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Abstract: Chronic cardiac muscle inflammation and subsequent fibrotic tissue deposition are key
features in Duchenne Muscular Dystrophy (DMD). The treatment of choice for delaying DMD
progression both in skeletal and cardiac muscle are corticosteroids, supporting the notion that
chronic inflammation in the heart plays a pivotal role in fibrosis deposition and subsequent cardiac
dysfunction. Nevertheless, considering the adverse effects associated with long-term corticosteroid
treatments, there is a need for novel anti-inflammatory therapies. In this study, we used our recently
described exercised mdx (ex mdx) mouse model characterised by accelerated heart pathology, and
the specific PKCθ inhibitor Compound 20 (C20), to show that inhibition of this kinase leads to
a significant reduction in the number of immune cells infiltrating the heart, as well as necrosis
and fibrosis. Functionally, C20 treatment also prevented the reduction in left ventricle fractional
shortening, which was typically observed in the vehicle-treated ex mdx mice. Based on these findings,
we propose that PKCθ pharmacological inhibition could be an attractive therapeutic approach to
treating dystrophic cardiomyopathy

Keywords: DMD; cardiomyopathy; PKCθ; inflammation

1. Introduction

Duchenne Muscular Dystrophy (DMD) is a severe X-linked genetic uncurable disease
that leads to progressive skeletal and cardiac muscle wasting, affecting roughly 1:3000–5000
of males. It is caused by mutations in the DMD gene, encoding for the dystrophin pro-
tein [1–4], a long rod-shaped cytoplasmic protein that exerts a fundamental structural role
in muscle, stabilising the sarcolemma. These mutations often result in reading-frame shifts
and generation of premature stop codons, producing truncated, non-functional dystrophin.
The absence of dystrophin leads to fragile fibres, which become injured during muscle
contraction. Sarcolemma leaks and breaks can cause an excessive calcium influx in the
cells and the release of cytosolic antigens with subsequent innate inflammatory response,
often leading to necrotic cell death and fibrotic tissue deposition [1,2,5–7]. Both skeletal
and cardiac muscle are affected by the lack of dystrophin. The main clinical manifesta-
tions of the pathology are progressive muscle weakness and wasting, with patients often
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wheelchair-bound in their second decade of life [1,2,4–7]. The diaphragm is particularly
damaged so that most of the patients need nocturnal assisted ventilation within their third
decade. In the past, respiratory failure was the leading cause of death amongst patients;
nowadays, with the development of new assisted ventilation techniques and palliative
treatments, and the subsequent increase of patients’ lifespan, cardiac failure is emerging as
the main cause of death [6–10]. DMD cardiomyopathy is characterised by early fibrosis,
hypertrophy, and subsequent left ventricle dilation, as well as sustained inflammation [5,9].
Cardiomyopathy develops early in DMD patients: more than 60% of 10-year-old males
present clear signs of cardiomyopathy before the loss of ambulation, which increases up to
90% among 18-year-old patients [6,8–13].

To date, no definitive cure exists for DMD. Several therapeutic approaches are be-
ing tested for their ability to restore dystrophin synthesis: viral vectors carrying micro-
dystrophin isoforms, exon skipping compound or stop codon readthrough agents, as well
as gene editing with the novel CRISPR/Cas technology [14–18]. Nevertheless, until we
succeed in restoring dystrophin production, novel palliative treatments will continue to
be investigated in order to slow down disease progression and improve patients’ quality
of life [9,10,18]. At present, the golden standard for treating DMD is a life-long adminis-
tration of corticosteroids [6,7,9–11,18]. Corticosteroids are effective in promoting muscle
maintenance and, more importantly, in delaying both losses of ambulation and cardiomy-
opathy progression. Their beneficial effects are primarily due to their immunosuppressive
action, supporting the notion that the immune system has a pivotal role in disease progres-
sion [19–22]. Indeed, several studies have shown that depletion of immune populations
such as T cells and neutrophils, as well as genetic ablation or inhibition of inflammatory
cytokines, ameliorated muscle phenotype and function in the murine model of DMD, the
mdx mouse [23–29]. However, given the many side effects associated with the use of corti-
costeroids, there is an urgent need for alternative approaches to target the inflammatory
component of this disease.

