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Abstract: The syntheses of various chemical compounds require heating. The intrinsic release of heat
in exothermic processes is a valuable heat source that is not effectively used in many reactions. In
this work, we assessed the released heat during the hydrolysis of an energy-rich compound, calcium
carbide, and explored the possibility of its usage. Temperature profiles of carbide hydrolysis were
recorded, and it was found that the heat release depended on the cosolvent and water/solvent ratio.
Thus, the release of heat can be controlled and adjusted. To monitor the released heat, a special
tube-in-tube reactor was assembled using joining part 3D-printed with nylon. The thermal effect
of the reaction was estimated using a thermoimaging IR monitor. It was found that the kinetics of
heat release are different when using mixtures of water with different solvents, and the maximum
achievable temperature depends on the type of solvent and the amount of water and carbide. The
possibility of using the heat released during carbide hydrolysis to initiate a chemical reaction was
tested using a hydrothiolation reaction—the nucleophilic addition of thiols to acetylene. In a model
experiment, the yield of the desired product with the use of heat from carbide hydrolysis was 89%,
compared to 30% in this intrinsic heating, which was neglected.

Keywords: molecular reactions; thermal mapping; energy economy; energy saving; calcium carbide;
acetylene; 3D printing

1. Introduction

Chemical reactions may proceed with heat release (exothermic), with heat consump-
tion (endothermic), or nearly thermoneutral [1,2]. In the first case, which is typical for
many synthetic targets, additional heat is required.

At a certain stage, some amount of heat may be released upon a reaction of energy-rich
components of the reaction. In regular chemical practice, rather often, this heat remains
unused or even requires extra energy for freezing. It is a very common case to supply
or remove heat at each step individually, thus resulting in double power consumption
(i.e., power for freezing in one stage and heating in another stage). Indeed, the design of
energy-economic processes is scarcely developed.

Many attempts have been made to combine exo- and endothermic processes. As a result,
autothermal reaction setups were developed [3]. However, the scope of autothermal reactions
is limited. The extra heat in these processes is consumed by reactions taking place in the same
media or by a limited number of other compatible reactions. For multistep organic synthesis
procedures, applying an energy-economic concept is not a common practice.

To show an illustration, exothermic reactions provide heat, which usually dissipates
into the environment or is removed using freezing devices (Scheme 1A). In the subsequent
step, heating may be required (Scheme 1A). Using the heat from the first step in the second
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step is a valuable option in step-by-step transformations. Furthermore, an exothermic
reaction can be used as a heat source for an endothermic reaction, and heat transfer from
one reaction to another can be implemented both in sequential and individual organic
transformations. Thus, the heat of one reaction can be used to perform even a completely
unrelated reaction. This option allows us to direct the heat from the first reaction to the
heating required for another reaction and at the same time does not waste additional energy
for cooling for the first process.
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heat consumption are not combined; (B)—heat supply and heat consumption are combined on the
example of calcium carbide; (C)—the concept of a heat economy.

In the present study, the possibility and impact were checked on the nucleophilic
addition of thiols to acetylene generated in situ from calcium carbide (Scheme 1B). The
reaction includes two steps: hydrolysis of calcium carbide (as an exothermic reaction),
which provides extra heat and needs to be cooled (otherwise, acetylene polymerization
occurs). The second step is the addition of a thiol to gaseous acetylene, which proceeds
efficiently only when heated. Thus, applying the heat released while an exothermic reaction
occurs (hydrolysis of calcium carbide) as a heat source for an endothermic reaction (thiol
addition to acetylene) is a good opportunity to implement a heat-economic process. It is
important to note a chemical connection between the stages: acetylene is produced in the
first stage and consumed in the second stage.

In this work, the effect of heat generated was estimated, and the possibility of using
it to promote a chemical transformation was identified. Calcium carbide was used as a
model energy-rich compound. Calcium carbide hydrolysis is an exothermic process accom-
panied by the release of a significant amount of energy in the form of heat. The enthalpy
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of the reaction is −127.2 kJ/mol (30 kcal/mol) [4]. In fact, 1 ton of calcium carbide can
provide 469 Mcal of energy. This amount of thermal energy should be withdrawn from the
reaction mixture; otherwise, the forming acetylene will polymerize or may even explode.
According to stoichiometry, the hydrolysis of 1 kg of carbide requires only 0.56 L of water.
Under industrial manufacturing conditions, 5 to 20 L of water is used to cool the reaction
mixture and prevent polymerization or explosion. Recently, calcium carbide was actively
used in the construction of heterocycles [5–13], vinylation processes [14,15], synthesis of
monomers [16,17], mechanochemical processes [18–22], and many other organic transfor-
mations [23–25]. The key advantage of calcium carbide is its renewable potential [26]. If
heat can be used for the promotion of chemical reactions, the use of carbides would be
more sustainable.

