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Abstract: Gliomas represent a wide spectrum of brain tumors characterized by their high invasive-
ness, resistance to chemoradiotherapy, and both intratumoral and intertumoral heterogeneity. Recent
advances in transomics studies revealed that enormous abnormalities exist in different biological
layers of glioma cells, which include genetic/epigenetic alterations, RNA expressions, protein expres-
sion/modifications, and metabolic pathways, which provide opportunities for development of novel
targeted therapeutic agents for gliomas. Metabolic reprogramming is one of the hallmarks of cancer
cells, as well as one of the oldest fields in cancer biology research. Altered cancer cell metabolism not
only provides energy and metabolites to support tumor growth, but also mediates the resistance of
tumor cells to antitumor therapies. The interactions between cancer metabolism and DNA repair
pathways, and the enhancement of radiotherapy sensitivity and assessment of radiation response by
modulation of glioma metabolism are discussed herein.
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1. Introduction/Background

Glioma is a broad category of central nervous system (CNS) tumors, which are one of
the deadliest types of human cancers. Neomorphic mutations in isocitrate dehydrogenase
(IDH) enzymes (arginine 132 for IDH1 and arginine 172 for IDH2) are found in 70% of
gliomas and are highly associated with favorable outcomes of glioma patients [1]. By
contrast, IDH1/2 wild-type glioma (IDHwt; without either of the mutations) is the most
aggressive form of glioma, and IDHwt patients only have a short 6–12-month survival
time [2]. Due to intratumoral heterogeneity and infiltrative nature, glioblastoma (GBM) is
the most aggressive tumor, and it is notoriously resistant to chemoradiation therapy. The
current standard of care for glioma patients largely relies on conventional temozolomide
chemotherapy, and radiation has yielded only modest improvements in patient survival.

Cell metabolism provides the fundamental building blocks and energy sources for
different cellular processes. Warburg’s study indicated that cancer cells can uptake a
tremendous amount of glucose under normoxic conditions and produce lactic acid through
aerobic glycolysis, the well-known Warburg effect [3]. Cancer cells gain proliferative
advantages by increasing glucose uptake and aerobic glycolysis. Since then, there has been
much interest in enhancing radiation sensitivity by modulating cell metabolism. Here, we
review the interplay between cancer cell metabolism and DNA repair activities in brain
tumors and the therapeutic potential of enhancing radiation sensitivity through cancer
metabolic reprogramming.
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2. Radiation Treatment and DNA Damage Responses
2.1. Radiation-Induced Cell Damages

Irradiation can cause DNA damage in mammalian cells, which was first shown in
a microelectrophoretic study almost four decades ago [4]. It is important to understand
the mechanisms by which ionizing radiation produces anti-tumor effects [5]. The major
lesions induced by ionizing radiation are single-strand breaks (SSB) and double-strand
breaks (DSB) in cellular DNA. Although DSBs arise less frequently than SSBs after radiation
exposure, DSBs are arguably more lethal to cancer cells because DSB repair and G2/M
checkpoint cannot guarantee genomic integrity and chromosomal stability. More recent
significant finding is that radiation treatment produces so-called clustered DNA damages,
multiple closely spaced DNA lesions (10–20 bp) on opposing strands [6].

In addition to DNA damage, radiation can also produce a variety of cellular pertur-
bations and oxidative stress caused by reactive free radicals as one of the most significant
consequences. In normal cellular metabolism, reactive oxygen species (ROS) are generated
in aerobic cells, but cells can utilize multiple mechanisms to balance the redox homeostasis
and eliminate oxidative stress such as glutathione (GSH), superoxide dismutase (SOD)
and catalase, etc [7]. However, in many tumors and cancer cell lines, these protective
mechanisms can be either shifted or made incapable of eliminating ROS generated from
the actively proliferating cancer cells. For radiation treatment of cancer, the cellular redox
system may be a critical determinant to enhance cancer cell killing while protecting normal
tissues because ROS can oxidize cellular biomolecules such as proteins and lipids and
activate many pathological processes [8]. While this mechanism has largely remained
uncharted, ROS generation can become one of the primary weapons of radiotherapy for
radiation-induced death of cancer cells [9].

Due to the complexity of the cellular damages induced by radiation treatment, the
biological systems have a limited ability to repair these damages, which provides the
theoretical and experimental foundations of radiation treatment [10].