Previously we demonstrated the potential of using C20, a PKCθ inhibitor, to ameliorate
skeletal muscle and diaphragm pathology by targeting early T cell recruitment [30,31].
PKCθ is highly expressed in T lymphocytes, where it plays a crucial role in their activation
by participating in the stable formation of the immunological synapse and the amplification
of the TCR-mediated signals, thus representing an attractive target for anti-inflammatory
interventions [32–39]. Our group previously demonstrated that both genetic ablation and
pharmacological inhibition of PKCθ, using the highly specific inhibitor Compound 20
(C20) [30,31,40], reduced inflammation, necrosis, and fibrosis in skeletal muscle of mdx
mice, together with an increase in muscle performance and preservation of the muscle
stem cell (MuSCs) pool [41,42]. We, therefore, wondered whether this therapeutic approach
could also be used to ameliorate DMD cardiomyopathy. Since the commonly used mdx
mouse model presents a much milder cardiac pathology that develops late in the mice
lifespan [43–45], we used our recently described “exercised mdx” (ex mdx) mouse model,
which is characterised by accelerated heart pathology, with clear signs of cardiomyopathy,
such as diffuse ventricular fibrosis, appearing as early as 12 weeks of age [46].

We showed that C20 treatment reduced the number of all the immune cell components
infiltrating the dystrophic heart, suggesting a critical role of immune cells in DMD-related
cardiac inflammation. The hearts of ex mdx treated with C20 showed a strong reduction
in cardiomyocyte necrotic cell death, as well as a sharp decrease of the ventricular fibrotic
area. Heart function was also improved by the treatment, with C20-treated mice showing
increased left ventricle fractional shortening. Overall, these results suggested that PKCθ

inhibition may be considered as an attractive novel therapeutic approach to ameliorate the
phenotype and function of dystrophic cardiac muscle.



Int. J. Mol. Sci. 2022, 23, 2256 3 of 16

2. Results
2.1. C20 Treatment Reduces Immune Cell Infiltration in Ex Mdx Heart

To assess whether C20 could ameliorate dystrophic heart phenotype and function, we
used the exercised mdx model (ex-mdx) we previously described and characterised [46].
As summarised in Figure 1A, mdx mice were divided into three groups at 3 weeks of age.
One group received C20 treatment, while another one received vehicle. A third group of
non-exercised, non-treated, age-matched mdx were used as control. Vehicle and C20-treated
groups were exercised as previously described [46], starting at 4 weeks of age, with two
1-h long sessions per week, at the speed of 20 cm/s, for 8 weeks. Since in the present study
the C20 treatment needed to be administered for the duration of 9 weeks, a much longer
duration than in our previous works, we first tested the efficacy of daily (as we used before)
versus twice-a-week administration of C20 (5 mg/kg) in lowering the number of circulating
CD3+ and CD11b+ immune cells. After two weeks of treatment, we found that twice-weekly
administration was as effective as daily administration (Supplementary Figure S1). C20
or vehicle were thus administered to mdx mice from 3 weeks of age (one week before
starting the exercise session) via intraperitoneal injection, twice a week at 5 mg/kg [30,31].
At the end of the exercise protocol, at the age of 12 weeks, mice from both groups, together
with unexercised age-matched controls, were sacrificed, and hearts were harvested for
analysis. Interestingly, during the exercise sessions, we observed a decrease in exhaustion
among the C20-treated mice compared with vehicle-treated (Figure 1B), suggesting that
treatment with the established dose and frequency of C20 might be effective in ameliorating
running performance.
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investigated the effect of its inhibition on immune cell infiltration in the dystrophic heart 
by cytofluorimetric analysis. Our complete gating strategy to identify different immune 
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was significantly reduced in the heart of C20 treated mice compared with vehicle-treated 
counterparts (Figure 2A,B). The abundance of CD45+ cells observed in C20 treated ex mdx 
was similar, or even lower, compared to unexercised age-matched mdx (Figure 2B). All 
the immune cell populations examined were significantly reduced in number, except for 
neutrophils, which, although reduced, did not reach statistical significance (Figure 2C–G). 
These results demonstrated that inhibiting PKCθ-dependent T-cell infiltration reduces in-
flammation in the dystrophic heart. 

Figure 1. C20 twice-a-week administration increases running performance in the mdx mice. (A) A
schematic description of the C20 treatment and exercise protocol. (B) Percentage of mice exhausted
per exercise session, expressed as mean +/− S.E.M.; ** p < 0.01, unpaired t-test w/Welch’s correction.
N = 10 mice/exercise session.

