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Abstract: O, deprivation induces stress in living cells linked to free-radical accumulation and
oxidative stress (OS) development. Hypoxia is established when the overall oxygen pressure is less
than 40 mmHg in cells or tissues. However, tissues and cells have different degrees of hypoxia.
Hypoxia or low O, tension may be present in both physiological (during embryonic development)
and pathological circumstances (ischemia, wound healing, and cancer). Meanwhile, the kidneys are
major energy-consuming organs, being second only to the heart, with an increased mitochondrial
content and O, consumption. Furthermore, hypoxia-inducible factors (HIFs) are the key players that
orchestrate the mammalian response to hypoxia. HIFs adapt cells to low oxygen concentrations by
regulating transcriptional programs involved in erythropoiesis, angiogenesis, and metabolism. On
the other hand, one of the life-threatening complications of severe burns is acute kidney injury (AKI).
The dreaded functional consequence of AKI is an acute decline in renal function. Taking all these
aspects into consideration, the aim of this review is to describe the role and underline the importance
of HIFs in the development of AKI in patients with severe burns, because kidney hypoxia is constant
in the presence of severe burns, and HIFs are major players in the adaptative response of all tissues
to hypoxia.

Keywords: hypoxia; hypoxia-inducible factors; burns; acute kidney injury; oxidative stress

1. Introduction

In the second half of 19th century, Paul Bert was the pioneer who identified hypoxemic
hypoxia as the cause of altitude sickness. Since then, a huge number of experimental studies
regarding hypoxia, including animal studies (rabbits), have been performed. Moreover, in
2019, the Nobel Prize was won by a group of researchers who explained how cells detect
and adapt to different O, concentrations [1].

It is well known that aerobic organisms produce energy in the presence of O,. Further-
more, in aerobic organisms, O, regulates various processes involved in their development,
in the response to tissue damage, in infection, and in neoplastic growth [2]. On the other

Int. . Mol. Sci. 2022, 23, 2470. https:/ /doi.org/10.3390/ijms23052470

https:/ /www.mdpi.com/journal/ijms


https://doi.org/10.3390/ijms23052470
https://doi.org/10.3390/ijms23052470
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4345-282X
https://doi.org/10.3390/ijms23052470
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23052470?type=check_update&version=3

Int. . Mol. Sci. 2022, 23, 2470

20f19

hand, O, deprivation induces stress in living cells, linked with free-radical accumulation
and oxidative stress (OS) development [3]. Hypoxia is established when the overall oxygen
pressure is less than 40 mmHg in cells or tissues [4]. However, tissues and cells have
different degrees of hypoxia [5]. Hypoxia or low O, tension may be present in both physio-
logical (during embryonic development) and pathological circumstances (ischemia, wound
healing, and cancer) [6].

Meanwhile, the kidneys are major energy-consuming organs, being second only to
the heart, with an increased mitochondrial content and O, consumption [7]. The kidneys
receive Oy through the blood flow, with around 20-25% of the cardiac output being sent
to these organs [8]. Renal tubular epithelial cells consume O; and produce ATP, further
used for water and solutes reabsorption from pre-urine [8]. The renal vascular architec-
ture participates in oxygen/nutrient delivery and filtration of the blood [9]. The renal
function may undergo autoregulation, and renal vessels are formed by angiogenesis and
vasculogenesis [10].

Furthermore, hypoxia-inducible factors (HIFs) are the key players that orchestrate
the mammalian response to hypoxia [11,12]. HIFs are transcription factors with basic
helix-loop-helix DNA binding motifs, of the family of period circadian protein-aryl hydro-
carbon receptor nuclear translocators-single-minded proteins (PER-ARNT-SIM) (bHLH-
PAS) [12]. In mammals, the HIF1A—endothelial pas domain-containing proteinl EPAS1—or
HIF2A and HIF3A genes encode the « subunits, while aryl hydrocarbon receptor nuclear
translocators-1 (ARNT1) and aryl hydrocarbon receptor nuclear translocators-2 (ARNT2)
encode the HIF-1f3 subunits (HIF1B) [12]. HIFs activate the hypoxia signaling pathway,
which further induces gene expression for processes such as angiogenesis, metabolism,
and coagulation [13]. HIFs adapt cells to low oxygen concentrations by regulating tran-
scriptional programs involved in erythropoiesis, angiogenesis, and metabolism [14]. This
suggests that these programs promote the growth and progression of various types of tu-
mors. For this reason, HIFs are important anticancer targets [14]. Phosphoglycerate kinase-1
(PGK-1), glucose transporter-1 (GLUT-1), vascular endothelial growth factor (VEGF), and
erythropoietin (EPO) are HIF target genes [15].

