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Abstract: To define the mechanics and energetics of the myosin motor action in muscles, it is
mandatory to know fundamental parameters such as the stiffness and the force of the single myosin
motor, and the fraction of motors attached during contraction. These parameters can be defined in
situ using sarcomere−level mechanics in single muscle fibers under the assumption that the stiffness
of a myosin dimer with both motors attached (as occurs in rigor, when all motors are attached) is
twice that of a single motor (as occurs in the isometric contraction). We use a mechanical/structural
model to identify the constraints that underpin the stiffness of the myosin dimer with both motors
attached to actin. By comparing the results of the model with the data in the literature, we conclude
that the two-fold axial stiffness of the dimers with both motors attached is justified by a stiffness of the
myosin motor that is anisotropic and higher along the axis of the myofilaments. A lower azimuthal
stiffness of the motor plays an important role in the complex architecture of the sarcomere by allowing
the motors to attach to actin filaments at different azimuthal angles relative to the thick filament.

Keywords: myosin; molecular motors; muscle mechanics; protein elasticity

1. Introduction

The sarcomere is the structural unit of striated muscle (skeletal and cardiac). In each
sarcomere (~2–2.5 µm long), the contractile protein myosin and actin are organized in
well-ordered and parallel arrays of filaments. The thick myosin−containing filament, at
the center of the sarcomere, overlaps with the thin actin−containing filament originating
from the Z−line bounding each end of the sarcomere. On each half of the thick filament,
the dimeric molecular motor myosin II is regularly arranged in an array of 147 myosin
dimers, for a total of 294 motors. Force and shortening are driven by cyclical interac-
tions of the myosin motor with the thin filament, fueled by the hydrolysis of ATP. In
the contracting muscle, the myosin motor (also called the myosin head) attaches to actin,
forming a cross−bridge, and undergoes a structural working stroke that drives the thin
filament towards the center of the sarcomere. The parallel and series arrangement of the
sarcomeres accounts for the macroscopic force and the shortening of the muscle. The
arrays of 294 motors work cooperatively in each half−sarcomere (hs, the functional unit
of striated muscle), so that in order to define the molecular basis of muscle energetics and
efficiency, it is necessary to know either the stiffness and the force of the attached myosin
motor (cross−bridge) or the fraction of motors (f ) attached in an isometric contraction, and
how this fraction depends on the load or shortening velocity (for an extensive reference
see [1]). The most suitable preparation for measuring those parameters under physiological
conditions is the single muscle cell, or fiber, in which the measurements can be made
at the level of the half-sarcomere, with nm−µs resolution [2–5]. f can be determined by
comparing the compliance of the half−sarcomere (Chs) during contraction and in rigor, the
state reached after the depletion of ATP, with all 294 of the myosin motors in each half-thick
filament attached to actin [4,6]. In those studies, it was assumed that the stiffness of a dimer
with both motors attached to actin, such as in rigor, is twice that of the single attached
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motor, as occurs in the contracting muscle [7], given that the compliance of the rod-like
link between the motors and the thick filament, the S2 myosin subdomain, is effectively
infinitely stiff when a tensile force is applied along its axis [8,9]. This assumption does not
consider that when both motors of the same dimer attach to consecutive monomers on
the actin filament while retaining their common attachment to S2, they must undergo a
distortion that complicates the relationship between the stiffness of the head in rigor and
that of a single head attached during active contraction [10]. Here we show, through a
mechanical−geometrical model of the two−motor attached dimer, that the constraint of
sharing the head−rod junction would increase the apparent axial stiffness of the motors
in rigor by at least a factor of two relative to that of the unconstrained motor. There are
experimental indications, however, that this is not the case. To reconcile our theoretical
analysis with the experimental data, we suggest that the stiffness of an actin−attached
motor is not isotropic, and that the lateral, or azimuthal, stiffness is one order of magnitude
lower than the axial stiffness.

2. Results
2.1. The Stiffness of a Constrained Elastic Element

When the elastic deformation of an element with different stiffness values along
different directions is subject to a structural constraint, the apparent stiffness, i.e., the ratio
between the stress (force) and strain (elongation) in a given direction, is determined also by
the geometry of the constraint.