2.2. DNA Damage Sensors and Early Responders

Cells harbor a cascade of proteins to recognize and repair exogenous and endogenous
DSBs. One of the early responders sensing DSBs is the histone variant H2AX, which is
rapidly phosphorylated on the Serine 139 residue after chemo- or radiation treatment. The
number of γH2AX foci shows specific temporal and spatial relationships with cellular DNA
damages [11]. The MRN complex (Mre11, Rad50, and Nbs1) can be independent from the
H2AX-mediated DNA repair-signaling pathway by recruiting 53BP1 and BRCA1 to DSB sites
and promote homologous recombination (HR) pathway [12]. Loss of MRN complex member
(Mre11, Rad50, and Nbs1) can significantly sensitize the radiation treatment. Ku70/Ku80
heterodimer is composed of 70-kDa (Ku70) and 80-kDa (Ku80) subunits. In combination with
DNA-dependent protein kinase (DNA-PK), Ku70/Ku80 form a multisubunit DNA repair
machinery to repair DSBs through Non-homologous end joining (NHEJ) pathway [13,14].
It has been demonstrated that Ku70/Ku80 heterodimer’s DNA end-binding activity can
dictate the radiosensitivity in human glioma, cervical cancer, and leukemia [15–17].

These DNA damage sensing proteins usually respond to radiation exposure in a few
seconds to minutes range. The highly orchestrated crosstalk of the DNA damage sensing
mechanisms is important to pass the signals between upstream or downstream proteins,
whereby the radiation-damaged cells can engage subsequent repair pathways to maintain
genomic integrity and chromosomal stability.

2.3. DNA Repair Pathways

Base excision repair (BER) and Nucleotide excision repair (NER) are the two key
repair mechanisms of single-strand DNA damages. Several glycosylases can remove the
ionizing radiation-induced DNA damage from the double-stranded helix to create apurinic
or apyrimidinic (AP) site, then DNA polymerase fills the damaged sequence using a homol-
ogous template, and is subsequently sealed by DNA ligase. BER is a cell cycle dependent
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process [18,19]. For example, human apurinic/apyrimidinic endonuclease/redox factor-1
(APE1/Ref-1) is a dual function protein functioning as the major AP endonuclease in
BER pathway as well as in the transcriptional regulation. The expression of human APE1
increases after the G1-S transition and peaks at the S phase, which has a direct impact on
the cytotoxic effects of radiation and temozolomide treatment in glioblastoma cells [20–22].
NER removes the chemo- or radiation-induced bulky DNA lesions which is a multicom-
ponent and multistep biological process. A 24 to 32 nucleotide-long oligomer is excised
by endonuclease XPG (ERCC5).Then, polymerase and replication proteins fill in the gap
followed by ligation [23]. DNA excision repair protein ERCC2 and ERCC1 are impor-
tant components of the NER pathway. The polymorphism of ERCC1 and ERCC2 genes
showed a significant association with the incidence of primary malignant brain tumors in a
meta-analysis study [24].

There are two important pathways coordinating the repair of radiation-induced DSBs
in mammalian cells: homologous recombination (HR) and non-homologous end-joining
(NHEJ). Homologous recombination repair utilizes an undamaged DNA copy to guide
the re-synthesis of the damaged DNA strand, which a repair process with high fidelity
and takes place during the S and G2 phases of the cell cycle. On the other hand, NHEJ
simply rejoins the broken DNA ends without guidance from a homologous template. The
advantage of NHEJ is that this DSB repair mechanism is not limited to a specific phase
of the cell cycle, but NHEJ is prone to lose DNA sequences at DSB sites [25]. Once the
MRN complex is activated, ataxia-telangiectasia (ATM) kinase is recruited to trigger the
DSB-signaling cascade and coordinate DNA repair processes. Mutations in ATM can
notably impair HR and NHEJ pathways, which are crucial to repairing DNA damage
caused directly by ionizing radiation (IR) or reactive chemicals [26]. Furthermore, ATM
mutations confer enhanced radiation sensitivity and potentially develop late toxicity from
cancer radiotherapy [27].

Cellular levels of metabolites are essential for the cells to recover from DNA damages. 5′

AMP-activated protein kinase (AMPK) is a highly conserved metabolic stress sensor protein
which is phosphorylated by ATM in response to chemo- and radiotherapy-induced DNA
damages in cancer cells [28]. The intracellular ATP level needs to be maintained to conduct
the repairing processes of DNA damages, responding to the increased ATP consumption.
The active AMPK can downregulate ATP-consuming biosynthetic processes and upregulate
ATP-producing pathways to balance energy consumption and genomic integrity [29].