On the other hand, one of the life-threatening complications of severe burns is acute
kidney injury (AKI) [16]. By severe burns, we generally mean burns that involve more than
20% of the Total Body Surface Area (TBSA) [16]. Such burns have a high risk of producing
shock [17], which is constantly associated with a more or less severe form of AKI. The
reported incidence of AKI in burned patients admitted to the Intensive Care Unit (ICU)
is 30—46% [18-21]. The dreaded functional consequence of AKI is an acute decline of the
renal function [22], namely, Acute Renal Failure (ARF), with a reported incidence up to 30%
among patients with burns [20] and a mortality between 54% and 100% [20,23,24]. Before
1965, no patients could survive ARF caused by burns [20,25].

Taking all these aspects into consideration, the aim of this review is to describe the role
and underline the importance of HIFs in the development of AKI in patients with severe
burns, because hypoxia of the kidneys is constant in the presence of severe burns, and HIFs
are major players in the adaptative response of all tissues to hypoxia.

2. Hypoxia-Inducible Factors: Structure, Roles, and Involvement in Pathology

HIFs contain two subunits, the oxygen-dependent « subunit HIF-alpha () and the
oxygen-insensitive 3 subunit () [26]. While the « subunit is expressed in hypoxic condi-
tions, the 3 subunit undergoes heterodimerization in the nucleus with the « subunit and
will act as a transcription factor [27]. The association of « and 3 subunits will enhance the
expression of genes involved in glycolysis, angiogenesis, and cell survival [27].

All o subunits have a similar domain structure and are highly conserved at the protein
level. Furthermore, « subunits can heterodimerize with HIF-1f3 and may bind to a DNA
sequence named hypoxia-responsive element (HREs). This DNA binding may explain their
differential influence on the expression of some genes [28].
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HIF-« has three isoforms: HIF-1«, HIF-2«, HIF-3cc [27]. Among all HIF proteins, the
most studied regarding their activity and function are HIF-1o, HIF-2&, and HIF-1f3 [29]. Of
the three isoforms, HIF-1x and HIF-2« are the most expressed in hypoxic conditions [30].
HIF-1« is widely distributed in all human normal and hypoxic conditions, while HIF-
20 has been detected only in physiologically hypoxic tissues [30]. Moreover, HIF-2o
is highly expressed in the endothelium and in interstitial cells of the kidneys [5], thus
modulating vascular endothelial cell function [31]. However, Eckardt KU and his research
team detected HIF-1x mainly in tubular cells, while HIF-2oc was shown in peritubular
interstitial, endothelial, and glomerular cells [32]. HIF-3¢ is found in adult thymus, lung,
heart, brain, and kidney [30]. Moreover, HIF-3x may be expressed in highly vascularized
tissues such as the cornea [33].

In addition, the protein levels of all HIF-« isoforms (HIF-1«, HIF-2¢, and HIF-3«) are
regulated by their conditional interaction with the von Hippel-Lindau tumor suppressor
protein (pVHL) [34]. pVHL acts as an E3 ubiquitin ligase that targets the HIF-«-minimal
N-terminal transactivation domain (N-TAD) within the oxygen-dependent degradation
domain (ODD) [34].

In the presence of O, prolyl hydroxylases (PHDs) catalyze the hydroxylation of HIF-
1/2w at specific proline residues [35]. Further, hydroxylated HIF-1/2c is recognized by
the pVHL ubiquitin ligase complex that induces its conjugation with ubiquitin and leads
to its proteasomal degradation [35]. In the absence of O,, with the help of coactivator
p300/CREB-binding protein (CBP), HIF-1/2« is stabilized and undergoes dimerization
with HIF-1$3, which will lead to the transcription of genes linked to hypoxia-responsive
elements [35]. There are three PHD proteins involved in HIF hydroxylation: PHD1, also
known as a-ketoglutarate-dependent hydroxylase-2 (EGLN2) and HIF-prolyl-hydroxylase-
3 (HPH3), PHD2 (EGLN1/HPH2), and PHD3 (EGLN3/HPH1). PHD are Fe (II)- and
2-oxoglutarate (20G)-dependent [36].

On the other hand, HIFs are activated not only by hypoxia (Figure 1) but also by
genetic mutations related to a wide variety of tumors [37]. Besides hypoxia, HIFs ex-
pression may be induced by loss of tumor suppressors, such as pVHL, phosphatase-and-
tensin-homologue (PTEN), tuberous sclerosis complex % (TSC1/2), progressive multifocal
leukoencephalopathy (PML), and succinate dehydrogenase (SDH), and by the increased
activity of the signaling pathways associated with phosphatidylinositol 3-kinase (PI3K)
and Mitogen-Activated Protein Kinase (MAPK) [38]. The transcriptional activity of HIFs is
influenced by posttranslational modifications including hydroxylation, acetylation, phos-
phorylation, and S-nitrosylation [39]. Tumor cells live in a hypoxic medium, hypoxia being
correlated with tumor aggressiveness. In the presence of decreased amounts of oxygen,
HIFs act as transcription factors, adapting the cells to the hypoxic conditions via glucose
metabolism [40]. During cancer progression, besides its implication in glucose metabolism,
hypoxia is involved in inflammation, anti-apoptosis processes, and angiogenesis [27].