Figure 1 shows a simple example of a 2D constraint for the deformation of an elastic
element. The blue line at angle α with the z axis represents the structural constraint for the
movement of the tip of the element (orange circle) when force F at angle βwith the z axis
is applied. The calculations developed in Appendix A show that the apparent stiffness ∼

εz
along the z direction is given by:

∼
εz
= cos(β)·{εx·

sin2(α)

cos(α)· cos(α− β) + εz·
cos(α)

cos(α− β)} (1)

where εx and εz are the stiffness of the unconstrained element along the x and z directions,
respectively.
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Figure 1. Schematic 2D representation of an elastic element with different stiffness values εx and
εz along the x and z directions, respectively. The blue line at angle α with the z axis represents the
structural constraint for the movement of the tip of the element (orange circle) when force F (blue
arrow) is applied.
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When the force F is applied along the z direction, i.e., β = 0, then:

∼
εz
= εx· tan2(α) + εz (2)

These results show that the apparent stiffness of a constrained elastic element may be
higher than it would be without the constraint. If, for example, the stiffness were the same,
ε, in both directions, i.e., εx = εz = ε, then Equation (2) would become:

∼
εz
= ε·

(
tan2(α) + 1

)
(3)

with tan2(α) varying between 0 and ∞, and ∼
εz

between ε and ∞.

2.2. The Structural Constraint for the Two Motors Attachment in Rigor

When a myosin dimer attaches to the actin filament via a single motor, there are no
constraints for the displacement of the tips of the two myosin motors that, when an external
force is applied, would respond with a strain in a direction that depends on both its stiffness
and the intensity and direction of the applied force (Appendix A and Figure A1).

When both motors are attached to two consecutive monomers of the same strand of
the actin helix, their shared attachment at Lys843 to the S2 rod of the two S1 fragments
sets a structural constraint for their movement. Here, we have assumed that each S1
behaves as a rigid body that is allowed to rotate around the Cys707 residue, and with
its compliance residing in the hinge itself. It must be noted that Cys707 is indicated
by crystallographic models as the site around which the myosin motor undergoes the
structural change responsible for the working stroke [11,12], and thus it is considered as
the beginning of the lever arm. However, Seebohm and colleagues [13] have suggested that
the compliance of S1 resides mostly in the non-conserved residues 719 and 723 (Arg719
and Arg723 in the cardiac β−isoform studied there), not far from Cys707. For simplicity,
and with negligible effects on the results, we have considered Cys707 as the site for both
lever arm rotation and motor compliance [9,14,15].

If the two motors were attached to consecutive actin monomers along the same strand
of the helix in the rigor conformation, as determined in [16], without the constraint of
sharing the S2 attachment, then the distance between the two Lys843 would be 8.94 nm
(Figure 2). This would be the case, for example, for the so called S1−decorated actin
filament [17].

In rigor, in the preserved half-sarcomere architecture, the two actin−attached motors
of the same myosin dimer do share the S2 attachment through Lys843, and their lever arm
must be rotated relative to the unstrained conformation they have in the decorated actin.
In particular, the two Lys843 are constrained to move in a circle (see Section 4) built by
points that lie at the same distance (l = 9.56 nm) from the pivoting points of the two lever
arms, here chosen as Cys707. In Figure 3, the two motors are shown with their Lys843 in
the same position, in a conformation that, given the constraint, minimizes the sum of the
squared distances from their unconstrained position, i.e., the position in the decorated actin
filament. If the stiffness of the motor were the same in all the directions, this shared position
would correspond to the conformation of the minimal elastic energy of the two-motors
system. In the coordinate system used for the atomic model of acto−myosin interaction
in [16], the constrained path along which the shared Lys843 can move is a circle that lies on
the plane of equation:

z = −0.0209·x + 0.5723·y− 1.3052 nm (4)

with center (in nm) C = (−6.8896, −0.2488, −1.3008) and radius r = 9.015 nm.
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Figure 2. Structural model for two myosin motors, in the rigor conformation, attached to two
consecutives actin monomers on the same strand of the actin helix. Gray and black: actin monomers;
red and brown: myosin motors’ catalytic domain; green (light and dark): lever arm; yellow circles:
pivoting points on Cys707; cyan circles: tip of the lever arm at Lys843. The Regulatory (RLC) and
Essential (ELC) Light Chains wrapped around the lever arm are not shown to better visualize the lever
arm’s orientation. Atomic coordinates from [16]. (A,B) Lateral views across the actin filament axis (Z
axis). (C) View along the direction of the filament axis. The thin black lines represent the trajectories
of the res843s when the lever arms rotate on planes containing the Z axis (axial movement).