2.2. C20 Treatment Reduces Immune Cells Infiltration of the Heart

Next, considering that PKCθ is required to mount an effective immune response, we
investigated the effect of its inhibition on immune cell infiltration in the dystrophic heart
by cytofluorimetric analysis. Our complete gating strategy to identify different immune
cells is shown in Supplementary Figure S2. The number of total CD45+ hemopoietic cells
was significantly reduced in the heart of C20 treated mice compared with vehicle-treated
counterparts (Figure 2A,B). The abundance of CD45+ cells observed in C20 treated ex mdx
was similar, or even lower, compared to unexercised age-matched mdx (Figure 2B). All
the immune cell populations examined were significantly reduced in number, except for
neutrophils, which, although reduced, did not reach statistical significance (Figure 2C–G).
These results demonstrated that inhibiting PKCθ-dependent T-cell infiltration reduces
inflammation in the dystrophic heart.
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CD3+ T cells (C), CD11b+ myeloid cells (D), F4/80hi macrophages (E), Ly6chi-F4/80− inflammatory 
monocytes (F), and Ly6g+ neutrophils (G) in control mdx, vehicle-treated, and C20-treated exercised 
mdx hearts, expressed as number of cells normalised per gram of tissue. Data are shown as media 
+/− S.E.M. n = 5–9 independent samples per group ** p < 0.01, *** p < 0.001, **** p < 0.0001, ordinary 
one-way ANOVA with Bonferroni correction for multiple comparisons. 
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Figure 2. Reduced immune infiltration in C20-treated exercised mdx hearts compared with con-
trols. (A) Representative images showing the gating for CD45+ heart immune infiltrating cells in
control mdx, vehicle-treated, and C20-treated exercised mdx. (B–G) Quantification of total CD45+

cells (B) CD3+ T cells (C), CD11b+ myeloid cells (D), F4/80hi macrophages (E), Ly6chi-F4/80− inflam-
matory monocytes (F), and Ly6g+ neutrophils (G) in control mdx, vehicle-treated, and C20-treated
exercised mdx hearts, expressed as number of cells normalised per gram of tissue. Data are shown as
media +/− S.E.M. n = 5–9 independent samples per group ** p < 0.01, *** p < 0.001, **** p < 0.0001,
ordinary one-way ANOVA with Bonferroni correction for multiple comparisons.

2.3. C20 Treatment Reduces the Cells Infiltration Area and Cardiomyocyte Necrosis in
Mdx Ventricles

To examine heart muscle organisation in C20 and vehicle-treated ex mdx, ventricle
cryosections were stained with haematoxylin and eosin (H&E). As shown in Figure 3A,
we found no apparent alterations in cardiac muscle tissue organisation; however, in line
with the cytofluorimetric results, we found a reduction in the cell infiltration total area in
C20 treated hearts compared with controls (Figure 3B), together with a decrease in the size
of the infiltrating cell patches (Figure 3C), while no change was found in their number,
normalised per square millimetre (Figure 3D).
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Since immune cell infiltration might be triggered by necrotic cell death of cardiomy-
ocytes [47,48], we analysed ventricular cardiomyocyte necrosis in C20 or vehicle-treated 
ex mdx by immune-staining of the ventricle cryosections with anti-mouse IgG conjugated 
to a TRITC fluorochrome. As shown in Figure 4A,B, the necrotic ventricle area was signif-
icantly reduced in the C20 treated mice compared with vehicle-treated controls, with lev-
els comparable to unexercised age-matched mdx. Taken together, these results demon-
strated that C20 treatment ameliorates dystrophic heart phenotype in the ex mdx model 
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Figure 3. Decreased cell infiltration area in C20-treated exercised mdx. (A) Representative H&E
staining showing myocardium morphology and the infiltrating cell patches in control mdx and vehicle
or C20-treated exercised mdx. (B) Quantification of cell infiltration area expressed as percentage over
the total ventricular area, as determined in H&E stained cryosections. (C) Quantification of the size
of cells infiltration patches expressed in µm2. (D) Quantification of the number of cells infiltration
patches, normalised per mm2. Data from (B,D) are expressed as mean +/− S.E.M.; n = 5, 9, five
independent samples per group. All quantifications were calculated using ImageJ software, * p < 0.05,
** p < 0.01, ordinary one-way ANOVA with Bonferroni correction for multiple comparisons.