Moreover, studies performed in cell cultures have shown that HIFs could be acti-
vated under normal O2 concentration by cytokines and growth factors [41]. Therefore,
it is possible that under clinical conditions, associated with inflammation, infection, and
sepsis, HIFs could be activated (Figure 1) [41]. This may suggest that in humans, growth
factors and cytokines are preconditional activators of HIFs [41]. Thus, during infection
and inflammation, the immune cell population together with O, is involved in HIF-o
stabilization, induced partially by the hypoxic tissue context of disease [42]. Hypoxia plays
an important role in the pathology of inflammatory diseases such as chronic inflammatory
bowel disease, which is a risk factor for colorectal cancer development [43]. Therefore,
chronic inflammation is characterized by hypoxia [13]. Inflamed and injured tissues are
characterized by increased amounts of inflammatory cytokines, reactive oxygen species
(ROS), and nitrogen species, while O, and glucose levels are decreased [44].
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Figure 1. HIFs activation and involvement in pathological processes.

Under normoxic conditions, in the cells of the innate and adaptive immune system,
HIF-1 is upregulated by bacterial and viral compounds, preparing the cells to migrate and
to function in inflamed and hypoxic tissues [44]. Moreover, the activity of these cells is
further enhanced by proinflammatory cytokine release [interleukine-1$ (IL-1f3,) tumor
necrosis factor-o (TNF-«)] induced by HIF-1 [44]. In renal cancer carcinoma, HIF-1oc and
HIF-2o have opposite effects, HIF-1x being a tumor suppressor, and HIF-2« acting as
an oncogene [45]. Moreover, this HIF-1a/HIF-2« shift promotes proinflammatory and
profibrotic activities in glomerular and renal tubular cells [46]. Renal tubular epithelial cells
possess all PHDs (PHD1, PHD2, and PHD3) [46].

In the core of advanced atherosclerotic plaques, a hypoxic state is established, which is
correlated with neovascularization and inflammatory processes [47]. This molecular event
contributes to atherosclerotic plaque instability [47], a very important aspect, taking into
consideration that cardiovascular diseases are the most common cause of death world-
wide [48-50]. Additionally, patients diagnosed with type 2 diabetes have renal hypoxia,
OS, endoplasmic stress, and a nutritional deficiency that will cause HIF-1¢ activation and
HIF-20 suppression. Studies performed so far reported that high expression levels of HIFs
are correlated with poor prognosis for various cancer types [4,51-54]. Pancreatic beta cells
can be subjected to O, deprivation, so hypoxia can contribute to beta cells damage [55].

In addition, HIF-1¢, together with IL-6, vascular endothelial growth factor (VEGF),
microRNA-150, microRNA-270, ROS, bone morphogenetic protein 6 (BMP6), triggering
receptor expressed on myeloid cells 1 (TREM-1), and PI3K/protein kinase B (AKT) signaling
pathway, is involved in psoriasis pathogenesis [56]. It is well known that in the pathogenesis
of psoriasis, cytokines such as IL-1, IL-4, IL-6, IL-8, IL-12, and TNF are involved [57].

3. HIFs and Acute Kidney Injury (AKI)
3.1. Renal Biology and AKI

Like the heart and the brain, the kidney is highly dependent on ATP availability;
therefore, lack of ATP and mitochondrial dysfunction play key roles in organ dysfunc-
tion [58]. Peritubular capillary plexuses deliver O, in normal kidneys, where plexuses are
supplied by efferent arterioles and drained by renal venules [59]. Due to blood vessels
antiparallel arrangement, the renal circulation in the presence of extensive arteriovenous



Int. . Mol. Sci. 2022, 23, 2470

50f19

malformations is shunted [59]. This decreases renal tissue O, extraction [59]. Although
the kidneys receive a large amount of blood perfusion, with respect to their weight, the
renal cortex and the inner medulla have a decreased O, tension [59]. Kidneys are also
prone to aging, characterized by progressive tubular dysfunction and decreased sodium
reabsorption, potassium excretion, and urine concentrating capacity, which will increase
AKI development [60,61]. In the pathogenesis of age-related kidney damage, various
processes are involved, including OS, inflammation, mitochondrial dysfunction, altered
calcium regulation, and RAS activation [62].

AKI was defined and staged by several criteria systems (scoring systems), in relation
to serum creatinine levels with or without urine output [63].

The RIFLE criteria (Risk, Injury, Failure; Loss, End-Stage Renal Disease criteria) are
based on serum creatinine levels, glomerular filtration rate, and urine output. AKI is
defined by an increase in serum creatinine level of more than 50% above the baseline
developing over less than 7 days; urine output should be less than 0.5 mg/kg/h for a
minimum of 6 h. According to the RIFLE criteria there are five stages of severity: Risk,
Injury, Failure, Loss, End stage [64].