The overall mechanisms underlying the tumor metabolism related to radioresistance
have illustrated in the Figure 1.
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3. Preclinical Studies in Cancer Metabolism, Radiation Resistance, and DNA
Repair Pathways
3.1. Glucose Metabolism and DNA Repair Pathways

In all normal cells, glucose is the primary source for energy generation. Glucose enters
into cells via glucose transporters (GLUT), then gets phosphorylated by hexokinase (HK)
to form glucose 6-phosphate. After undergoing a cascade of the enzymatic reactions, the
six-carbon glucose is converted into two three-carbon pyruvate molecules. Under aerobic
settings, pyruvate enters the tricarboxylic acid (TCA) cycle and is subsequently oxidized
to carbon dioxide and water by mitochondrial enzymes to produce a maximum number
of ATP molecules (38 ATPs per glucose). Under an anaerobic setting, the TCA cycle is not
active, and glycolysis becomes the only option that cells can have for the production of ATP
from glucose. This process is not very efficient and only produces 6–8 ATPs per glucose
molecule, and the end product is lactic acid which is the main cause of exercise-induced
muscle fatigue. Here we review the key enzymes found to be essential for the uptake of
glucose in cancer cells and their roles in radiation resistance.

3.1.1. Isocitrate Dehydrogenase

The three isocitrate dehydrogenase (IDHs) isoforms have a prominent place in cellular
metabolism, which catalyzes the reversible oxidative decarboxylation reaction converting
isocitrate to α-ketoglutarate to generate NADPH from NADP+. However, only mutations
in IDH1 and 2 are considered to be the drivers of tumor initiation [30]. IDH1 R132 or IDH2
R172 mutant gliomas usually arise in a younger patient population, and patients with low
grade gliomas (LGG) typically have a long overall survival time (5–10 years). On the other
hand, IDH1 wild-type glioma is the most aggressive form of glioma, and IDHwt patients
only have a short survival time (6–12-months) [2].

Mutant IDH1 proteins gain a new enzymatic activity at the cellular level compared to
wild-type IDH proteins, leading to accumulation of oncometabolite D-2-hydroxyglutarate
(2HG) in cancer cells. 2HG causes global accumulation of cytosine and histone methylations
and drives chromatin to a closed structure, which reduces the activities of oncogenic
signaling pathways [31]. Mutations in IDH1 and IDH2 have frequently been found in
acute myeloid leukemia patients, 7% for IDH1 and 14% for IDH2, separately [32]. IDH2
R140 patients usually have a favorable outcome, however IDH2 R172 patients had a poor
outcome suggesting these two mutations drive tumorigenesis in opposite directions [33].

3.1.2. Pyruvate Dehydrogenase

Pyruvate dehydrogenase (PDH) oxidizes pyruvate to form the two-carbon unit acetyl-
CoA which joins the metabolic pathways between glycolysis and TCA cycle. Pyruvate de-
hydrogenase exerts its functions by forming a large complex with dihydrolipoyl transacety-
lase and dihydrolipoyl dehydrogenase. It has been demonstrated that PDH component
X (PDHX) is an essential gene for the cell growth of esophageal squamous cell carcinoma
(ESCC) through metabolic regulations. The upregulated PDH function can be attributed to
the co-amplification of PDHX and CD44 genes which are known markers of cancer stem
cells in several different malignancies. Small molecule PDH inhibitors have been proven
effective in pre-clinical models. CPI-613, a PDH inhibitor has been shown to inhibit the
proliferation of cancer stem cells (CSCs) in vitro and the growth of ESCC xenograft tumors
in vivo [34].

3.1.3. Pyruvate Kinase

Pyruvate kinase is the last enzyme in glycolysis process, and its end-product, pyruvate,
enters the TCA cycle to form ATP. There are four pyruvate kinase isoforms, but only
Pyruvate Kinase Muscle 2 (PKM2) has been found to be oncogenic [35].
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3.1.4. Glucose Transporters