Since immune cell infiltration might be triggered by necrotic cell death of cardiomy-
ocytes [47,48], we analysed ventricular cardiomyocyte necrosis in C20 or vehicle-treated ex
mdx by immune-staining of the ventricle cryosections with anti-mouse IgG conjugated to a
TRITC fluorochrome. As shown in Figure 4A,B, the necrotic ventricle area was significantly
reduced in the C20 treated mice compared with vehicle-treated controls, with levels com-
parable to unexercised age-matched mdx. Taken together, these results demonstrated that
C20 treatment ameliorates dystrophic heart phenotype in the ex mdx model by reducing
immune cell infiltration and cardiomyocyte necrosis.
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matched mdx. Accordingly, Collagen1α mRNA was significantly decreased in C20-treated 
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Figure 4. Decreased cardiomyocytes necrosis in C20-treated exercised mdx ventricles. (A) Representa-
tive images showing ventricular necrosis in control mdx and vehicle or C20-treated exercised mdx, as
detected by anti-mouse IgG staining. (B) Quantification of the ventricular necrotic area expressed as
percentage over the total ventricular area, calculated using ImageJ software. Data are shown as mean
+/− S.E.M, n = 3, 7, 5 independent samples per group. * p < 0.05, ordinary one-way ANOVA with
Bonferroni correction for multiple comparisons.

2.4. C20 Treatment Reduces Fibrotic Tissue Deposition in Ex-Mdx Ventricles

Excessive cardiomyocyte necrotic cell death and subsequent cell infiltration lead to
fibrotic tissue deposition in heart ventricles [48,49]. To examine the effect of C20 treatment
on heart fibrosis in the ex mdx mice, cryosections of the heart ventricles were stained with
Sirius red, and the extent of collagen deposition was analysed using ImageJ software. As
shown in Figure 5A and B, C20 treatment resulted in a strong decrease of the ventricular
fibrotic area compared with vehicle-treated controls. Moreover, the level of ventricle fibrosis
in the C20 treated ex mdx was similar to the level observed in unexercised age-matched mdx.
Accordingly, Collagen1α mRNA was significantly decreased in C20-treated hearts com-
pared with vehicle-treated controls, as shown by qRT-PCR (Figure 5C), accompanied by a
decrease in the pro-inflammatory cytokine IL-6 transcript (Figure 5D). Taken together, these
results showed that C20 treatment reduces fibrotic tissue deposition in the dystrophic heart.

2.5. Heart Function Is Preserved in C20-Treated Exercised Mdx

In DMD-related cardiomyopathy, fibrotic tissue deposition is associated with ventricu-
lar hypertrophy and is followed by progressive left ventricle dysfunction, reduced heart
contractility, and ejection volume [5,6,9,10]. Since we found a reduction in the ventricular
fibrotic area in C20-treated ex mdx, we wondered whether PKCθ inhibition can amelio-
rate heart function. We, therefore, performed an echocardiographic analysis in C20 and
vehicle-treated mice; age-matched unexercised mdx mice were added as a baseline control.
The main parameters investigated are summarised in Table 1.
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Table 1. Summary of the main echocardiographic parameters examined in exercised and control mdx.
Data are expressed as mean +/− S.E.M., n = 8–10/condition # p < 0.05 (ex mdx vs. ex + c20), ** p < 0.01
(mdx vs. ex mdx), one-way ordinary ANOVA with Bonferroni correction for multiple comparisons.

End-Diastolic
Diameter

[mm]

End-Systolic
Diameter

[mm]

Anterior Wall
Thickness

[mm]

Posterior Wall
Thickness

[mm]

Fractional
Shortening

[%]

Heart Rate
(bpm)

Heart
Weight/Body

Weight [mg/g]

mdx 2.78 ± 0.044 1.41 ± 0.09 1.11 ± 0.06 1.08 ± 0.03 53.9 ± 1.81 417 ± 16.4 5.95 ± 0.16

ex+vehicle 3.04 ± 0.11 1.5 ± 0.1 1.06 ± 0.04 1.16 ± 0.02 44.4 ± 2.12 ** 441 ± 32.7 5.53 ± 0.28

ex+c20 3.1 ± 0.12 1.53 ± 0.1 1.11 ± 0.07 1.11 ± 0.03 50.8 ± 1.26 # 443 ± 43.8 5.55 ± 0.34
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Figure 5. Decreased fibrotic tissue deposition in C20-treated exercised mdx ventricles. (A) Repre-
sentative images of ventricular fibrosis in the hearts of control mdx vehicle-treated or C20-treated
exercised mdx mice, evidenced by Sirius red collagen staining. (B) Quantification often ventricular
fibrotic area over the total ventricular area expressed as percentage and calculated by ImageJ Colour
Deconvolution plugin. n = 5, 10, 5 independent samples per group. * p < 0.05, ** p < 0.01, ordinary
one-way ANOVA with Bonferroni correction for multiple comparisons. (C,D) qRT-PCR on total heart
RNA for Collagen1α (n = 6 independent samples per group) and IL-6 mRNA (n = 5 independent
samples per group). * p < 0.05, unpaired t-test w/Welch’s correction. Data from (B,D) are shown as
mean +/− S.E.M.
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As shown in Table 1 and in Figure 6A,B, C20 treatment prevented the reduction of left
ventricle fractional shortening observed in vehicle-treated ex mdx. No alterations were seen
in wall or septum thickness, or in chamber dilation as well as in heart rate. These results
demonstrated that C20 treatment can preserve cardiac function in the ex mdx hearts.
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Figure 6. Prevented left ventricular loss of function in C20 treated ex mdx. (A) Representative
images of the echocardiographic analysis of control mdx and vehicle or C20-treated ex mdx. (B) Left
ventricle fractional shortening expressed in percentage and calculated on the short axe. n = 10, 8,
10 independent samples per group. * p < 0.05, ** p < 0.01, one-way ordinary ANOVA with Bonferroni
correction for multiple comparisons.