Base- and water-sensitive reactions with calcium carbide may be performed in a
special 3D printed reactor, and the acetylene generation part is separated from the reaction
part [27]. However, in this case, the heat of the hydrolysis of the carbide is lost due to the
separation of the chambers.

Here, a tube-in-tube reactor was developed (Figure 1). The reactor consisted of an
outer tube and inner tube (Figure 1A, assembled; and B, disassembled) and a nylon liner
(Figure 1C). Thus, the calcium carbide in this process acted simultaneously as a supplier of
gaseous acetylene and as a supplier of thermal energy. The hydrolysis of calcium carbide
occurred in the outer tube, providing heat and acetylene gas (Figure 1, reaction 1). Then, the
acetylene moved to the inner tube and was consumed by the reaction mixture containing
the thiol and the base (Figure 1, reaction 2).
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Figure 1. The reaction setup using the developed tube-in-tube reactor: (A)—the reactor ready to use;
(B)—the disassembled reactor; (C)—nylon liner; (D)—thermal camera and the scheme of tube-in-tube
reactor and two stepwise chemical reactions involved.

To clarify the subject for the readers, the attempts to combine exothermic and endother-
mic processes represent a long-standing aim, and autothermal processes were developed
for a long time. The idea of using heat release in one stage to accelerate another stage of
a multistep synthesis and to improve energy efficiency is obvious. By no means may the
present article claim to describe these issues for the first time.
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The novelty and importance of the present study should be pointed out. Concern-
ing novelty, we demonstrate for the first time that, by using cosolvents, it is possible to
control the temperature profile to a substantial degree and to achieve the best heat release–
consumption combination. An application was demonstrated for the thiols vinylation
reaction to produce a useful monomer from calcium carbide. It should be emphasized that
energy-economic processes are currently not actively implemented in research projects,
and, here, we want to promote a broad discussion of this important subject.

2. Results and Discussion
2.1. Design of the Tube-In-Tube Reactor

We developed a special type of tube-in-tube reactor. A small tube was placed inside
a larger screw-capped tube. The smaller tube was kept inside of a large tube by means
of a special liner digitally designed and printed on a 3D printer. Thus, the tubes did not
come into contact with each other, which made it possible to separate the reagents of two
different reactions, avoiding mixing them, and, at the same time, the gas phase in both
test tubes was shared (for acetylene gas transfer). The reactor was made of commercially
available tubes and was simple to use, did not require glass-blowing work, and was easy
to assemble and disassemble. Nylon was chosen as the material for the 3D printing of a
liner due to its resistance to most organic solvents [27] and stability at high temperatures.

3D Printing of the Nylon Liner

3D printing is a powerful and flexible tool in various applications to generate specific
and unique units [28–32]. To perform the reaction in a tube-in-tube reactor, it was neces-
sary to placed one tube inside the other without contacting the walls and, especially, the
bottom. At the same time, the ability to remove the inner tube from the outer tube for
unloading products should be preserved. Additionally, the liner should be stable under
high temperatures and resistant to organic solvent vapors. These requirements are met
by nylon, which was tested in the present study. Several liner designs were developed
and optimized (please see Supplementary Material, Section S1, Figure S1). Due to the
precisely selected diameter, the liner was placed on and sat tightly on the inner tube, and
the expanding petals held the small tube inside the large tube. After the reaction, the small
tube can easily be removed with pincers by pulling it up, and then the liner can also be
removed when the inner tube is already removed. Thus, the liner can be used several times.
When carrying out reactions with large loads, two liners can be applied. In addition, the
liner dimensions are easily scalable and can be matched to the exact size of small and large
tubes. A description of the 3D printing and an adjustable digital model as an .stl file are
provided in the Supporting Information.