Glucose Transporter (GLUT) family proteins are encoded by the SLC2 genes and con-
tain 14 members of the GLUT family in human, which actively transport monosaccharides
across the lipid bilayers [36,37]. Over-expression of the facilitative GLUT1 protein has
been observed in a large array of human cancer types suggesting that it likely plays a
role in tumor initiation, progression and modulation of tumor immune microenvironment
(TME) [38–40]. Radiation therapy can induce GLUT1 expression and upregulate glucose
metabolism in MDA-MB-231 and MCF-7 breast cancer cells. Thus, inhibition of GLUT1
may enhance the radiation sensitivity through increasing ROS production. The transient
inhibition of GLUT1 in laryngeal CSCs can increase radiosensitivity by downregulating
the levels of RAD51 and DNA-PKcs [41]. Cancer cells treated with WZB117, a GLUT1
inhibitor, display downregulation of GLUT1 expression and glucose uptake. A combination
of radiation therapy and a GLUT1 inhibitor demonstrated synergistic inhibition effect in
the breast cancer cells [42]. GLUT1 inhibition not only alters the tumor metabolism, but
also influences the tumor TME. Tumor-associated neutrophils (TANs) also rely on GLUT1
and glucose metabolism to support tumor growth.

3.1.5. Hexokinase

Hexokinase (HK) phosphorylates six-carbon glucose to glucose-6-phosphate, which is
the first enzymatic reaction in glycolysis. One glucose analog, 2-Deoxy-glucose (2-DG), can
also be phosphorylated by hexokinase to form 2-deoxy-glucose-6-phosphate. However, this
compound cannot be further processed by the enzymes in cells providing an opportunity to
block glucose uptake. The addition of dietary 2-DG alone has been shown to inhibit Lewis
lung carcinoma and its associated lung metastases and radiation-induced angiogenesis in a
mouse model [43].

3.1.6. Succinate Dehydrogenase

Succinate dehydrogenase (SDH) converts succinate to fumarate in the TCA cycle
facilitating electron transport in the respiratory chain complex. Despite the rare occur-
rence of SDH mutations in humans, mutations in any SDH subunits can damage SDH
complex assembly [44]. Hereditary paraganglioma and pheochromocytoma syndrome
(PGL/PCC) results from the mutations in SDH subunits revealed the relationship between
mitochondrial deficiency and tumor initiation [45]. The significant consequence of loss of
SDH function is the accumulation of succinate, like neomorphic production of d-2HG in
IDH1 mutant cancer, which causes the hypermethylation of DNA and histone 3 [46,47].

3.1.7. Fumarate Hydratase

Fumarate Hydratase (FH) catalyzes the formation of malate from fumarate and the
gene encoding this enzyme is located on chromosome 1p43. Heterozygous germline
mutations of the FH gene have been found to relate to inherited uterine fibroids, skin
leiomyomata and papillary renal cell cancer [48]. As a key member of the TCA cycle,
FH function is essential for cell proliferation and survival. FH-deficient cells accumulate
intracellular fumarate, display hypermethylation phenotype, and exhibit the hypoxic gene
expression profiles even under normoxic conditions [49,50].

3.1.8. Crosstalk between Glucose Metabolism and DNA Repair Pathways

Genetic inhibition of GLUT1 expression in TANs can significantly alleviate tumor
growth and increase radiotherapy efficacy [38].

Increased radiosensitization of IDH1 mutant glioma cells was found in in vitro models
through increasing apoptosis and upregulating ROS generation [51]. The crosstalk between
DNA damage response and IDH1 mutation in the context of TP53 and ATRX loss indicated
that IDH1 R132H acts as a tumor suppressor in glioma by epigenetically upregulating
the ATM signaling pathway in mouse model and patient-derived xenograft model [52].
However, clinical trial suggested that IDH1 mutation glioma patients appeared to be
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sensitive to conventional chemoradiation therapy [53]. The possible reason is that 2HG
can inhibit several DNA repair enzymes [54,55]. PDH complex plays an important role
in citric acid cycle and aerobic glycolysis. A recent study suggested that reduced PDH
activity can promote cancer cells to repair DNA damages through mitochondrial retrograde
signaling [56]. It has recently been found that PKM2 is highly expressed in cancer cells and
reshapes cancer metabolic programming. Phosphorylation of PKM2 at T328 by ATM, a key
member of the DNA repair pathway, attenuates the response to ionizing radiation [57].

2-DG enhancing cytotoxicity and radiosensitization in tumor cells does not only de-
pend on the glucose metabolism, but also decreases intracellular total glutathione content.
The mechanism was demonstrated in the rescue experiment by adding thiol antioxidant
N-acetylcysteine to the HeLa cells, which partially reversed the radiation-induced toxic-
ity [58]. The results from the in vitro and in vivo models suggest that HK2, but not HK1 or
HK3, determines the sensitivity of glioma cells to chemotherapy and/or radiation therapy
through modulating the DNA damage responses [59].