3. Discussion

This study demonstrated that blunting dystrophic heart inflammation through PKCθ

inhibition can ameliorate heart phenotype and improve heart function in a novel model of
DMD-related cardiac pathology.

We used the exercised mdx mice we recently characterised in order to test pharmaco-
logical approaches, because they display an accelerated and worsened dystrophic heart
phenotype [46]. In the mdx mouse model in fact, the cardiac workload induced by the
exercise is not tolerated because of the absence of dystrophin. By contrast, it is well known
that chronic, moderate-intensity exercise on healthy mice does not induce any detrimental
effect on cardiac phenotype and function, but beneficial instead [50–57]. We therefore
avoided exercising wild-type mice, and we compared the cardiac phenotype of the exercised
mdx mice treated or not with the inhibitor to age-matching mdx mice when no signs of heart
abnormalities were evident without exercise. Importantly, we previously showed that C20
treatment did not have detrimental effects on cardiac phenotype of healthy mice in terms
of tissue organization and gene expression, making it a promising pharmacological strat-
egy [31]. As discussed before, PKCθ represents an attractive target for anti-inflammatory
interventions, since, given its crucial role in TCR-mediated signals, its inhibition might
result in immune-modulation rather than a generic immune-suppression [33,36,58–60].
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We used this approach since it is now well established that the immune response plays
a critical role in DMD pathology progression [28,61,62], and interfering with the onset or the
amplification of the immune response can ameliorate dystrophic muscle phenotype and/or
function [23–27,29,63] as well as heart pathology [64–67]. It is well established that T cells
orchestrate and amplify the immune response by secreting inflammatory cytokines and
by recruiting other immune cells at the site of inflammation through various chemokines
release [26,68,69], and targeting T cells may represent a therapeutic strategy for diseases
that share chronic inflammation as a common feature. PKCθ raised attention as an attractive
protein target to interfere with T cells activity because of its crucial role in T cells activation
and proliferation [33,36,38,39]. We previously showed that the genetic ablation of PKCθ

in the mdx resulted in a striking improvement of dystrophic skeletal muscle phenotype
and function as well as a preserved MuScs pool [42,70]. Interestingly, ablating PKCθ in
skeletal muscle but not in hematopoietic cells could not rescue the dystrophic muscle
phenotype [70]. Moreover, the pharmacological inhibition of PKCθ, with the specific
inhibitor C20, counteracted skeletal muscle dystrophic progression [30,31,41]. In particular,
we showed that among the immune cell populations, T lymphocytes are the main target
of C20 treatment, and targeting their early recruitment to dystrophic muscle reduced the
number of all the other infiltrating immune populations, such as inflammatory monocytes
or macrophages [30].

Similarly, in this study, we show that C20 treatment strongly reduces the number of all
the immune cell types infiltrating the exercised dystrophic heart, as well. Indeed, not only
T cells, but all the myeloid cell populations examined, such as recently recruited mono-
cytes, macrophages, and neutrophils were reduced in the heart of C20-treated exercised
mdx. Considering that in the dystrophic heart environment, ventricular damage could be
amplified by the immune response [9], and on the basis of previous results we obtained on
the skeletal muscle [30,31], we propose that PKCθ inhibition by C20 administration might
blunt the immune response sustained by T cells recruitment, dampening the amplification
of the damage and the subsequent cardiomyocytes necrosis and fibrotic tissue deposition
(Figure 7).
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Figure 7. Proposed mechanism of C20 effect. The loss of functional dystrophin causes cardiomyocytes
sarcolemma leaks in response to cardiac workload (mimicked by the exercise protocol), promoting
immune cells infiltration. Immune cell infiltration amplifies cardiac damage, leading to exacerbated
fibrotic tissue deposition. C20 treatment, inhibiting T cells activity, blunts the inflammation in
response to CMCs cell death, leading to a decrease in myeloid infiltration and protecting the tissue by
the amplification of the damage.