The most obvious way to describe the distortion of the two-motor system would be
the angle of rotation of the vector C-Lys843, as Lys843s describes the circumference along
which they are constrained. However, in experiments aimed at determining the compliance
of the elastic elements in the half−sarcomere, what is measured is the axial force (along the
z direction, parallel to the filament axis) and the half sarcomere length change, to which the
myosin motors contribute with their distortion solely along the filament axis. Additionally,
if one wants the elastic response of the half−sarcomere to not be significantly affected by
any confounding relaxation process, such as quick force recovery in the attached myosin
motor in the actively contracting muscle that truncates the elastic response [16], or by the
contamination of structure−based relaxation processes in rigor [15], the length changes
imposed on the half-sarcomere should be completed within about 100 µs, and limited to
an amplitude of a few (1–2) nm. For such a short amplitude, the movement along the
circumference can be approximated to a straight segment.
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Figure 3. As in Figure 2, but now with the Lys843 of the two motors forced to share the same
coordinates. (A,B) Lateral views across the actin filament axis (Z axis). (C) View along the direction
of the filament axis. Blue lines: constrained positions of the shared Lys843s.

For these reasons, for any given starting point, the best way to understand the effect
of the constraint on the apparent stiffness of the two-motor system when small length steps
are applied is to refer to a coordinate system with the z axis along the filament axis, as in
the atomic coordinates from [16], and an axis orthogonal to the z axis and laying on the
plane containing the z axis and the tangent to the circumference in the starting point.

This is, for example, the situation depicted in Figure 3, where the system is in a
conformation that minimizes the sum of the squared distances from the unconstrained
position of the two motors. In this situation, a small axial movement (along the z direction)
produces little change in the x coordinate and a change in the z coordinate, as shown in
Figure 3B, where the perspective is such that the circle constraining the Lys843 movement
is seen almost exactly along the plane on which it lays. From this perspective, the circle
looks like an almost straight segment, which forms an angle α ≈ 60◦ with the z axis. Thus,
according to Equation (3), if the stiffness ε were the same in all the directions, then the
apparent stiffness along the z axis would be:

∼
εz
= ε·

(
tan2(60◦) + 1

)
≈ 4·ε (5)

As seen before, Equations (3) and (5) hold when the force (stress) applied to the
two−motor system is directed along the z axis itself. In the sarcomeric architecture, the
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force on the attached myosin motors is transmitted through the z axis-oriented thin filament
(taken here as the mechanical ground) and the S2 rod, which connects the myosin motors to
the thick filament and transmits force. The distance between the axis of the thin and thick
filaments is about 25 nm [18], the distance from the axis of the thin filament of the Lys843
in the conformation shown in Figures 2 and 3 is about 15 nm, and the radius of the thick
filament is about 8 nm [19]. With a free length of the S2 rod of about 11 nm [20] and the
origin of S2 from the backbone of the thick filament facing the actin filament, these numbers
imply a tilt of the S2 rod relative to the z axis of β≈ 10◦. Since a thick filament is surrounded
by six thin filaments, azimuthally separated by 60◦, the S2 azimuthal movement should
be 30◦ at most to allow the motor to be attached to the closest thin filament, and indeed,
given the relative geometry of the thick and thin filaments, this 30◦ azimuthal movement is
the limit for the steric constraint between S2 and the backbone of the thick filament. In this
situation, the angle β can be calculated as 27◦. This latter value may be different, depending
on the azimuthal orientation of the thin filament. However, with β ranging from 10◦ to 27◦,
if the stiffness ε were the same in all the directions, from Equation (1), the average value of
∼
εz

could be calculated as ∼
εz
≈ 2.6·ε.

It is worth remarking that the stiffness of the attached dimer in the absence of the
structural constraint would be twice the stiffness of the single myosin motor, as the stiff-
nesses of the two motors acting in parallel combine. The factor of 2.6 represents how much
the stiffness of the dimer increases in the presence of the constraint, relative to its own
stiffness without constraint.