The AKIN criteria (Acute Kidney Injury Network criteria) are based on serum crea-
tinine levels and urine output. AKI is defined by an increase of serum creatinine level of
0.3 mg/dL or an increase of serum creatinine level of more than 50% in less than 48 h. Urine
output is less than 0.5 mg/kg/h for a minimum of 6 h. According to the AKIN criteria,
there are three stages of severity: Risk, Injury, Failure [65].

The KDIGO criteria (Kidney Disease Improving Global Outcomes criteria) are based
on serum creatinine levels and urine output. AKI is defined by an increase of serum
creatinine level of 0.3 mg/dL developing over 48 h or an increase of serum creatinine
level of more than 50% developing over 7 days. Urine output is than 0.5 mg/kg/h for a
minimum of 6 h. According to the KDIGO criteria, there are three stages of severity: Risk,
Injury, Failure [63].

The scoring systems presented above appeared to provide similar results when applied
to large cohorts of patients (at least for AKI in burn patients) [65-67].

There are two types of burn-associated acute kidney injuries: early post-burn and late
post-burn [20]. Early post-burn-associated AKI develops in the first 48-72 h from the initial
injury. The etiology is multifactorial: burn shock and hypovolemia, under-resuscitation,
over-resuscitation, cardiac dysfunction, denatured proteins, rhabdomyolysis, inflammatory
mediators [20,68]. Late post-burn-associated AKI develops after 3—4 days from the initial
burn injury. The etiology includes sepsis, nephrotoxic drugs, over-resuscitation, multiorgan
failure [20,68].

3.2. HIFs and AKI

In most cases, the common denominator of acute kidney injury is tissue hypoxia,
which is the canonic activator of HIFs [69,70] in the kidneys and in other organs (brain,
liver, heart, lungs) and tissues (smooth muscles, endothelium). The HIF signaling pathway
might be also activated by non-canonical activators, such as TNF-« [71], interleukin-1
(IL-1B) [72,73], insulin [73,74], insulin-like growth factors [74-76], angiotensin II [77], nitric
oxide [78-80], and ROS [81-83].

Why is HIFs activation important? Because, as transcriptional factors, HIFs regulate
(directly or indirectly) the expression of genes that facilitate oxygen delivery to the renal
(and other) tissues and promote adaptation to hypoxia in the kidney (and other organs—
brain, liver, heart, lungs) [84,85]. Oxygen delivery is improved through angiogenesis
and augmentation of the oxygen transport capacity of the blood (via erythropoiesis) [86].
Oxygen utilization by the cells is made more efficient through a shift of the metabolism
towards glycolysis [87]. HIFs literally upregulate the genes encoding most of the glycolytic
enzymes [86,88].

The HIF target genes are also involved in iron metabolism, cell proliferation, apoptosis,
intercellular interaction, matrix—cells interaction, adenosine metabolism, NO (nitric oxide)



Int. . Mol. Sci. 2022, 23, 2470

6 of 19

metabolism [84,85], redox homeostasis, autophagy, immune response [87-90]. The HIF
target genes direct the synthesis of EPO, VEGFE, PGK-1, GLUT-1, transferrin and transferrin
receptor, enolase 1, lactate dehydrogenase A(LDH-A), CTGF (connective tissue growth
factor), and many other molecules [84], being essential for kidney functionality in normal
conditions and for kidney adaptation to hypoxia [15,91]. It is well known that HIF target
genes have regulatory regions containing identifiable hypoxia response elements (HREs).
There are over 200 HIF target genes, not all of them being regulated by an HRE [84]. A com-
pletely functional HRE contains an HBS (HIF DNA-binding site) and several neighboring
DNA-binding sites (for other transcription factors than HIF) [84,90]; these are binding sites
with sequence motifs for stress-responsive transcription factors, not necessarily hypoxia-
inducible: AP-1 (activator protein 1), CREB (cAMP response element-binding), CEBP
(CCAAT-enhancer binding protein) [92]. They are supposed to augment the response to
hypoxia and confer HRE tissue-specificity [84]. Therefore, there is a cooperation between
HIFs and other transcription factors, for example, for the expression of the LDH-A gene,
where HIF1 cooperates with ATF-1/CREB-1 transcription factor [92,93], and for the VEGF
gene, where HIF1 cooperates with AP-1 binding factors [84]. There is a 20-fold increased
binding of HIF1 and HIF2 to normoxic DNAsel hypersensitivity sites [92,94] and there is
an enhanced HIF1 binding to DNA sequences close to genes with normoxia non-restrictive
transcriptional state [92,95]. This suggests that the selective access of transcription factors
to binding sites is partially conditioned by DNA regional and conformational accessibility
in normoxic conditions [96,97]. Hence, the specific tissue effects of HIFs.