In this study, we showed that C20 treatment fully prevented the dystrophic cardiac
pathology observed in 12-week-old exercised mdx mice. Indeed, the level of fibrosis,
inflammation, and necrosis was similar to the control age-matched 12-week-old mdx, in
which no significant cardiac abnormalities are yet detectable. In line with the histological
results, we found that C20 treatment prevented the increase in collagen 1α1 transcription
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and in IL-6 mRNA observed in exercised mice, bringing it back to the level in control
animals. Interestingly, IL-6 blockade or depletion was shown to ameliorate heart fibrosis
in other cardiopathic mice models [71,72]. Indeed, the inflammation-necrosis-fibrosis
axis has been described as pivotal in driving heart failure [47,48,73]. In our study, C20
treatment prevented the decrease in left ventricle fractional shortening observed in the
vehicle-treated ex mdx, in line with the decrease in ventricular fibrotic tissue deposition. It is
worth mentioning that C20 treatment also reduced the frequency of treadmill exhaustion
during the exercise protocol. This fact could be attributed mainly to the preserved heart
function since, as we described previously, the lower limb and diaphragm muscle are only
slightly affected by this exercise protocol [46].

Nevertheless, we cannot rule out that other PKCθ-expressing cells, besides immune
cells, might be targeted by C20 and contribute to the ameliorated dystrophic heart pheno-
type and function. PKCθ has been suggested to be involved in other biological processes,
such as platelet activation, insulin response, or cancer progression. Nevertheless, the role
of this protein in other cell types appears not to be crucial [74–76]. By contrast, the essential
role of PKCθ in T cells is well established and characterised [32,34,35,37], making PKCθ an
attractive target for anti-inflammatory approaches [33,36,38,60,77].

Considering that PKCθ is also expressed in murine cardiomyocytes, the possibility
that long-term treatment with C20 might interfere with cardiomyocytes function should
be considered. Indeed, although PKCθ−/− mice develop normally and are healthy [42,70],
we previously showed that lack of PKCθ increased heart fibrosis over time and made
cardiomyocyte more prone to workload-induced apoptosis [78]. However, in that model,
PKCθ is lacking constitutively from embryonic development throughout the entire life,
a condition not mirrored by administering a PKCθ inhibitor twice a week at a relatively
low dose. As previously mentioned, C20 administration did not have significant effects
on healthy, non-inflamed hearts [31]. In any case, in a chronic inflammatory environment,
as in the dystrophic heart, the beneficial effects of blunting the immune response might
overcome the eventual detrimental effects on cardiomyocytes, similarly to what we found
in dystrophic skeletal muscle [30,31]. Finally, since PKCθ is not expressed in the human
heart [79], but it is in human immune cells, it may represent an attractive target to ameliorate
the human dystrophic heart pathology.

In conclusion, we showed that inhibition of PKCθ reduced dystrophic heart inflamma-
tion, necrosis, and fibrosis, and ameliorated heart function in a model of worsened DMD
cardiomyopathy. We believe that this could represent an attractive palliative approach to
slow down the progression of dystrophic cardiomyopathy.

4. Materials and Methods
4.1. Animal Models

C57BL/10ScSn-Dmdmdx mice were purchased from the Jackson Laboratory (Bar Harbor,
ME, USA). The mice were housed in the Histology Department-accredited animal facility
at the University of Sapienza. All the procedures were approved by the Italian Ministry for
Health and were conducted according to the EU regulations and the Italian Law on Animal
Research. Only males were used.

4.2. Treadmill Exercise

The exercise was carried out as previously described [46] using a five-lane motorised
treadmill (LE 8710, PanLab S.L.U., Barcelona, Spain) supplied with shocker plates. Four-
week-old mdx mice were exercised twice a week for 8 weeks. At the end of the exercise pro-
tocol, at 12 weeks of age, mice were sacrificed and processed for analyses. To set up the ex-
ercise protocol, we followed the general indication contained in the S.O.P. DMD_M_2.1.001
by De Luca et al., 2008. After 10 min of acclimation on the stationary treadmill, the exercise
started with a 10 min-long “warm-up” session in order not to stress or exhaust the mice too
fast. Warm-up started at a speed of 10 cm/s, increasing 2 cm/s every 2 min. Then, 50 min
of exercise was performed at a constant speed of 20 cm/s. We recommend spacing out two
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sessions of 25 min of exercise (20 cm/s) with a 5 min-long pause. A critical adjustment we
followed was not to use electric shocker plates to induce the mice to the run but to use
gentle manipulation or a physical obstacle. This adjustment reduced stress in mice and
sensibly increased their ability to complete the exercise session, avoiding exhaustion.