2.3. Limits of the Present Analysis

For the quantitative estimate of the predicted stiffness of the two-motor attached
myosin dimer, we have assumed for simplicity that the two motors of the same myosin
dimer share the Lys843 attachment to the S2 rod. This assumption does not take into
account the steric clashes between the Regulatory Light Chains wrapped around the lever
arm of the two motors that would occur in this case (not shown in Figures 2 and 3). The
resonance energy transfer [8] indicates that the two Lys843 may be 3.5−5 nm apart, a
distance that would avoid steric clash. Recent 3D reconstructions at 1 nm resolution by
electron cryo-microscopy indicated a distance of 2.8 nm for the two Lys843s [21]. This
implies that, in the presence of the constraint, the increase in the head stiffness would be
lower than the 2.6−fold calculated above.

We then calculated the effect of the constraint imposed by the rigor structure reported
in [21], PDB file 7NEP, with a more realistic pivoting point at res721 [13], and considered
the shared attachment point of the two motors halfway between the two res843′s. We
have found that in this case the angle α would be 52◦. Thus, from Equation (3), ∼

εz
≈ 2.64·ε.

Taking into account the angle β of the S2 rod with the z axis, ∼
εz

reduces to 1.88·ε. Thus,

the relevant point of our analysis, i.e., that the two-headed attachment induces azimuthal
movement of the lever arms in response to an external axial force and increases the apparent
axial stiffness, is preserved.

In our analysis, we have assumed, as reported in most literature, that the two heads
of a dimer bind the same actin filament. If a consistent fraction of the myosin dimers
had the two heads attached to different actin filaments, this would lower the estimated
increase in stiffness. Wang and colleagues have observed that only 0.6% of all heads are in
a “split−head” conformation, with the two heads from one myosin molecule binding to
two different adjacent thin filaments [21], a fraction so low that it would not significantly
affect the results of the analysis.

A final point to be considered is whether the stiffness values ε of each of the two heads
bound to actin in the rigor state are the same and close to that of the head in the contracting
muscle. The rigor structure reported in [21] shows two distinct features for the lower head
(closest to the Z−line) and the upper head (closest to the M−line). In particular, the heavy
chain shows two different kinks between the essential light chain (ELC) and regulatory
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light chain (RLC) binding regions. Though this could be associated with different stiffness
values between the two heads and between the heads in rigor and in the contracting muscle,
the authors suggest that the angles of the kinks are likely determined by the interaction
of the ELCs and RLCs, and this interaction probably stabilizes the two conformations to
rigidify the lever arm, which is needed for the proper transmission of the force of the power
stroke. A rigid lever arm is in agreement with the indication that the major contribution
to the motor’s compliance is in the region of the converter [13], and is likely the same
regardless of the two head conformations observed. It must be noted, however, that in the
two heads in rigor the relative position of the motor and the ELC region is apparently the
same [21], while it would be expected to be somewhat different if the two res843s were
allowed to stay closer by a compliance in the converter region. A different localization of
the major compliance of the motor would affect the quantitative results of our analysis.

3. Discussion
3.1. Implications for the Mechanical Measurements of the Number of Attached Motors

By our physical and geometrical considerations, we have shown that when both
motors of the same myosin dimer are bound to the actin filament, the constraint imposed to
their residues Lys843 to share the S2 rod attachment implies a distortion of the lever arms
relative to the catalytic domains firmly attached to actin [10], and generates an axial stiffness
of the pair that can be about twice that expected from the equivalent stiffness of the two
single motors in parallel. This conclusion would challenge the results of experiments where
the stiffness of the rigor fibers is used to determine the number of attached motors during
muscle contraction [4,22–24]. The fraction of attached myosin motors during contraction
(f ), a fundamental parameter for the in situ definition of the stiffness and force of the motor,
can be determined with fast sarcomere−level mechanics by comparing the compliance of
the half-sarcomere (Chs) during contraction and in rigor [4]. Chs results from the in−series
compliances of the myofilaments (Cf) and of the array of the attached motor (or cross-
bridges, Cxb): Chs = Cf + Cxb [4]. The compliance Cxb is the reciprocal of the stiffness of the
motor array, which is proportional to the number of motors attached to actin, n, in each half
sarcomere. If εz is the stiffness of a single motor measured along the filament axis, then Cxb
= 1/n·εz. From the measurements of Chs during isometric contraction (Chs0) and in rigor
(ChsR), it is possible to determine the fraction f of motors working in parallel in isometric
contraction in each half-thick filament from the relation:

f =
ChsR − Cf
Chs0 − Cf

(6)

given the assumption that the stiffness εz of the motor in rigor is the same as that during
isometric contraction. However, we found that when both motors of a dimer are attached
to actin, their apparent axial stiffness is influenced by the constraint of sharing the S2 rod
junction, and this makes Equation (6) no longer valid. If the stiffness of a single uncon-
strained motor were the same, ε, along all the directions, then εz = ε for the unconstrained
motors (as during isometric contraction when only one motor per dimer is attached [7])
and εz ≈ 1.9·ε for the motors in rigor. In this case f, as determined by Equation (6), would
be underestimated by about a factor of 2.

The comparison of Chs in rigor and during the isometric Ca2+-activated contraction of
demembranated fiber from rabbit psoas gives f = of 0.33 ± 0.05 [22] and 0.29 ± 0.08 [24],
with a weighted mean of 0.32 ± 0.04. If ∼

εz
≈ 1.9·ε, most of the motors would be attached

in the activated fiber. Indeed, if about 60% of all the motors were attached, this would
mean that at least 20% of the dimers would attach to actin with both motors, and 80%
with only one motor. A proportion of 20% two-headed attachment would be consistent
with the 14% estimated by the cryo-electron tomography of an isometrically contracting
insect flight muscle [25]. On the other hand, the fraction of motors attached under the
more physiological conditions of an isometric contraction of vertebrate skeletal muscle has
consistently been found to be lower than 40% [26], underpinning the lower probability of
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the attachment of both motors of each dimer. Structural evidence has been derived using
both a spectroscopic probe on the myosin head [27] and X-ray diffraction signals [28,29].
More direct evidence that excludes the simultaneous binding of the two heads of a myosin
dimer has been given by single−molecule mechanical measurements with optical tweezers,
demonstrating that even at relatively low ATP, the two heads of the myosin dimer act
sequentially [30], and by measurements of the mechanical performance of myosin dimers
working in small array at physiological ATP, demonstrating that each head of the dimer
works independently [31].

However, it cannot be ruled out that the two-headed attachment is a specific adaptation
of the insect flight muscle, helping it to respond efficiently to stretch activation [25,32,33].

3.2. The Stiffness of the Myosin Motor Determined in Rigor and during Contraction

Early studies where EPR spectroscopy was combined with mechanical measurements
in muscle fibers from rabbit psoas [26,34] found that up to 50% of motors in rigor detached
upon addition of ATP analogs, with only a small reduction in the fiber stiffness. This
finding was taken as evidence that only one motor in the dimer is stiff. However, it has
subsequently been shown that when the large contribution (~75%) of the myofilament to
the half-sarcomere compliance is taken into account, the observations are consistent with
both motors having the same stiffness [22]. Indeed, it has been shown that mechanical
measurements of fibers in rigor and thermodynamical considerations derived from the
force–temperature relation in Ca2+-activated demembranated fibers converge toward the
same value of ε ≈ 1.7 pN/nm for the stiffness of the myosin motor in rabbit psoas [22]. In
similar experiments, convergence toward the same value for the motor stiffness in rigor
and during contraction has also been found for frog [35,36]—ε ≈ 2.6 pN/nm—and for
dogfish [23]—ε ≈ 2.0 pN/nm.

These results imply that the stiffness of the two motors attached in rigor is twice that
of the single motor, as expected by the two stiffness values being added in parallel, and
thus excluding the effect of the shared Lys843−rod attachment constraint.

Although the measurements reported above refer not to the motor itself, but to the
cross-bridge, which consists of an in-series arrangement of the motor(s) with the S2 rod,
both theoretical and experimental indications converge toward a high stiffness value for the
S2 rod under tensile forces [8,9], and thus the stiffness of the cross-bridge does substantially
coincide with the stiffness of the motor(s) [9].

3.3. Number and Stiffness of the Attached Myosin Motors Determined with X-ray Diffraction

The number of myosin motors attached in a [Ca2+]−activated demembranated fiber of
rabbit psoas (pCa 4.5) has also been determined using X−ray diffraction [37], and gives an
estimate of 41–43%. This figure is only 1.31 ± 0.17 times higher than the 32% determined
with mechanical measurements [22,24], and rules out a 1.9-fold increase in the apparent
stiffness of the motors attached in rigor.