3.3. Severe Burns, AKI, and HIFs

In patients with severe burns, there is a biphasic metabolic response [98]. First, the
“Ebb” Phase, which develops immediately after the burn trauma and is followed by the
“Flow” Phase. In the first 24 days, the “Ebb” Phase develops. This phase partially overlaps
with the “burn-shock” phase, which is characterized by a hypovolemic shock. It is a period
with decreased metabolic rate, reduced cardiac output, hypovolemia [98], centralization of
the circulation towards vital organs (brain and heart), and reduced tissue perfusion of the
other organs, including the kidneys [99]. The kidneys are affected by hypoxia, and renal
filtration rate is decreased [100].

Towards the 5th day, the “Flow” Phase is established [101]. It is a hyperdynamic,
hypercatabolic state [101] in which plasma volume is increased, cardiac output augments,
and perfusion of the kidney (and other organs) is improved [16,102], at least partially. The
consequence is the development of AKI due to postburn RIRI (Renal Ischemia-Reperfusion
Injury). This type of injury is also encountered after renal vascular occlusion, kidney
transplantation, resuscitation after cardiac arrest [103].

During acute ischemia in the kidneys, prolyl-4-hydroxylases cannot perform the hy-
droxylation of proline residues (Pro402 and Pro564 in HIF-1x; Pro405 and Pro531 in HIF-2«x),
this process being iron-dependent and oxygen-dependent [104]. The un-hydroxylated HIF-
o subunit cannot bind to pVHL as part of an E3-ubiquitin ligase complex, a complex that
would undergo proteasomal degradation in normoxic conditions [69,104]. Consequently,
HIF-a subunit degradation is inhibited [69,104]. The hypoxic stabilization of HIF-« is
followed by its translocation into the cell nucleus, where it forms a heterodimer with HIF-f3,
that binds to the HRE domain of HIF target genes [104].

In renal epithelial cells, there are the three types of prolyl-hydroxylases—differentiated
by specific PHD (prolyl-hydroxylases domain), i.e., PHD1, PHD2, PHD3 [105]—that mani-
fest differences in activity level and expression in a manner that presents tissue specificity
and cell specificity [106]. Different levels of hypoxia induce isoform-specific patterns of
PHD in different cell types, which allows a flexible regulation of HIF in relation to oxygen
levels [106]. PHD3 is expressed in the nucleus and cytoplasm, PHD2 is expressed in the
cytoplasm, while PHD1 is expressed in the nucleus [107]. The renal tissue is not homoge-
nously oxygenated; it was proved that kidney regions with lower oxygenation (such as the
collecting ducts in the inner medulla, distal convoluted tubules, and the thick ascending
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limbs) have augmented levels of PHDs [107]. In normoxia, HIF-« is hydroxylated, espe-
cially by PHD2 [108]. In the process of reperfusion and reoxygenation, in the post-burn
Flow Phase, HIF-« is preferentially hydroxylated by PHD3 [106].

In addition to PHDs that control the expression level of HIF-o, FIH (factor inhibiting HIF)
is another oxygen-sensitive hydroxylase that regulates HIF transcription activity [109]. FIH has
been identified in the kidney in Bowman capsule podocytes and in epithelial cells of the distal
tubules [105,110]. When hypoxia increases beyond a certain level, FIH is inactivated [111]
and cannot hydroxylate the asparaginyl residue of HIF-ot (Asn803 in HIF-1cc and Asn851 in
HIF-2¢). Consequently, the recruitment of CBP/p300 coactivators is permitted, which results
in the augmentation of the transcriptional activity of HIF [109,112,113].

3.4. HIFs and Mitochondria in Patients with Major Burns

Mitochondria activities are severely disturbed in the presence of major burns. In
fact, the burn literature refers to this as burn-related mitochondrial dysfunction [114,115].
Mitochondria-specific damage seems to appear very early as a response to burn injury,
fragments of mitochondrial DNA being detected immediately after a burn [115]. As
early as 15 min after a burn, cytochrome c is released from the mitochondria into the
cytosol [101,114], and in 1 h, mitochondrial membrane potential changes occur [101,114].
Experimental studies on rats proved a decrease in the concentration of cytochrome a, b,
and c in the kidney mitochondria by at least 70%, 8 h after the infliction of third-degree
burns [116]. These studies noted a reduction of the phosphorylation activity in kidney
mitochondria and a decrease in respiratory control ratio and state 3 respiration [116].

The relationship between mitochondria and HIF signaling pathway is complex and
suggests the role of mitochondria as oxygen sensors [117]:

Mitochondrial complex III generates ROS [118,119] that change the redox state of
enzyme-bound iron [120-122], resulting in the inhibition of the activity of PHDs, with
consequent stabilization of HIF-« [120]. ROS production in the mitochondria is mainly
the result of the activity of Electron Transport Chain (ETC) complexes I and III [123]. Less
than 5% of ROS are generated by the activity of enzymes such as monoamine oxidase
(MAO), cytochrome b5 reductase, nicotinamide adenine dinucleotide phosphate oxidase
(Nox) [124]. During hypoxia, the ETC complex Il becomes an important source of ROS, due
to the change of the oxidation of NAD-related substrates to succinate oxidation [125]. In
this situation, succinate acts as a signaling molecule involved in the transcription of HIF-1.
This mechanism might partially explain why previous studies reported that in hypoxic
conditions, ROS production remained constant (as in normoxia) or even increased [117,126].