2.2. Thiovinylation Reaction Profile

The vinylation reaction of acetylene with dodecanethiol was chosen as a model reaction
to estimate the heat effect of carbide hydrolysis. The thiol-yne reaction is a well-known
process in which a thiol is added to the acetylene gas released from carbide, resulting
in a thiovinyl ether. The yield of ether reflects the effect of temperature since heating
significantly increases the yield of ether. At the same time, the reaction does not proceed
easily, and prolonged and intense heating is required to achieve quantitative yields. The
product yield can also easily be checked with NMR, where the vinyl ether signals are
clearly separated from those of the starting thiol. Thus, calcium carbide and a solvent
were placed in the outer tube, and the thiol, solvent, and base were loaded into the inner
tube. Furthermore, a certain amount of water was added into an external tube with carbide
along the wall, stirring was switched on, the effect of the released heat on the temperature
was recorded with a thermal imager, and the amount of ether produced was estimated
by 1H NMR.

To assess the thermal effect online, a thermal imager was installed, and measuring data
at selected time periods resulted in heat curves. The first experiments were very promising:
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the imager precisely fixed each addition of water and each mixing operation. The heating
zones and the progress of heat release were clearly seen inside of the tube-in-tube reactor
(Figure 2a). The heat released during the hydrolysis of carbide was detected and mapped
over time using an IR monitor.
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Control experiments were carried out to check the reliability of this setup and the
influence of the solvent and the walls of the vessel. Calcium carbide granules were placed on
glass, and a DMSO/water mixture was added. A camera was connected to the IR monitor,
in front of which a magnifying glass was installed. As a result, an individual granule
of calcium carbide was identified, and the heating progress was recorded (Figure 2b).
Thus, heating occurred directly on the surface of the granules, and then the heat spread
throughout the entire system.

The thermal imager automatically showed the minimal and maximal temperatures
and heat progress and recorded the data. Initially, there was mild heating due to the mixing
of DMSO and water (Figure 2a, I). After turning on the stirring, the carbide was rapidly hy-
drolyzed with water, and the temperature of the mixture increased from 32–34 to 86–90 ◦C
(Figure 2a, II). Then, the temperature of the mixture slowly decreased (Figure 2a, III) due
to heat transfer and consumption. The temperature profile of the same reaction with the
same progress was recorded (Figure 3).

The reaction temperature profile consisted of three zones. The first zone was accompa-
nied by slight heating caused by the addition of water to DMSO. The imager was sensitive
enough to record the thermal effect of the addition of water to DMSO. Most likely, the
formation of hydrogen bonds between the water and DMSO molecules was accompanied
by the release of heat. When adding water to DMSO, stirring was turned off, so this is
precisely the effect of hydrogen bonding and not partial hydrolysis of the carbide. Further-
more, after intensive stirring was turned on, the carbide reacted vigorously with water,
which was accompanied by a rapid release of heat. During the third stage, cooling of the
reactor was observed. The rate of cooling depended on the thermal insulation of the reactor
and room temperature.

Control experiments were also carried out: a reaction tube was filled with DMSO,
a regular contact thermometer was placed into the solvent (not the IR monitor), and an
appropriate amount of water was dropped to DMSO in the absence of reagents. Increasing
temperature was detected, and the results were the same as in the case of a tube-in-tube reac-
tor (see Supplementary Material, Section S8). Thus, the initial increase in temperature in the
reaction mixtures was caused by DMSO–water interactions (e.g., Figure 3, Tmax = 32.4 ◦C).
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2.3. Optimization of the Heat Release Profile

Of course, the total heat that should be released during the complete hydrolysis of
calcium carbide is a constant value for the same amount of calcium carbide. However,
the kinetics of the heat release may be different. For example, a rapid release of all the
heat stored in the carbide can be achieved, or the rate of this process can be decreased by
constantly heating the mixture. It is necessary to maintain a balance between heat release
and heat consumption. Therefore, in the ideal case, the process of heat release should be
controlled in order to have the possibility to transfer this heat to the reaction mixture but
at the same time not too fast (explosive) since, in this case, almost all the heat would be
carried away from the reaction mixture with the hot acetylene gas or dissipated.