The results of X-ray diffraction experiments on frog muscle fibers interpreted with
the atomic model of the myosin motors docked to actin [16,17] have made possible to
directly estimate the stiffness of the two-motor attached dimer in rigor [9,14], without
the complications introduced by the myofilament’s compliance in series with that of the
motors, as arise in the mechanical measurements. The changes in the X-ray signals in
response to the 3 kHz oscillations applied to single muscle fibers in rigor indicate a stiffness
of 2.7 ± 0.9 pN/nm [9], which, despite the high relative error, is still compatible with the
results of mechanical measurements for the stiffness of the myosin motor in frog muscle,
given that the stiffness of the S2 rod is much higher than that of the motor.

3.4. Indication for Anisotropic Stiffness of the Motor

All the above-reported measurements of the stiffness of the actin−attached myosin
motor converge toward a unique value, regardless of whether a myosin dimer is attached to
actin through two (rigor) or a single (active contraction) motor, though this value is different
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for the different myosin isoforms, which vary in relation to the species (orthologous
isoforms) or muscle types in the same species (i.e., fast or slow, paralogous isoforms).
These results indicate that ∼

εz
≈ 2.6·ε, or even ∼

εz
≈ 1.9·ε, derived under the assumption that

the stiffness of the attached motor dimer is isotropic (ε = εx = εz), does not fit with the
experimental data. Our analysis of the apparent stiffness of the constrained two-motor
attachment may be reconciled with the experimental results if, considering Equation (2),
εx (the lateral stiffness of the attached myosin motor) is much smaller than εz (its axial
stiffness).

An indication of the anisotropy of the motor stiffness arises from the results of the
measurements reported by Billington and colleagues [38]. In that paper, by applying
negative stain electron microscopy and image processing to the free myosin fragment S1,
the authors estimated an apparent stiffness of the motor of 0.37 pN/nm. This value is about
3 to 7 times lower than the values of 1.2–2.7 pN/nm reported in the literature, derived from
experiments wherein the stiffness was estimated for the motor in situ, as discussed in the
previous sections. Billington and co−workers suggest that the discrepancy may be due
to the allosteric stiffening of the motor upon binding to actin. Though a different stiffness
for the myosin motor depending on its nucleotide state has been recently indicated [39],
the results of our analysis compared with the experimental results reported in Sections 3.2
and 3.3 suggest a different interpretation.

Our interpretation is that the stiffness of the motor is anisotropic, and it is higher
along the z axis (along the thick filament) than along the orthogonal x direction. Since
the motors in the experiments reported in [38] are free and appear randomly oriented
along their longer axis, the distribution of angles between the lever arm and the catalytic
domain is also random with respect to the direction of the higher εz and the lower εx
stiffness. In this condition, the apparent average stiffness ε̂ can be derived from the mean
square of the displacement of the tip of the lever arm,

〈
r2〉, through the equipartition of

the energy (with two degrees of freedom associated to the two orthogonal directions):
1
2 ε̂
〈
r2〉 = kBT. Comparing 1

2εx
〈

x2〉 = 1
2 kBT and 1

2εz
〈
z2〉 = 1

2 kBT, and considering that〈
r2〉 = 〈x2〉+ 〈z2〉, one gets ε̂ = 2· εx·εz

εx+εz
or εx = ε̂·εz

2εz−ε̂ .
From the latter relation, with ε̂ = 0.37 pN/nm and εz = 1.2–2.7 pN/nm, εx ≈ 0.2

pN/nm. Thus, the lateral stiffness of the actin-attached myosin motor in situ ranges from
1/6 to 1/13 (average 1/8) of the axial stiffness. With these numbers and α = 60◦, Equation
(2) gives on average ∼

εz
= 1.38 εz, i.e., the axial stiffness of the motor in an attached dimer

is about 40% higher than that of a single attached motor. With this estimate for ∼
εz

, the

number of actin-attached motors per half−thick filament during isometric contraction
obtained from mechanical measurements using Equation (6) is underestimated by ca 30%.
This would account for the difference reported above between the fraction of attached
motors in rabbit psoas as determined by X-ray measurements (≈ 41–43%, not depending
on stiffness measurements) and by mechanical measurements (32%). Indeed with the angle
α = 52◦, as estimated from the structural model of Wang and coworkers ([21]; PDB 7NEP),
we obtain ∼

εz
= 1.20 εz or less. In this case, the difference in the fraction of attached motors

given by mechanical and X-ray measurements cannot be explained only with the higher
apparent stiffness of the motors in rigor. We conclude then that the stiffness of the myosin
motor is anisotropic, with the lateral stiffness about or less than one order of magnitude
the axial stiffness.