Enhance radiation sensitivity was found in hamster B9 fibroblasts expressing a muta-
tion in the gene coding for SDH subunit C. Disruption of mitochondrial metabolism can
result in the elevation of intracellular ROS levels, which can dictate the biological effects of
radiation [60].

One of the historical principles of radiation therapy and DNA-damaging chemother-
apy is the accumulation of DNA damage and the resulting progression toward genomic in-
stability. [61] One recently published study shed light on FH as a DNA repair factor in NHEJ
by producing fumarate locally. FH-deficient cells gain resistance to the radiation-induced
DNA damage by promoting rapid mitotic entry and fumarate-dependent promotion of
NHEJ [62,63].

3.2. Amino Acid Metabolism and DNA Repair Pathways
3.2.1. Glutamine Synthetase

Glutamine is also recognized as a non-essential amino acid because the magnesium-
dependent glutamine synthetase (GS) catalyzes the reaction by condensing glutamate and
ammonia to form glutamine. Cancer cells with specific genetic alterations such as MYC
amplification can reprogram mitochondrial metabolism and upregulate glutaminolysis to
support the production of energy and building blocks for cell division. The phenomenon
can make cancer cells addicted to glutamine as their bioenergetic resource [64]. The recently
developed glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON, also termed JHU-083)
can simultaneously suppress glycolysis and oxidative phosphorylation in cancer cells,
which enhanced anticancer immune responses in a preclinical model. This study revealed
metabolic checkpoint inhibitors as a promising and undefined field which may have a
similar impact and immunotherapy with further investigation [65]. To identify patients
who will benefit from glutamine deprivation therapy, the synergy between glycolysis and
glutaminase inhibition is being actively investigated [66].

3.2.2. Phosphoglycerate Dehydrogenase

Serine is a non-essential amino acid that can be taken from the diet or synthesized de
novo via the serine synthesis pathway. The serine synthesis pathway connects many metabolic
pathways, including glycolysis, nucleotide synthesis and S-adenosyl methionine cycle. The
serine synthesis pathway starts with the glycolytic intermediate 3-phosphoglycerate (3PG).
Phosphoglycerate dehydrogenase (PHGDH) catalyzes 3PG to 3-phosphohydroxypyruvate
(3PHP), then phosphoserine aminotransferase 1 (PSAT1) converts 3PHP into 3-phosphoserine
(3PS). Lastly, phosphoserine phosphatase (PSPH) hydrolyzes 3PS to form serine [67].

It has also been demonstrated that the dependence of cancer cells on serine can
result from the amplification of the serine synthesis pathway enzymes especially PHGDH
encoded by the gene located in chromosome 1p [68,69]. Furthermore, increased serine
synthesis activity may present as a therapeutic target in some cancers. This observation
revealed that the byproducts of de novo serine synthesis are essential for breast cancer
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by supporting nucleotide synthesis and maintaining cellular redox balance [69]. These
findings suggest that targeting the enzymes involved in serine synthesis and limiting
exogenous serine could be promising therapeutic approaches for cancer therapy.

NCT-502 and NCT-503 are two small-molecule inhibitors of PHGDH enzyme devel-
oped by David Sabatini’s group. Recent data have demonstrated that the biological or
chemical inhibition of PHGDH reduces the incorporation of glucose-derived and exogenous
serine into nucleotide synthesis by decreasing the activity of cytosolic serine hydroxymethyl
transferase (SHMT1). NCT-503 displayed its ability to reduce the tumor volume of cell
lines with high serine synthesis activity in the in vitro and orthotopic xenograft models [70].
CBR-5884 is another recently developed small molecular inhibitor of PHGDH, which shows
a high selective toxicity to PHGDH-dependent tumor cells. This compound is a noncompet-
itive inhibitor that shows a time-dependent onset of inhibition and attenuates the PHGDH
enzymatic activity on its oligomeric state [71].

