survival rate did not differ between the high- and low-DKK-1 groups (Figure 5D), most
likely due to the small sample size and short observation period.
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Figure 5. Dickkopf-1 (DKK-1) expression in resected hepatocellular carcinoma (HCC) tissues.
(A,B) The staining area was evaluated and scored on four levels (none = 0, focal = 1, multifo-
cal = 2, and diffuse = 3; A). The staining intensity was evaluated and scored on three levels
(none = 0, mild = 1, and strong = 2; B), and the sum of both levels was used as the im-
munostaining score (0–5). (C) The Kaplan–Meier survival analysis indicates that DKK-1-high pa-
tients showed worse recurrence-free survival than DKK-1-low patients with statistical significance
(p = 0.026). (D) The overall survival rate did not differ between the high- and low-DKK-1 groups.

2.6. The Role of DKK-1 in HCC Growth

The expression of DKK-1 mRNA was evaluated in EpCAM-positive HuH7 and Hep3B
and EpCAM-negative HLE and HLF HCC cell lines. The expression was higher in Huh7
and Hep3B cells than in HLE and HLF cell lines (Figure 6A). Similarly, DKK-1 protein
levels in the culture supernatant were significantly higher in Huh7 and Hep3B cells than in
HLE and HLF cell lines, as evaluated by ELISA (Figure 6B).
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Figure 6. mRNA and protein expression of DKK-1 in HCC cell lines and in Huh7 and Hep3B
cells knocked down for DKK-1 using siRNA. (A) DKK-1 mRNA expression was higher in Huh7
and Hep3B cells than in HLE and HLF cells (p < 0.001). (B) DKK-1 protein levels in the culture
supernatant were significantly higher in Huh7 and Hep3B cells than in HLE and HLF cells (p < 0.05),
as evaluated using ELISA. (C) DKK1 mRNA levels were significantly decreased in Huh7 and Hep3B
cells following siRNA transfection (* p = 0.013 and *** p < 0.001, respectively; n = 3 for each group). (D)
DKK-1 protein levels in the culture supernatant were also significantly decreased in Huh7 and Hep3B
cells following siRNA transfection (p < 0.001; n = 4 for each group). Proliferation, migration, and
invasion in Huh7 and Hep3B cells. (E) The proliferation of Huh7 and Hep3B cells was significantly
suppressed by DKK-1 knockdown at 24, 48, and 72 h (p < 0.001 at 24, 48, and 72 h; n = 6 for each group.
(F) Migration capacity was attenuated by DKK-1 knockdown in Huh7 and Hep3B cells with statistical
or borderline significance (p = 0.017 and p < 0.001, respectively; n = 3 for each group). (G) Invasion
capacity was attenuated by DKK-1 knockdown in Huh7 and Hep3B cells with borderline statistical
significance (** p = 0.069 and p < 0.001, respectively; n = 3 for each group).

We knocked down DKK-1 using small interfering RNA (siRNA) in Huh7 and Hep3B
cells, and the effect was confirmed at the mRNA and protein levels (p < 0.001; Figure 6C, D).
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The proliferation of Huh7 and Hep3B cells was significantly suppressed by DKK-1 knock-
down (p < 0.01; Figure 6E). Similarly, migration and invasion capacity were significantly or
almost significantly attenuated by DKK-1 knockdown in Huh7 and Hep3B cells (p = 0.017
and p < 0.001, respectively; Figure 6F) (p = 0.069 and p = 0.0013, respectively; Figure 6G).

We further evaluated the effect of DKK-1 on angiogenesis and performed a tube
formation assay using human umbilical vein endothelial cells (HUVECs) and time-lapse
imaging. Supplementation with recombinant DKK-1 slightly accelerated tube formation
over that of the controls, whereas administration of anti-DKK-1 antibody inhibited tube
formation (Figure 7A; time-lapse videos are available in Video S1). Taken together, these
data indicate that DKK-1 not only promotes cell proliferation and invasion in cancer cells
but also activates the angiogenesis pathway in vascular endothelial cells.
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Figure 7. The effect of Dickkopf-1 (DKK-1) on angiogenesis and tumorigenesis. (A) Time-lapse image
analysis of tube formation using human umbilical vein endothelial cells. DKK-1 treatment slightly
accelerated tube formation compared with the control 2 h after treatment. This effect was abolished
by the administration of anti-DKK-1 neutralizing antibodies. (B,C) Co-administration of anti-DKK-1
neutralizing antibody with Huh7 cells suppressed tumor growth in NOD/SCID mice compared with
control IgG (n = 3 for each group).