3.5. HIFs and Reactive Oxygen Species/Reactive Nitrogen Species in the Presence of Major Burns

The stabilization of HIFs during hypoxia interferes with the production of ROS in
two possible ways: by inhibiting the production of ROS [127] or by stimulating the pro-
duction of ROS [128]. The hypoxic accumulation of HIF-1x upregulates the expression of
Pyruvate Dehydrogenase Kinase isoform 1 (PDK1) [127,129]. Through phosphorylation
of the pyruvate dehydrogenase subunits PDHA1 and PDHA2, PDK1 inhibits pyruvate
dehydrogenase (PDH) activity, resulting in the inhibition of the oxidative decarboxylation
of pyruvate and of the formation of acetyl-coenzyme A (acetyl-CoA) [127]. Therefore, a
reduced quantity of acetyl-CoA enters the Krebs cycle. Finally, by decreasing mitochondrial
oxygen consumption, ROS production is downregulated [127]. It was proved that HIF-1o
stabilization increased the expression of microRNA-210 (miR-210) [130], which inhibits
mitochondrial oxidation-reduction reactions via repression of Iron-Sulfur Cluster assem-
bly proteins (ISCU1/2) [130]. Reduced mitochondrial respiration results in the decreased
production of ROS. The rationale of downregulating ROS production through HIF accumu-
lation is to protect the cells from apoptosis in response to hypoxia and oxidative stress [131].
Although it is generally agreed that HIFs stabilization in hypoxic conditions inhibits the
mitochondrial production of ROS, there are studies that show positive feedback between
HIFs accumulation and ROS production during hypoxia [128,132,133]. It appears that
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HIF-1« stabilization during hypoxia generates superoxide, with the consequent increased
production of ROS. The mechanism involved would be the overexpression of the genes for
NADPH Oxidase 1 (Nox1) and NADPH Oxidase 2 (Nox2) induced by HIF-1« [128].

NO is a reactive nitrogen species that decreases the ubiquitination of HIF-1¢, alters the
interactions between HIF-1« and pVHL, and inhibits HIF hydroxylation by PHDs [134,135].
These actions result in the accumulation of HIF during hypoxia. Other studies proved that
NO induces HIF stabilization both in hypoxia and in normoxia, through mitochondria-
dependent and -independent pathways [136].

4. Hypoxia, Inflammation, HIFs, and Kidney Lesions in Patients with Severe Burns

There is a strong connection between hypoxia, HIFs, inflammation, and kidney le-
sions in patients with burns. The systemic inflammatory response installs rapidly (after
4 h) in the presence of burns involving more than 30% of the TBSA [137,138]. In the
presence of severe burns, there is an augmentation of the levels of the pro-inflammatory
cytokines TNF-« and IL-1§3, which increases the formation of ROS [139], resulting in HIF-1 o
stabilization [140,141]. The increased levels of cytokines are persistent in the “flow” phase
of severe burns for about 6 weeks [138,142] and induce a systemic inflammatory response;
they also contribute, together with stress hormones (Figure 2), to the development of a
hypermetabolic state that might persist up to 36 months [137].

Pro-inflammatory

cytokines release Stress hormones
(TNF-a,IL-1B)

Hypermetabolic state
|+
'Renal HIF-1a accumulation
|+

Renal mitochondrialdamage

Cytochrome c release

Apoptosis
Figure 2. Severe burns and the effects of renal HIF-1oc accumulation induced by a hypermetabolic state.

One of the main characteristics of the hypermetabolic state is persistent insulin resis-
tance in peripheral tissues, including the kidneys [143]. It is interesting to note that HIF-1o
(which is stabilized through multiple mechanisms in patients with severe burns) was re-
ported to be a mediator of insulin resistance [144]. Hyperinsulinemia is one of the hallmarks
of insulin resistance, and insulin was demonstrated to be an important stabilizer of HIF-1oc
both in hypoxia and in normoxia [101,145]; it seems that the activation of the PI3K/AKT
pathway in hypoxic conditions determines HIF-1a accumulation [145,146] not through the
inhibition of HIF prolyl-hydroxylation [69], but through the augmentation of HIF-« protein
translation [147]. Therefore, it appears that hypoxia and HIF-« accumulation promotes
tissue inflammation and accentuates insulin resistance [144,148]. Hypoxia induces the
stabilization of HIF-1«, which has a binding site on the CD18 gene, which encodes the
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common subunit of the four types of beta2 integrin heterodimer [149]. Beta2 integrin levels
increase in hypoxia, and this molecule is essential for the adhesion of leukocytes to the
activated endothelium [149]; these aspects prove that leukocyte adhesion during hypoxia
is mediated by HIF-1-dependent induction of beta2 integrin gene expression [149]. It is
common knowledge that HIF-1« is essential for the regulation of glycolytic activity in
the cells, including granulocytes and monocytes/macrophages controlling optimal ATP
production [150]. Experimental studies in mice revealed that when HIF-1x activity is
absent, the cellular ATP levels drop, resulting in the impairment of motility, invasiveness,
aggregation, and bactericidal action of myeloid cells; this proves that HIF-1«x is necessary
for myeloid cell-mediated inflammation [151].