Variations in the reaction conditions for different solvent/water mixtures showed that
the maximum heating could be achieved in the presence of DMSO and DMF (Figure 4). In
the case of the addition of pure water, an explosive release of heat with the dissipation of
heat from the reaction mixture was observed, but not the transfer of heat to the desired
reactants of the second reactions.
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Other water-miscible solvents decreased the maximum temperature (alcohols). Sol-
vents with a higher density, immiscible with water, reduced the rate of heat generation with
water without the formation of a homogeneous phase; that is, the carbide was hydrolyzed
with water on the surface when it reached water (halogenated solvents: chloroform, CCl4,
except DCE). The same result was obtained when solvents with lower density were used
(e.g., hexane). In that case, water was immediately mixed with carbide, bypassing the sol-
vent layer. Unexpected results were found using ethylene glycol, which, after mixing with
water, significantly reduced the rate of hydrolysis. The unusual profile for dichloroethane
was explained by its high density, when the carbide simply could not reach the water
layer. Thus, by changing the solvent, the kinetic profile of the reaction can be controlled,
increasing or decreasing its thermal effect at the initial moment.

For the particular studied reaction, DMSO was chosen as a model solvent because the
heat release was significant in DMSO. In addition, many reactions with calcium carbide
occur in DMSO, and the usage of DMSO prevents contamination of the reaction mixtures.
Varying the DMSO–water ratio led to very interesting results. By changing this ratio, either
a rapid release of heat occurs, or this process is significantly reduced and becomes barely
noticeable (Figure 5).
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not observed; that is, it was so slow and prolonged in time that it was accompanied with
a minor temperature increase. It should be noted that, in all the cases, there was enough
water to hydrolyze all the available carbides (excess water was used in all cases). With an
increase in the amount of water in the mixture, the heat release profile changed significantly:
the carbide reacted roughly with water with the release of heat in the first few seconds
(Figure 5, 3DMSO + 3H2O, red dashed curve). Further increasing the proportion of water
no longer affected the curve (Figure 5, 2.5DMSO + 3.5H2O, red curve). Most likely, water,
when added to DMSO, forms sufficiently strong hydrogen bonds with DMSO, which leads
to its partial or significant binding. Surprisingly, calcium carbide, with its high dehydrating
ability (CaC2 is also used as a drying agent), could not consume water from the DMSO–
water mixture; more precisely, this process was extremely extended in time. The presence of
a semihydrolyzed Ca-containing intermediate is possible, and a carbide molecule is bound
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to one molecule of water (half-hydrolyzed). This intermediate was solvated by DMSO,
which prevents hydrolysis at the second stage [33].

CaC2 + nDMSO = [(DMSO)n(CaC2)] (1)

[(DMSO)n(CaC2)] + H2O = [(DMSO)n(Ca(C≡CH)(OH))] (2)

[(DMSO)n(Ca(C≡CH)(OH))] + H2O = HC≡CH + Ca(OH)2 + nDMSO (3)

The solvation of calcium carbide by DMSO was assumed in the reaction mixture (1).
When several drops of water are added to the medium, incomplete hydrolysis is observed,
and half-hydrolyzed carbide forms a fairly stable intermediate with one water molecule
and DMSO as a stabilizer (2). The system is quite stable and can, like a buffer, consume
large amounts of water, preventing further hydrolysis of the carbide. With the introduction
of a larger excess of water, the formed hemihydrate undergoes full hydrolysis at the second
stage. This process occurs quickly and is accompanied by the release of gaseous acetylene
and the precipitation of calcium hydroxide (3). In this case, DMSO molecules are released
from a coordinated state into a solution. The described hypothesis was confirmed by the
hydrolysis of carbide in a 5.5 DMSO/0.5 water mixture (Figure 5, bottom, dashed black
line). In this mixture, poor heat evolution was observed because the hydrolysis proceeded
very slowly despite the fact that an excess of water was added in relation to the completely
hydrolyzed carbide. Nevertheless, when additional amounts of water were added to the
system, the hydrolysis completely proceeded with the release of the expected heat.

After optimizing the solvent and the optimal solvent–water ratio conditions, the
amount of carbide was varied to achieve the maximum thermal effect. Of course, an
increase in carbide loading resulted in an increase in the heat that could be produced.
Therefore, the analysis of the heat release from the reaction of one CaC2 grain with a
pair of drops of a DMSO–water mixture showed an increase in the temperature near the
granule surface by 4 to 5 ◦C. The use of three to five carbide granules leads to an increase
in temperature by 10 ◦C. Note that it is not advisable to load a large excess of carbide since
unreacted acetylene will leave the reaction vessel or explode when locked. Therefore, the
amount of carbide was varied to assess the best balance between the value of the thermal
effect and the duration of heating.