4.3. C20 Treatment

C20 was prepared as a mother solution at the concentration of 100 ug/uL in DMSO
and then diluted 1:100 in 0.9% NaCl saline solution. The vehicle was prepared diluting
DMSO 1:100 in the same saline solution. Three-week-old mdx mice were intraperitoneally
injected twice a week with C20, at the dose of 5 mg/kg, or with vehicle, in a total volume
of around 0.1 mL, using 500 µL syringes with 27 G needles. The treatment was maintained
throughout the exercise protocol, which started one week later at the age of 4 weeks, for the
following 8 weeks. The bi-weekly C20 or vehicle injection preceded the bi-weekly exercise
session of about 24 h. Mice were sacrificed 48 h after the last exercise session.

4.4. Histology

Heart ventricles were embedded in tissue-freezing medium after dissection (O.C.T.
Compound, Sakura 4583, Japan) and snap-frozen in liquid nitrogen-cooled isopentane.
Frozen heart ventricles were cut into 8 µm sections (four sections per heart) and stored at
−20 ◦C until use. Histochemistry and immunofluorescence analyses were performed as
previously described [30,31,42].

Briefly, for histological analysis, the sections were stained with haematoxylin/eosin
or with Sirius red/picric acid (both from Sigma-Aldrich, Saint Louis, MO, USA). The sec-
tions were photographed in a Zeiss Axioskop 2 Plusfluorescence microscope, using a
10× objective and a 10× eyepiece. The whole ventricular surface was acquired for each
section. Quantification of cell infiltration patches size and number, as well as total ven-
tricular area, was performed using built-in functions in ImageJ open-source software
(https://imagej.nih.gov/ij/, accessed on 31 December 2021). Quantification of colla-
gen deposition was determined using the Color Deconvolution plugin (by G. Landini,
https://imagej.net/plugins/colour-deconvolution, accessed on 31 December 2021) of Im-
ageJ software.

For immunostaining of the necrotic areas, permeabilization in methanol (6 min at
−20 ◦C) was performed on cryosections after fixation. After three PBS washes, sections
were blocked in 5% goat serum and incubated with rabbit anti-laminin primary antibody
(Life Technologies, Carlsbad, CA, USA) for 1 h at room temperature, at the dilution of
1:400 in 1% PBS-BSA. After three washes in 1% PBS-BSA, sections were incubated with
goat anti-mouse IgG antibody coupled to TRITC and goat anti-rabbit IgG coupled to Alexa
Fluor 488 (both from Life Technologies, Carlsbad, CA, USA). Nuclei were counterstained
with Hoechst 33,342 (Fluka, Charlotte, NC, USA). The sections were photographed in a
Zeiss Axioskop 2 Plusfluorescence microscope, using a 10× objective and a 10× eyepiece.
All the ventricular necrotic areas were acquired for each section. The images were then
analysed using ImageJ software.

4.5. Flow Cytometry

Cytofluorimetric analysis was performed as previously described [29,30]. Briefly,
hearts were collected and cut into small pieces with a blade, and then incubated with
collagenase type IV for 1 h and 30′ at 37 ◦C with agitation. The obtained cell suspen-
sion was passed through a 70 µm and then a 40 µm cell strainer; the cells were then
counted on a hemacytometer, collected by centrifugation at 1200 rpm, and suspended in
200 µL of calcium/magnesium-free PBS (phosphate-buffered saline) with 2% FBS (foetal
bovine serum). They were then divided into two tubes for the staining. The cells were
then incubated on ice for 30 min with the following antibodies: CD45 PE/Cy7, F4/80
APC, Ly6g PE Fluor 610, CD11b APC/Cy7, CD206 PERCP/Cy5.5 Ly6c BV-510, I-Ab FITC
(tube 1) and CD45 PE/Cy7, CD3 PERCP Cy5.5, B220 BV-510, CD4 AF488, and CD8 PE

https://imagej.nih.gov/ij/
https://imagej.net/plugins/colour-deconvolution
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(tube 2), all by Biolegend, (San Diego, CA, USA). Cells were then washed with 3 mL of
calcium/magnesium-free PBS and resuspended in 200 µL of calcium/magnesium-free PBS
with 2% FBS. Samples were acquired with a CyAn ADP (Agilent DAKO, Santa Clara, CA,
USA), and acquired data were analysed using FlowJo software version 10.1.