HIF-1o accumulated in hypoxia modulates the development and functions of lympho-
cytes B and lymphocytes T and regulates T cell receptor signal transduction [152-154]. One
can observe there is reciprocal positive feedback between inflammatory cytokines in burns
and HIF-1 accumulation and actions in hypoxic renal tissue.

5. HIFs and Acute Hypoxic Cell Death in Kidneys in Severe Burns

As already discussed, in hypoxic conditions, PHD hydrolytic action is inhibited. Con-
sequently, HIF-a accumulates, enters the nucleus, and dimerizes with HIF-§3, forming
HIF [69,91]. Depending on the cell type and on the cellular environment, HIF induces
the expression of genes involved in cellular metabolism, cell proliferation, angiogenesis,
extracellular matrix formation, and apoptosis [109]. HIF controls mechanisms and biologi-
cal processes involved in cell survival in hypoxic conditions, such as protein translation,
mitochondrial signaling, anaerobic glycolysis, hypoxic cell death [109]. The inductive or
protective effect of HIF upon apoptosis in hypoxia depends on the cell type and the cellular
context [155,156].

In hypoxic renal tissue, HIF-1x was detected in the epithelial cells of the renal tubules,
while HIF-2oc was found in endothelial cells and interstitial kidney fibroblasts [157], plead-
ing for HIFs’ different roles in different cells [158,159]. In certain situations, HIF plays a
pro-apoptotic role [155], in other situations it has a protective role against hypoxic apoptosis,
depending on glucose availability in the cell [155,160]. There is a complex interaction be-
tween the electron transport chain (complexes I, II, IIT) and HIF-« [122,130]. It is also known
that, at the level of cytochrome c, the electron transport chain processes and the apoptosis
process overlap [161]: under the action of apoptotic stimuli, cytochrome c is released into
the cytosol, from the mitochondrial intermembrane space, and triggers programmed cell
death (Figure 2) [161]. This is a described phenomenon in severe burns [114,139]. It was
also proven that HIF-« can regulate some proteins involved in apoptosis, such as the
members of the Bcl-2 family (B-cell lymphoma protein-2) [162], which are proved to control
cytochrome-c-mediated apoptosis [161]. Consequently, one can affirm the existence of a
crosstalk between the HIF-« signaling pathway and the apoptotic signaling pathway, at
the mitochondrial level and in the cytosol [163,164] in many situations characterized by
hypoxia, including severe burns [101].

HIF-« might have anti-apoptotic effects through (i) the induction of Bcl-xL (B-cell
lymphoma-extra-large), which is a mitochondrial transmembrane molecule, belonging to
the Bcl-2 family of proteins. It prevents the release of cytochrome c from the mitochon-
dria into the cytosol and has an anti-apoptotic effect [165,166]; (ii) the induction of Mcl-1
(Myeloid cell leukemia 1) [167,168], which is a member of the Bcl-2 family of proteins,
with anti-apoptotic action [169,170]. It inhibits the permeabilization of the mitochondrial
outer membrane and the release of cytochrome C from the mitochondria into the cy-
tosol [171,172]; (iii) the decrease of the levels of Bax, Bak, and Bid [173,174], which are
pro-apoptotic proteins, members of the Bcl-2 family [175,176]. Bax and Bak accumulate in
the mitochondrial outer membrane (under the influence of apoptotic stimuli); here, they
oligomerize and contribute to the permeabilization of the mitochondrial outer membrane,
followed by the release of cytochrome c from the mitochondria [177,178]. Under the action
of multiple proteases, Bid is activated to tBid (truncated Bid), which is translocated from the
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cytosol into the mitochondrial membrane [179,180]; here, it acts directly and in cooperation
with Bax and Bak, resulting in the release of cytochrome c from the mitochondria into
the cytosol [179-181]; (iv) the induction of Bcl-2 family proteins with an anti-apoptotic
role [173].