Whatever its exact value, the fact that the azimuthal stiffness is one order of magnitude
lower than the axial stiffness explains why the stiffness values of the motor obtained with
mechanical measurements and with thermodynamical consideration converge toward a
unique value, as discussed in Section 3.2. Thus, the estimate of the fraction of attached mo-
tors obtained by comparing the compliance of the half−sarcomere (Chs) during contraction
and in rigor is largely justified.
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3.5. Energetic Considerations

The anisotropy of the stiffness of the cross−bridges has also been suggested by
Koubassova and colleagues [40], applying the principle of minimal elastic distortion energy
to actin labeling to simulate the X-ray patterns observed in rigorized muscle fibers taken
from rabbit psoas. There, the stiffness considered was that of the whole cross−bridge,
i.e., the series of S1 and S2 fragments. In the present study, we have determined that the
anisotropy is inside the S1 fragment, the myosin motor itself.

Since two consecutive monomers on the same strand of the actin helix are azimuthally
rotated by ca 30◦ relative to each other, the low azimuthal stiffness of the myosin motor
can be seen as functional to facilitate the actin attachment of the catalytic domain. The
estimated 0.2 pN/nm lateral stiffness of the myosin motor indicates that the root mean
square displacement of the tip of the lever arm relative to the hinge with the catalytic
domain has a value of about 4.5 nm (again, from the equipartition of energy). With a length
of the lever arm of about 9 nm, this means a root mean square of the azimuthal angle
between lever arm and catalytic domain of about 26◦, which fits well with the azimuthal
displacement of consecutive actin monomers along the helical strand, allowing the motor
to attach to one or the next without difficulty, whichever better matches its axial position,
and it accounts for the second head attachment on the next Z-ward actin monomer in
response to a sudden increase in load, as suggested by the mechanical and X-ray diffraction
experiments [33].

To conclude, the high stiffness of the myosin motor along the axial direction is able to
transmit high force resulting from the structural changes in the motor associated with the
working stroke. The much lower stiffness in the azimuthal direction facilitates the motor’s
attachment to the actin monomers, which expose their attachment sites for myosin with a
large azimuthal range.

4. Materials and Methods

To characterize the apparent stiffness in one given direction when the structure con-
strains the movement of the tip of one elastic element, we have first built a mathematical
representation of a 2D physical model (Figure A1). The elastic element is represented
with two orthogonal springs with stiffness εx and εz, corresponding to the stiffness of the
element along the x and z directions, respectively, connected to the z and x axes, which act
as the mechanical ground, and together form the tip of the elastic element. The tip of the
elastic element, then, is constrained to move in a direction that forms an angle α with the z
axis. We have calculated, using the diagram of the forces, the relation between the force
F (the stress) applied to the tip of the elastic element and the corresponding elongation
(strain) (Appendix A).

To evaluate the effects of the structural constraints of the two motor attachments
in rigor on their compound stiffness, we have built a structural model based on the
crystallographic coordinates of the acto−myosin complex described in [16] (PDB files
available as Supplemental Material in [16]). In that model, the actin filament shows an
axial repeat of 2.75 nm and a 28/13 symmetry, i.e., there are 28 actin monomers for every
13 turns of the helix, and the two next monomers are rotated relative to the filament axis
by 360◦·13/28 = 167.14◦. Thus, two consecutive monomers on one strand of the double-
stranded helix are rotated by an angle θ = (167.14◦·2=) 334.28◦ (or ca −26◦), and axially
shifted by 5.50 nm.