As expected, an increase in carbide loading resulted in an increase in the temperature
of the reaction mixture (Figure 6). After the hydrolysis of 1.76 g of carbide, the temperature
of the reaction mixture reached about 84 ◦C (Figure 6, red line). However, heating continued
for only 5 min, and the temperature of the reaction mixture decreased rapidly. Attempts
to isolate the system and prevent cooling (flask with aluminum foil and cotton) did not
significantly change the picture. Nevertheless, a temperature of approximately 80 to 90 ◦C
is easily achievable, and, at this temperature, many processes can be started or those already
occurring can be significantly accelerated.
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1.28 g, D—carbide loading 1.76 g.

2.4. Thiovinylation Reaction. Calcium Carbide as a Double Source of Acetylene and Heat

The thiovinylation reaction was carried out in two reaction setups: in a two-chamber
reactor and in a tube-and-tube reactor (both procedures are described in the Experimental
part). The reaction in a two-chamber reactor was necessary to compare the yield of the
desired product since, in this case, all the heat from the hydrolysis of calcium carbide was
dissipated and was not transferred to the reaction mixture, where thiovinylation occurred.
All the loadings and amounts of reagents, solvents, and times were completely the same
for both processes. After the completion of the reaction, the mixtures were extracted and
studied by NMR with an internal standard. Thus, in a two-chamber reactor, the yield of
thiovinyl ether was only 30%, while, in a tube-in-tube reactor, the yield was 89% (Scheme 2).
It should be noted that, in both cases, the reactions were not carried out in closed systems.
Balloons were attached to the neck of the reactors. On the one hand, it prevented a risk of
explosion, and, on the other hand, the extra pressure obtained did not affect the reaction
(since reactions with gases are pressure-sensitive). Acetylene is readily soluble in DMSO,
especially under high pressure. Therefore, if the reaction would be carried out in a closed
system under pressure, then it should be difficult to analyze the effect of heat on the product
yield because pressure would also have an influence on this process.
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It should be noted that test experiments were carried out by mixing solvents with
water in the absence of other reagents and calcium carbide. Additionally, the experiments
were carried out using calcium hydroxide instead of calcium carbide to determine that the
heat effect of the reaction is due precisely to the hydrolysis of calcium carbide and not to
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the solvation processes of the obtained calcium hydroxide. These experiments and curves
are given in the Supporting Information. The experiments were carried out in several runs.
Several temperature profiles were measured, and statistical processing of the results was
performed to improve accuracy (see Supplementary Material, Section S5).

3. Materials and Methods
3.1. General Information

1-Dodecanethiol, ≥98% purity was purchased from Sigma-Aldrich and used with-
out purification. KOH was purchased from local supplier Vecton, Saint Petersburg and
was grinded before use. Calcium carbide, product of Germany (granulated, particle size
0.1–1 mm, 75% acetylene (gas volumetric as indicated by the supplier)) was purchased
from Sigma-Aldrich and used without further purification. Ca(OH)2 was purchased from
Vecton, Saint Petersburg, Russia and dried before use. DMSO as a solvent was purchased
from Vecton, Saint Petersburg and used as received.

1H NMR spectra were recorded using a Bruker Avance 400 NMR spectrometer. Chem-
ical shifts δ are reported in ppm relative to residual CHCl3 and CDCl3 as internal standards.
The data were processed using MestReNova (version 6.0.2) desktop NMR data processing
software. Toluene was used as the internal standard in the 1H NMR spectra to determine
the yields of thiovinyl ether.

A thermal imager CEM DT-870 was used to register the temperature inside a reactor.
The temperature curves were automatically created by a thermal imager.

3.2. General Procedures

Optimization experiments. 1 mL of DMSO was poured into the inner (small) tube,
0.56 g of carbide was loaded into the outer (large) tube, and then DMSO was placed in
the outer tube. A liner was inserted into the outer tube, and the inner tube was immersed
inside the outer tube and fixed. An appropriate volume of water was injected into the
carbide-containing tube from the syringe along the wall. The thermal imager was turned
on before adding water, and data were recorded every 10 s for 10 min.