In a different cellular context, HIF-« has pro-apoptotic effect through: (i) the induc-
tion of Noxa [182]; Noxa is a Bcl-2 homology 3 (BH3)-only member of the Bcl-2 family
of proteins [183]; it undergoes BH3 motif-dependent localization to the mitochondria,
where it interacts with other members of the Bcl-2 family (such as Mcl-1) [184], with
consequent activation of Caspase-9 [185]. Activated caspase-9, within the apoptosome,
promotes the activation of downstream caspases 7, 6, and 3 [185]; (ii) the induction of
BNIP3 (Bcl2/adenovirus EIB 19kD-interacting protein 3) [186-188]; accumulation of BNIP3
protein induces the classical intrinsic apoptosis pathway, through cytochrome c and caspase
complex activation, or may trigger autophagic cell death, without cytochrome c involve-
ment [189,190]; (iii) the induction of Nip-3-like protein 3 [186,187] that is a homologous
of BNIP3, also called Bcl-2-interacting protein 3-like; it binds to Bcl-2 and determines, at
the mitochondrial level, the loss of membrane potential and the release of cytochrome c in
the cytosol [191,192]; (iv) the downregulation of Bcl-2 family proteins with a pro-apoptotic
role [173,193,194].

The Bcl-2 family proteins, that are regulated among other factors by HIF-«, influence
mitochondrial dynamics and are involved in ischemia-induced acute kidney injury [194,195].

Table 1 summarizes the complex roles played by HIFs in renal hypoxia in the context
of burns.

Table 1. The complex roles played by HIFs in renal hypoxia in the context of burns.

Research Subject References
1. Acute kidney injury—activator of HIFs [69,70]

HIF signaling pathway might be activated by:

- TNF-a [71]

- IL-1p [72,73]

- insulin [73,74]

- insulin-like growth factors [74-76]

- angiotensin II [77]

- nitric oxide [78-80]

- ROS [81-83]
As transcriptional factors, HIFs regulate the expression of genes involved in
oxygen delivery to the renal tissues, triggering adaptation to hypoxia in the [69,70]
kidney
HIFs are upregulators of the genes encoding most of the glycolytic enzymes [86,88]
HIF target genes (hypoxia-sensitive genes) induce the synthesis of EPO, VEGF,
PGK-1, GLUT-1, transferrin and transferrin receptor, enolase 1, LDH-A (lactate [15,70,91]
dehydrogenase A), CTGF (connective tissue growth factor), vital for kidney Y
functionality in normal conditions and for kidney adaptation to hypoxia
Hypoxic stabilization of HIF-« [104]
In normoxia, HIF-« is hydroxylated, especially by PHD2In the process of
reperfusion and reoxygenation, in the post-burn Flow Phase, HIF- is [106,108,109]

preferentially hydroxylated by PHD3

FIH (factor inhibiting HIF)—another oxygen-sensitive hydroxylase that
regulates HIF transcription activity

[105,110-113]
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Table 1. Cont.

Research Subject References

9. Mitochondria and HIF signaling pathway complex relationship [117]

HIFs stabilization in hypoxia interferes with ROS generation in two ways:

by inhibiting the production of ROS

[127-129,131-133]

10.
- by stimulating the production of ROS
11. HIF-1« stabilization increases the expression of miR-210 (microRNA-210) [130]
12 NO (nitric oxide) and HIFs relationship during hypoxia [134-136]
13 In severe burns, the pro-inflammatory cytokines TNF-« and IL-1f increase [139-141]
’ ROS formation, triggering HIF-1« stabilization )
14. HIFs and insulin resistance [139,144-146,148]
In hypoxic renal tissue:
15. - HIF-1x was detected in the epithelial cells of the renal tubules. [157-159]
- HIF-2x was found in endothelial cells and interstitial kidney fibroblasts.
16. HIF-« and apoptosis in burns [101,161-164]
Anti-apoptotic effects of HIFs through:
- induction of Bel-xL (B-cell lymphoma-extra-large) [165,166]
17. - induction of Mcl-1 (Myeloid cell leukemia 1) [167-172]
- decrease of the levels of Bax, Bak, and Bid, pro-apoptotic proteins, [173-181]
members of the Bel-2 family [173]
- induction of Bcl-2 family proteins with an anti-apoptotic role
Pro-apoptotic effects of HIFs through:
- induction of Noxa [182-185]
18. - induction of BNIP3 (Bcl2/adenovirus EIB 19kD-interacting protein 3) [186-190]

induction of Nip-3-like protein 3it is a homologous of BNIP3, also called
Bcl-2-interacting protein 3-like;
downregulation of Bcl-2 family proteins with a pro-apoptotic role

[186-188,191,192]
[173,193-195]

6. Conclusions

In the presence of severe burns, one of the consequences of the post-combustion shock
is represented by the centralization of the circulation with hypoxia in all tissues, excepting
the heart and the brain. Renal hypoxia is the main cause of AKI and acute renal failure in
patients with burns exceeding 20-30% of TBSA. This narrative review suggests that HIFs are
the key factors that interconnect hypoxia, systemic inflammatory response, apoptosis, and
kidney lesions in patients with severe burns. Depending on the cell environment, in some
situations, HIFs are proapoptotic factors while in other situations, they are antiapoptotic
factors. The modulation of HIFs might prevent the development of kidney lesions in
hypoxic conditions, including in the presence of severe burns. Further studies are necessary
to describe the effects of well-known HIFs modulators upon AKI emergence in patients
with severe burns.
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