2.7. Anti-DKK-1 Antibody as a Treatment Option for EpCAM-Positive DKK-1-Positive HCC

Finally, we tested whether DKK-1 could be a molecular target for EpCAM-positive
DKK-1-positive HCC with a poor prognosis. We subcutaneously injected Huh7 cells in
NOD/SCID mice with anti-DKK-1 neutralizing antibodies or control IgG. Four weeks after
transplantation, mice were euthanized, and tumor volumes were evaluated. Anti-DKK-1
treatment clearly suppressed HCC growth compared with control IgG (Figure 7B,C). These
data clearly suggest the utility of anti-DKK-1 neutralizing antibodies for the treatment of
liver cancer with high DKK-1 expression.
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3. Discussion

Carcinogenesis and embryogenesis share common features in terms of active cell
proliferation, cell motility, stromal cell interaction, and stem cell presence [39,40]. We
previously demonstrated that aggressive HCC can be classified according to certain de-
velopmental stages of the liver based on the expression status of the stem cell markers,
EpCAM, and AFP [18]. DKK-1, a Wnt regulator activated during embryogenesis, was pre-
viously shown to be one of the EpCAM-coregulated genes whose expression was activated
in HpSC-HCC [19], and in the present study, we identified that serum DKK-1 levels could
be used to diagnose HCC with poor survival outcome. We previously demonstrated that
AFP elevation is accompanied by a high KI-67 labeling index in surgically resected HCC
specimens [41], which might be explained by the current findings of cell proliferation in-
duced by DKK-1. Furthermore, we determined that DKK-1 enhances angiogenesis in vitro,
and anti-DKK-1 neutralizing antibody inhibits tumor growth in vivo. Thus, DKK-1 is a
biomarker for the diagnosis of aggressive HCC and a potential therapeutic target to inhibit
tumor growth.

The utility of serum DKK-1 level for the diagnosis of hepatitis B virus (HBV)-related
HCC was previously reported [25]. A meta-analysis revealed that DKK-1 has higher sen-
sitivity and specificity than AFP for HCC diagnosis, and the sensitivity and specificity
of serum DKK-1 were 72% and 86%, whereas those of serum AFP were 62% and 82%,
respectively [33]. In contrast, we found the sensitivity and specificity of DKK-1 for HCC
diagnosis to be 80.5% and 53.2%, at best (cutoff: 262.2 pg/mL). Although it is still unclear
why the specificity of serum DKK-1 was lower in our study compared with that in previ-
ously published ones, a possible explanation is that DKK-1 may be produced not only in
HCC tissues but also in adjacent non-cancerous liver tissues. Indeed, we found that the
immunostaining of DKK-1 was positive in adjacent non-cancerous hepatocytes in resected
HCC specimens (data not shown), which may result in false positivity in patients with
CLD without HCC. Therefore, measuring serum DKK-1 levels may be more relevant for the
diagnosis of aggressive HCC with stem cell features and poor prognosis when the DKK-1
levels are highly elevated. Further studies are required to set the appropriate cutoff values
with an optimized ELISA system.

Serum DKK-1 levels are elevated in HCC with vascular invasion. Furthermore, DKK-1
promoted tube formation in vitro. The role of DKK-1 in HCC cell proliferation, migration,
and invasion has been previously demonstrated [30,42–44]. Although DKK-1 is a small
protein activated by Wnt signaling, it also inhibits Wnt signaling by binding to the Wnt
receptors LRP5/6 [13]. Thus, the role of DKK-1 in Wnt signaling in HpSC-HCC is complex
and remains to be elucidated. In the present study, we found that DKK-1 produced by
HpSC-HCC potentially activates vascular endothelial cells. Indeed, a previous study
revealed the inhibitory effect of Wnt on angiogenesis [45]. It is possible that secreted DKK-1
activates the angiogenesis pathway by inhibiting Wnt signaling in a paracrine manner.
Thus, DKK-1 may be a novel therapeutic target to inhibit cancer cell proliferation, migration,
invasion, and angiogenesis. Since an anti-DKK-1 neutralizing antibody has already been
developed and investigated for the treatment of myeloma [46,47], future studies could
evaluate the effect of this antibody in patients with HCC.

The results of this study suggest that serum DKK-1 affects angiogenesis in the microen-
vironment of HCC. In particular, although AFP is currently used as the first biomarker
for identifying HCC patients most likely to receive the survival benefits of ramucirumab
therapy [35], the molecular mechanism underlying the correlation of expression status of
AFP with the anti-tumor effects of VEGFR2 blockade remains unclear. As DKK-1 expression
correlated positively with that of AFP in tumors and is involved in angiogenesis in the tu-
mor microenvironment, serum AFP may be a surrogate marker of DKK-1, which facilitates
angiogenesis in HCC. In addition, another angiogenesis inhibitor, bevacizumab, which
is used in combination with atezolizumab [36], and the multi-targeted tyrosine kinase
inhibitors (TKIs), such as sorafenib, lenvatinib, regorafenib, and cabozentinib [48], also
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inhibit VEGF and VEGFRs. The relationship between these drugs and DKK-1 needs to be
evaluated in the future.