4.6. qRT-PCR

Total RNA from ventricle tissue was extracted using the TRIsure solution (Bioline,
London, UK) and converted in cDNA using the SensiFast cDNA Synthesis kit from Bioline,
according to the supplier’s instructions. PCR amplification was performed using the
SensiMix SYBR Lo-Rox Mix, from Bioline, following the manufacturer’s protocol. All PCR
reactions were carried out in duplicate. All qPCR results are expressed as relative ratios of
the target cDNA transcripts to GAPDH and normalised to those of the reference condition.
The reaction was carried out using a 7500 Real-Time PCR System, and the analysis was
carried out with the 7500-software, both from Applied Biosystem, Waltham, MA, USA.
To amplify the genes of interest, we used the following primers pairs:

GAPDH

(for) 5′-ACCCAGAAGACTGTGGATGG-3′

(rev) 5′-CACATTGGGGGTAGGAACAC-3′:

Collagen1α1

(for) 5′-ACCCAGAAGACTGTGGATGG-3′

(rev) 5′-CAGATTGGGGGTAGGAACAC-3′,

IL-6

(for) 5′-CCCGAAGCGGACTACTATGC-3
(rev) 5′-CATAGATGGCGTTGTTGCGG-3′.

4.7. Echocardiography

Echocardiographic analyses were performed as previously described [80,81]. Briefly,
mice were anaesthetised with 2.5% avertin at the dose of 250 mg/kg (Sigma, Saint Louis,
MO, USA, T48402) and mice chests were shaved. All left measurements were taken in
M-mode short-axis using a VEVO 3100 (Visualsonics, Toronto, ON, Canada) with an
mx550d probe.

4.8. C20 Synthesis

C20 was synthesised at the Dept. of Drug Chemistry and Technologies, La Sapienza,
Roma, according to Cywin et al., 2007 [40]. Compound I (0.62 mmol) was dissolved
in AcOH at 0 ◦C and then KSCN (0.65 mmol) was added portion wise. Upon comple-
tion of the reaction (TLC: EtOAc:Hex 2:1, 2 h), the mixture was quenched with water
and the precipitate was filtered off. The so obtained compound II (2-chloro-5-nitro-4-
thiocyanatopyrimidine) was washed with diethylether and used directly in the next step.
m.p.: 115–117 ◦C; yield: 60%; 1H-NMR (CDCl3, 400 MHz) δ 9.40 (1H, s).

Compound II (0.46 mmol) was suspended in abs EtOH, then o-trifluoromethoxybenzyl-
amine (0.46 mmol) was added followed by the dropwise addition of triethylamine (0.92 mmol).
The resulting precipitate was filtered off after 16 h of stirring at room temperature (TLC:
EtOAc:Hex 2:1) providing the desired intermediate III (5-nitro-4-thiocyanato-N-(2-(trifluoro-
methoxy)benzyl)pyrimidin-2-amine), which was used without further purification in the
next step. m.p.: 190–192 ◦C; yield: 51%; 1H-NMR (DMSO, 400 MHz) δ 4.79 (2H, dd),
7.36–7.54 (4H, m), 9.51 (1H, s), 9.75 (1H, m).

Compound III (0.39 mmol) was suspended in dry DCM and 1,4-Cyclohexanebis(methy-
lamine) (1.56 mmol) and the reaction was left stirring for 16 h at rt. The crude was
loaded on a silica gel column using chloroforom/methanol/ammonia 12:1:0.1 as the elu-
ent system, yielding pure C20 (N4-((4-(aminomethyl)cyclohexyl)methyl)-5-nitro-N2-(2-
(trifluoromethoxy) benzyl)pyrimidine-2,4-diamine). m.p.: 105–107 ◦C; yield: 52%; 1H-NMR
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(DMSO, 400 MHz) δ 0.50–1.50 (13H, m), 2.86 (2H, d), 3.21 (1H, t), 4.63 (2H, dd), 7.34–7.41
(4H, m), 8.69 (1H, m), 8.71 (1H, bs), 8.89 (1H, s); MS (M + H) = 455.01.

4.9. Statistical Analysis

All statistical analyses were performed using Prism software, version 6 (GraphPad
Software, Inc., La Jolla, CA, USA). Data are presented as mean ± SEM. Unpaired two-tailed
Student’s t-test with Welch’s correction was used for statistical comparison between two
groups, and one-way ANOVA (with Bonferroni’s correction for multiple comparisons)
was used for comparisons between multiple groups. A p-value of ≤0.05 was considered
statistically significant.
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