3.2.3. Argininosuccinate Synthetase and Argininosuccinate Lyase

Citrulline derived from the urea cycle is the precursor for arginine biosynthesis. Argi-
nine, a non-essential amino acid, can be readily acquired from daily food consumption or de
novo synthesized through the urea cycle in the normal cells by argininosuccinate synthetase
(ASS) and argininosuccinate lyase (ASL) [72]. The most aggressive malignant tumors are
usually associated with increased metabolic activities to support their high proliferation
rate, metastasis, and invasion. Because various amino acids within cell survival pathways,
arginine deprivation therapy becomes intriguing in arginine auxotrophic tumor types [73].

3.2.4. Arginase

Arginine is an amino acid essential for T cell and natural killer (NK) cell proliferation.
Two distinct isoforms, arginase (ARG) I and II, are located in the cytosol and in mitochon-
dria, respectively [74]. Tumor-infiltrating myeloid cells expressing high levels of arginase
can quickly deplete arginine in the tumor TME and promote immune evasion. CB-1158 is
a recently developed small-molecule inhibitor of arginase that reverses the myeloid cell-
mediated suppression of T cell functions. In vitro and syngeneic mouse models revealed
that CB-1158 augmented tumor-infiltrating T cells and NK cells and delayed the tumor
growth as a single agent or combined with checkpoint blockade therapy [75]. It is worth
noting that 25 Gy irradiation induced mRNA and protein expression of arginase in the
syngenic murine prostate cancer model, and, furthermore, tumor-associated macrophages
(TAM) were found to be the sources of the elevated arginase expression [76]. It is known
that radiation therapy can promote adaptive immune responses by the release of damage-
associated molecular pattern (DAMP) molecules. Similarly, Tumor-associated myeloid
cells restrain the adaptive immune response after radiation therapy through overexpress-
ing arginase. Myeloid cell-specific ARG deletion in an in vivo model demonstrated an
enhanced tumor control after radiation therapy [77].

3.2.5. Crosstalk between Amino Acid Metabolism and DNA Repair Pathways

Glutamine deprivation or pharmacological inhibition of glutaminase can significantly
promote radiation-induced apoptosis and sensitized pancreatic CSCs to fractionated ra-
diation [78]. In addition, the in vitro and xenograft lung cancer models suggest a 30%
increase in radiosensitivity after being treated with GLS inhibitors [79]. After examining
13Carbon metabolism in the GBM tumors and adjacent tissues of an orthotopic mouse
model; the study indicated strikingly that a large accumulation of glutamine was found
in the tumor tissues, which can only be partially explained by GS enzyme activity [80].
Several studies have demonstrated that the high glutamine synthetase activity is linked
with the radiation resistance of cancer cells by modulating nucleotide metabolism, G2/M
recovery, and DNA repair [81,82]. Moreover, high expression of glutamine synthase can
support the proliferation of cancer cells in a novel non-canonical glutamine-independent
pathway that, in turn, augment chemoradiation resistance in many cancers [79].
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Some cancer cells have demonstrated increased de novo serine synthesis through
upregulation of PHGDH indicating their survival depends on the sustainable supply of
serine [83]. To the best of our knowledge, the available data investigating the efficacy of the
radiotherapy combined with inhibition of PHGDH is very limited.

ASS is the limiting step of arginine biosynthesis, therefore, some pancreatic, skin, liver,
and renal tumors that usually have low expression of ASS have demonstrated the enhanced
sensitivity to arginine deprivation therapy in vitro and in vivo [84]. Arginine starvation has
been associated with DNA damages and genome instability in breast cancer cells because
low arginine level can reduce dNTP pools and affect DNA repair [85].

3.3. Nucleic Acid Metabolism and DNA Repair Pathways

Nucleotide synthesis and DNA replication are the basic requirements for cell prolifera-
tion, especially in the case of rapidly proliferating cancer cells. The biosynthesis of purine,
including a six-membered and a five-membered nitrogen-containing ring, and pyrimidine,
including a six-membered nitrogen-containing ring is critical for meeting this nucleotide
demand. Furthermore, it provides the source of energy for driving cellular biological
processes. There are two primary routes for the biosynthesis of nucleotides: de novo
and salvage pathways [86]. Although the salvage pathway can recycle free purines and
pyrimidines for nucleoside and nucleotide biosynthesis, most proliferating cells, especially
cancer cells, synthesize nucleotides and nucleic acids de novo [87]. Understanding the
regulation of the nucleotide salvage pathways by cancer cells can be vital to develop new
strategies to target cancer cell proliferation using chemoradiation therapy.