This study has some limitations. The prognostic value of DKK-1 was evaluated in a
retrospective manner, and the sample size of the cohorts was relatively small. The serum
DKK-1 levels quantified by ELISA could be more specifically and sensitively measured
if a chemiluminescent immunoassay system is appropriately developed. DKK-1 and
cytoplasmic/nuclear β-catenin status could not be directly evaluated simultaneously due
to the limited availability of small FFPE samples. Further studies are required to improve
our knowledge regarding DKK-1 biology in HCC.

4. Materials and Methods
4.1. Patients and Measurement of Serum DKK-1 Levels

Serum DKK-1 levels were measured by ELISA using stored sera from 400 patients
with HCC and 205 patients with CLD without HCC as control at the Kanazawa Uni-
versity Hospital from October 2002 to October 2017. Surgically resected HCC samples
previously used [41] were evaluated for the expression of EpCAM and AFP as previously
described [18]. We included 14 and 44 HCC samples of HpSC-HCC and MH-HCC, respec-
tively, in the study. Among them, RNA samples and sera were available for 8 HpSC-HCC
and 35 MH-HCC or 14 HpSC-HCC and 36 MH-HCC specimens, respectively. The Human
Dkk-1 Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA) was used for the
measurement of serum DKK-1 levels. The final value of the DKK-1 level was obtained after
correction using a standard curve. The clinical information of the patients was collected
retrospectively from medical records. The study conformed to the standards set by the
Declaration of Helsinki, and the protocol was approved by the institutional review board
of the Graduate School of Medical Sciences, Kanazawa University (IRB number: 2016-093).

4.2. Microarray Analysis

A microarray data set of 156 HCC samples (60 HpSC-HCC and 96 MH-HCC) was
constructed from a publicly available data set (GEO accession number: GSE5975). Genes
differentially expressed between HpSC-HCC and MH-HCC (793 genes) were obtained by
a class-comparison analysis with univariate t-tests and a global permutation test (1000×)
using a BRB-ArrayTools software (version 4.3.2).

4.3. Western Blot Analysis

Cells were lysed in radioimmunoprecipitation assay buffer as described previously [49].
The primary antibodies used for Western blot analysis were anti-DKK-1 monoclonal anti-
body (M11), clone 2A5 (Abnova), and anti–β-actin antibody (Cell Signaling Technology,
Inc., Danvers, MA, USA) as per protocol. Immune complexes were visualized using the
enhanced chemiluminescence detection reagents (Amersham Biosciences Corp., Piscataway,
NJ, USA) as per the manufacturer’s instructions.

4.4. Immunohistochemical Staining

Formalin-fixed, paraffin-embedded tissues were prepared for immunohistochemical
staining. After deparaffinization, rehydration, antigen retrieval, and blocking (Protein
Block Serum-Free; Dako, Carpinteria, CA, USA), the slides were incubated with primary
antibodies overnight at 4 ◦C. The slides were processed using Envision+ Kits (Dako)
according to the manufacturer’s instructions. Anti-DKK-1 polyclonal antibody (ab61034,
Abcam) was used as the primary antibody. IHC images were analyzed as described
previously [18]. Briefly, the staining area was evaluated and scored on four levels (none = 0,
focal = 1, multifocal = 2, and diffuse = 3). The staining intensity was evaluated and scored
on three levels (none = 0, mild = 1, and strong = 2), and the sum of both levels was used as
the immunostaining score (0–5) [50]. The expression of DKK-1 in the tumor was defined as
low (≤2 points) or high (≥3 points).
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4.5. Cell Lines and Reagents

The HCC cell lines, Huh7, Huh1, HLE, HLF, and Hep3B, were supplied by the Japanese
Collection of Research Bioresources Cell Bank (Osaka, Japan) or the American Type Culture
Collection (Manassas, VA, USA). These cells were maintained at 37 ◦C in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco, Grand Island, NY, USA) supplemented with
10% fetal bovine serum (Gibco).

4.6. Cell Sorting

Huh7 cells were trypsinized, washed, and resuspended in Hank’s balanced salt solu-
tion (Lonza, Basel, Switzerland) supplemented with 1% HEPES and 2% PBS. Cells were
incubated with the fluorescein isothiocyanate-conjugated anti-EpCAM monoclonal an-
tibody BER-EP4 (DAKO) on ice for 30 min prior to cell sorting using FACSAriaII (BD
Biosciences, San Jose, CA, USA). Sorted cells were harvested on dishes and cultured
overnight for PCR analysis.