In experiments with calcium carbide, each experiment was repeated at least 3 times,
and the resulting curves were added to each other to reduce the difference in the delay at
the start of the experiments. The reproducibility of the experiments was checked using
the Korchen test (the significance level was 0.05. See Supplementary Material, Section S5).
In the case of exceeding the obtained value of the criterion compared with the standard,
additional experiments were carried out at the corresponding points.

Runs with calcium hydroxide were carried out according to the procedure described
for carbide, replacing carbide with calcium hydroxide (0.49 g). The ratio of solvent:water
was 4:2, and the total volume was always 6 mL (so that liquid levels in the inner and outer
tubes were the same. See Supplementary Material, Section S2.

Blank experiments were performed by mixing a solvent with water using a tube-in-
tube reactor. The experiments were carried out only for solvents that showed nonzero
heat generation in experiments with calcium hydroxide. The experiment with calcium
hydroxide and the blank was carried out once.

General procedure for the vinylation of dodecanthiol in a tube-in-tube reactor: 100 µL
(0.42 mmol) of dodecanethiol, 0.8 mL of DMSO, and 25 mg (0.45 mmol) of KOH were
placed into an inner tube with a small stirrer. Calcium carbide (1.76 g) was placed into an
outer tube with a stirrer, and 4 mL of DMSO was added. The liner was inserted, and 2 mL
of water was slowly added along the wall using a syringe. The tube-in-tube reactor was
closed with a balloon and placed in insulation made of cotton wool and foil equipped with
a thermocouple. The reaction mixture was stirred at 500 rpm for 3 h. Then, the inner tube
was removed, and the reaction mixture was diluted with 5% sodium hydroxide solution
and extracted 3 times with an equal amount of diethyl ether. The organic layer was washed
3 times with brine and dried over sodium sulfate, and then the solvent was evaporated.
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The yield of vinyl ether was determined by 1H NMR using an internal standard (toluene);
see Supplementary Material, Section S6).

General procedure for the vinylation of dodecanthiol in a two-chamber reactor: the
runs were performed in a two-chamber reactor in the same manner using the same loadings
with one exception: carbide, water, and DMSO were loaded in one chamber, and the initial
thiol, DMSO and a base were loaded in another.

4. Conclusions

In this work, we have demonstrated that calcium carbide can be successfully used not
only as a source of gaseous acetylene but also as a heat source. The heat released during
hydrolysis can be consumed for the other chemical reaction, which leads to an increase in
the yield of the desired product from 30% to 89%. Thus, the carbide is able to promote and
accelerate reactions without external heat sources. The kinetics of the hydrolysis of calcium
carbide by mixtures of various solvents with water are different: it is possible to achieve
rapid spontaneous heat release, slow, and gradual. Quenching a carbide with water may
be less effective than adding a mixture of solvents. When quenched with water, a high
temperature is immediately reached, but a significant part of the heat is lost. In addition,
acetylene polymerizes at high temperatures, the polymerization products contaminate the
target product, and the system has to be purified. Hydrolysis with a mixture of solvents
makes the process controllable and the heat transfer process more efficient. Varying a
cosolvent, the rate of carbide hydrolysis can be easily controlled. The proposed tube-in-
tube reactor ensures that reactions are carried out in a more efficient manner since the heat
generated is also used to promote the reaction.

To summarize, the key results may be described as follows: (i) temperature profiles
of the selected reactions with calcium carbide were measured; (ii) dependences of the
thermal effects of carbide hydrolysis on cosolvents were revealed; (iii) the dependence
of the thermal effect of carbide hydrolysis on the water/solvent ratio was also revealed;
(iv) effectiveness of calcium carbide as a simultaneous source of heat and acetylene was
demonstrated in the thiovinylation reaction.

Here, we describe a general idea of energy-economic transformation using the example
of calcium carbide. Many other energy-rich reagents, such as NaBH4, DIBAL, LAH,
Grignard reagents, etc., are used in modern chemical transformations. Not limited to the
reagents, a negative standard enthalpy change is characteristic of several reactions, such as
combining acids and bases, addition reactions, and oxidation. Therefore, the methodology
described here may be useful for a number of different reactions. The developed design
of the liners can be used not only to study the temperature profiles of reactions. The
tube-in-tube methodology opens a number of new opportunities in practical applications
as it is a cost-effective development for H-tube and/or two-chamber reactors [34–46]. The
simple design, inexpensive components, and easy-to-handle loading/retrieval of chemicals
are valuable advantages in complicated reactions with a shared gaseous atmosphere [47].
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