3.3.1. Phosphoribosyl Pyrophosphate Amidotransferase

The de novo pathway enzymes synthesize purine nucleotides from 5-phosphoribosyl-
1-pyrophosphate (PRPP) with other simple molecules such as amino acids and tetrahy-
drofolate. The de novo purine metabolism demands high energy input such as ATP or
GTP, which are required in five of the 12 sequential purine biosynthesis reactions [88].
Purine analogs 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and 8-Azaguanine (8-AG)
were first developed to inhibit several enzymes involved in purine biosynthesis, including
PRPP amidotransferase (PPAT). PPAT is the first the rate-limiting step of de novo purine
synthesis [89].

3.3.2. Inosine-5′-Monophosphate Dehydrogenase

Inosine-5′-monophosphate dehydrogenase (IMPDH) is a key enzyme which is in-
volved in the de novo synthesis of guanine nucleotides. Additionally, IMPDH is also
involved in the GTP salvage pathway though recycling the hypoxanthine. It has been
demonstrated that the IMPDH-dependent de novo synthesis of guanine nucleotides is
critical for radiation resistance of glioblastoma cells. Mycophenolic acid (MPA), preventing
the formation of guanosine monophosphate, can deplete GTP concentrations and sensitize
glioblastoma cells to radiation treatment in a dose-dependent fashion [90,91].

3.3.3. Thymidylate Kinase

De novo pyrimidine nucleotide biosynthesis starts from carbamoyl phosphate, which
is subsequently converted to uridine mono-, di-, and triphosphate (UMP, UDP, and UTP).
These metabolites are the starting materials for de novo thymine nucleotide synthesis. The
fundamental inhibition principles of purine and pyrimidine antimetabolites are similar.
Cellular enzymes of the pyrimidine metabolic pathway partially convert the pyrimidine
analogs, but these metabolites impair the functions of one or more downstream enzymes
critical in DNA synthesis [92]. Recent findings indicated that thymidylate kinase (TMPK) is
needed to elevate dNTPs pools in the vicinity of DNA damages, which can be determinant
for the repair of DSBs [93].
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3.3.4. Thymidylate Synthase

Thymidylate synthase (TS) activity is the de novo source of thymidylate for DNA
synthesis as part of the folate cycle, which is a valuable target for antimetabolites drug
development. Fluorouracil (5-FU) which inhibits thymidylate synthase, is an analog of
pyrimidine nucleoside [94]. 5-FU has been widely used to treat multiple solid tumors,
including breast, prostate, colon, and cholangiocarcinoma cancers [95].

3.3.5. Antifolate Therapy and Other Nucleotide Inhibitors

Antifolates were the first type of antimetabolites to achieve clinical success, more than
70 years ago. Antifolates act by disrupting one-carbon moieties supplied by the folate
(vitamin B-9). The folate cycle is tightly connected to de novo purine and pyrimidine
nucleotide metabolism. The mammalian target of rapamycin (mTOR) regulates a number
of cellular processes, including cell survival, proliferation, and metabolism, and activation
of mTOR signaling pathways is associated with human cancer [96]. It has been found
recently that mTORC1 protein kinase complex induces purine synthesis by upregulating
transcription factor ATF4, further augmenting the level of the methylenetetrahydrofolate
dehydrogenase 2. Serial events lead to rewiring the anabolic purine synthesis pathways
in cancer cells and supply the required precursor metabolites for cancer cell the growth
with availability of required precursor metabolites [97]. Methotrexate (MTX), formerly
known as amethopterin, inhibits de novo purine synthesis in human breast cancer cells
by blocking dihydrofolate reductase reaction [88]. It has been known that dihydrofolate
reductase (inhibited by methotrexate) and thymidylate synthase (inhibited by pemetrexed)
are two key members of the folate cycle. Antifolate therapy has cured many cancer
patients over the years because folates are essential for the synthesis of DNA and other
nucleic acid molecules [98]. Drawbacks remain, however, as it has been reported that
patients treated with a combination of MTX and ionizing radiation can cause a diversity of
clinical syndromes, including neurotoxicities, as seen in children with acute lymphoblastic
leukemia [99].

3.3.6. Crosstalk between Nucleic Acid Metabolism and DNA Repair Pathways

The development of resistance in tumor cells toward pyrimidine and purine an-
timetabolite therapy generally results from an evolutionary process found in heterogenous
tumor cell populations as they undergo the stress of cytotoxic therapies. In addition to
the de novo purine and pyrimidine synthesis, the salvage pathway can also recycle free
purines and pyrimidines for nucleoside and nucleotide biosynthesis. Understanding the
regulation of the nucleotide salvage pathways by cancer cells can be vital to unfold new
strategies to target cancer cell proliferation.