4.7. Real-Time Quantitative PCR

Total RNA was isolated using the High Pure RNA Isolation Kit (Roche Diagnostics
K.K., Tokyo, Japan) according to the manufacturer’s instructions. Quantitative PCR probes
for DKK-1 (Hs00183740_m1) were procured from Applied Biosystems (Foster City, CA,
USA). The expression of the selected genes was measured in triplicate using a 7900 Sequence
Detection System (Applied Biosystems). Each sample was standardized to the normal
expression level of the reference β-actin or 18S RNA gene.

4.8. RNA Interference

siRNAs specific for human DKK-1 (HSS117947) and a nonspecific control siRNA
(scramble) were purchased from Thermo Scientific (Waltham, MA, USA). Cells grown to
60%–80% confluency in 6-well plates were transfected using Lipofectamine® 2000 (Invit-
rogen Life Technologies, Carlsbad, CA, USA). DKK-1 and scrambled siRNA (60 µmol)
were transfected into the cells using Lipofectamine® 2000 according to the manufacturer’s
instructions. All experiments were performed 24 h after the transfection. Total RNA was
extracted 48 h after transfection, and protein was extracted 72 h after transfection.

4.9. Cell Proliferation Assay

In the cell proliferation assay, a single-cell suspension of approximately 1.0 × 105 cells
was seeded into a 96-well plate, and the cell density was evaluated at 24, 48, and 72 h
after seeding using Cell Counting Kit-8 (Dojindo Research Institute, Kumamoto, Japan),
following the manufacturer’s instructions.

4.10. Transwell Invasion/Migration Assay

Transwell invasion/migration assay was conducted according to the manufacturer’s
protocol using BioCoat Matrigel Invasion Chamber, Cell Culture Inserts, and Control Inserts
(Corning). Approximately 1.0 × 104 cells were seeded in the insert chamber and incubated
at 37 ◦C for 48 h. The insert chamber membranes were then fixed with ice-cold methanol
and stained with hematoxylin and eosin.

4.11. Tube Formation Assay

HUVECs were labeled with the lipophilic fluorescence tracer, dioctadecyloxacarbo-
cyanine perchlorate (DiO). The 8-well chamber slides were coated with Matrigel (BD
Biosciences), and approximately 2.5 ×103 HUVECs/well were harvested immediately with
Endothelial Cell Growth Basal Medium (Lonza Bioscience) supplemented with recombi-
nant DKK-1 (100 ng/mL), control IgG (15 mg/mL), or anti-DKK-1 neutralizing antibody
(15 mg/mL) (R&D Systems). Cells were cultured at 37 ◦C in 5% CO2, and time-lapse images
were captured for 48 h using a CSU-X1 spinning disk confocal (Yokogawa, Tokyo, Japan)
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and Andor iXon3 EMCCD camera system (Andor Technology, Belfast, UK). Images were
analyzed using the iQ software (Andor Technology).

4.12. Animal Studies

NOD.CB17-Prkdcscid/J (NOD/SCID) male mice were purchased from Charles River
Laboratories, Inc. (Wilmington, MA, USA). Mice were housed under specific pathogen-free
conditions with a 12 h light/dark cycle and provided ad libitum access to tap water and
food. Huh7 cells (approximately 1.0 × 106 cells) were resuspended in 200 µL of a 1:1
DMEM:Matrigel (BD Biosciences) mixture with control IgG (n = 3, 100 mg/106 cells) or
anti-DKK-1 neutralizing antibody (n = 3, 100 mg/106 cells) and subcutaneously injected
into 6-week-old NOD/SCID mice. Mice were euthanized, and the tumor volume was
evaluated on day 28 after xenotransplantation. The experimental protocol was approved by
the Kanazawa University Animal Care and Use Committee and conformed to the Guide for
the Care and Use of Laboratory Animals prepared by the National Academy of Sciences.

4.13. Statistical Analyses

ROC curves, Mann–Whitney’s U test, Kruskal–Wallis test, chi-square test, and log-rank
test were performed using GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA).
The Cox proportional hazard model was performed using EZR (Saitama Medical Center,
Jichi Medical University, Saitama, Japan), a graphical user interface for R (The R Foundation
for Statistical Computing, Vienna, Austria). Significance was set at p < 0.05. Significance is
indicated by *, **, and *** for p-values <0.05, <0.01, and <0.001, respectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23052801/s1.
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