In rigor, when all the myosin motors are assumed to be attached to actin, the two
motors of the same dimer are considered attached to two consecutive actin monomers on
the same strand of the helix. We have thus applied the same axial shift and azimuthal
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rotation to the coordinates of the myosin motor, in order to represent the two motors
attached, with the same conformation, on the two consecutive actin monomers, namely:

x2 = x1· cos(θ)− y1· sin(θ)
y2 = x1· sin(θ) + y1· cos(θ)

z2 = z1 + 5.5
(7)

where (x1, y1, z1) is the set of coordinates for one motor (as in the original PDB file), and
(x2, y2, z2) are the coordinates for the other (partner) motor.

The lever arm of each motor is allowed to rotate as a rigid body around a pivoting
point in the converter domain, which has been chosen as Cys707 [11,12,41].

Thus, the tips of the lever arms of the two motors (Lys843) may move on the surface
of a sphere, centered at their Cys707 coordinates with a radius corresponding to the length
of the lever arm l = 9.56 nm, taken as the Cys707–Lys843 distance.

When the two Lys843 are constrained to be attached to the S2 rod sharing their
attachment point, they are also constrained to move along a circle, i.e., at the intersection of
the surfaces of the two spheres. Thus, this circle represents the constraint of the distortion
of the system constituted by the two actin-attached motors of the same myosin dimer.

Author Contributions: M.C. and M.R. designed the research. M.R. developed the mathematical
formalism. M.C. and M.R. wrote the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: M. Caremani was funded by University of Florence (competitive project marcocare-
mani_rictd1819; Italy).

Data Availability Statement: Not applicable.

Acknowledgments: We thank Natalia Koubassova and Vincenzo Lombardi for their insightful
comments on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

As in Figure A1, we have represented the elastic element in 2D as an orange circle
connected to two orthogonal springs with stiffness εx and εz. The white circles at the other
ends of εx and εz springs that can slide frictionlessly along the z and x axis, respectively,
which represents the mechanical grounds. We set the rest length of each spring to be zero,
i.e., without any external force, the equilibrium point for the system is with the orange
circle in O, the origin of the axes. If an external force F is applied to the orange circle, a new
equilibrium is found when the restoring forces of the two springs act together, so that their
vectorial sum balances the external force. In particular, the spring εx must be extended by
∆x so that εx·∆x = Fx, the component of the force F along the x direction, and similarly, we
derive εz·∆z = Fz for the z direction.

We now look at Figure A2A, where the orange circle is constrained to move, friction-
lessly, along the fixed blue bar that originates from O and forms an angle α with the y
axis. If an external force F directed along the y direction (blue arrow) is applied to the
orange circle, the component of the force normal to the blue bar will be balanced by both
the restoring forces of the springs along that direction and the force applied by the bar,
while the component of the force along the bar, F·cos(α) (red arrow), can be balanced only
by the restoring forces of the two springs in that direction, the bar being unable to exert
force along its axis. The restoring forces of the two springs are represented by the yellow
arrows, and their components along the bar are added to give εx·∆x·sin(α)+ εz·∆z·cos(α)
(green bar).
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At the equilibrium

F· cos(α) = εx·∆x· sin(α) + εz·∆z· cos(α) (A1)

the constraint for the orange circle to move along the bar implies ∆x/∆z = tan(α), and thus:

F = εx·∆z· tan2(α) + εz·∆z = ∆z·
(
εx· tan2(α) + εz

)
(A2)

Equation (A2) indicates that when a force is applied along the z direction, the constraint
forcing the tip of the elastic structure (the orange circle) to move along the bar results in an
elastic response with a stiffness

∼
εz
= εx· tan2(α) + εz (A3)
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We call ∼
εz

the apparent stiffness along the z direction. Similarly, the compound stiffness

along the x direction, i.e., the ratio between an external force applied along the x direction
and the strain ∆x at the equilibrium, will be

∼
εz
= εx + εz·cotan2(α) (A4)

In the general case that force F is not oriented along z but forms an angle β with z
(Figure A2B), the component of F along the z direction is F·cos(β) and along the bar it is
F·cos(α-β). In this case, the compound stiffness along z is

∼
εz
= cos(β)·

{
εx·

sin2(α)

cos(α)· cos(α− β)
+ εz·

cos(α)
cos(α− β)

}
(A5)

and along x it is

∼
εz
= sin(β)·

{
εx·

sin(α)
cos(α− β)

+ εz·
cos2(α)

sin(α)· cos(α− β)

}
(A6)
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