DNA damages demand cells to rewire their metabolic pathways to synthesize dNTP
pool for better DNA repair abilities and a survival advantage. Glioma is one of the solid
tumors exhibiting pronounced intratumoral genomic heterogeneity, therefore, inhibition
of purine and pyrimidine nucleotide metabolism is an effective approach independent of
genotype. The upregulated enzyme of de novo GTP synthesis is associated with lower
survival rate in GBM patients [100]. Therefore, pharmacological inhibition of GTP synthesis
can substantially sensitize radiation-resistant glioma cells. It was further demonstrated that
MYC takes over the control of purine synthesis by reprogramming metabolisms of brain
tumor initiating cells [101].

3.4. Lipid Metabolism and Radiation Sensitivity

A vast number of water-soluble and lipid-soluble metabolites circulate in the human
body. A mass-spectrometry-based strategy researchers recently identified a specific serum
lipidomic biosignature found in mice after ionizing radiation [102]. One particular feature
of cancer cells is that they are able to reprogram their metabolic pathways to supply their
increasing demand for energy as well as building blocks. The rewired cellular metabolism
not only promotes tumor growth, but also contributes to the tumor-associated biological
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and clinical features such as invasion, migration, and resistance to treatments [103]. In
recent years, novel metabolic targets have been proposed and studied in various cancers.
Given fatty acids (FAs) are indispensable components in maintaining cellular energy storage
and cell membrane integrity, targeting the lipid biosynthesis or lipogenesis of cancer cells
has become a new antineoplastic therapeutic strategy [104].

3.4.1. Acetyl-CoA Carboxylase

Acetyl-CoA carboxylase (ACC) is a cytosolic enzyme that catalyzes the carboxylation
of acetyl-CoA to malonyl-CoA. This reaction is the first rate-limiting step of de novo fatty
acid biosynthesis. ACC occupies a critical position in lipid metabolism, and has, thus,
becomes an attractive drug target for cancer therapy. It has been shown that ACC is
essential for the growth and survival of non-small-cell lung cancer (NSCLC) cells. ND-646,
an allosteric inhibitor of the ACC enzymes, can impair tumor growth in the xenograft and
genetically engineered mouse models [105]. Furthermore, despite initially being used as a
drug to treat obesity and diabetes, Soraphen A can be repurposed as an inhibitor of acetyl
CoA carboxylase activity interfering with de novo lipogenesis and beta-oxidation [106].
Pharmacological blockade of acetyl-CoA carboxylase using soraphen A can reduce the
mammosphere formation in a dose-dependent manner, diminish the expansion of stem cell
population, and potentially overcome chemotherapy and radiation resistance of CSCs [107].
Although it is unclear if inhibition of ACC could magnify the radiation sensitivity, it has
been suggested that obese tissues can facilitate tumor hypoxic TME, which potentially
leads to resistance to radiation therapy [108].

3.4.2. Fatty Acid Synthase

Fatty acid synthase (FASN) is the rate-limiting enzyme for endogenous de novo
production of FAs, and a druggable lipogenic oncogene [109]. Normal cells usually have
low levels of FASN mRNA and protein expression. However, upregulation of FASN
represents a common phenotypic alteration in many cancers, which indicates that lipogenic
oncogenes have indispensable roles in tumor growth and tumor survival [110]. FASN
expression has been significantly associated with progression and outcome of several
types of cancer such as colon, prostate, and soft tissue sarcomas [111–113]. Studies have
demonstrated that Food and Drug Administration (FDA)-approved proton pump inhibitors
can effectively inhibit FASN and sensitize breast cancer cells to the doxorubicin and ionizing
radiation therapy in a large breast cancer patient cohort [114].

3.4.3. Carnitine Palmitoyltransferase

Carnitine palmitoyltransferase 1A CPT1 (Carnitine palmitoyl transferase I) and CPT2
(Carnitine palmitoyl transferase II) are a pair of rate-limiting enzymes that mediate oxi-
dation of long-chain fatty acids (FAO) in mitochondrial. Mutations in the CPT1A gene
restrain the normal cells from converting long-chain fatty acids into energy. The in vitro ex-
periments demonstrate that the PPAR coactivator-1α (PGC1α) binds to CCAAT/enhancer
binding protein β (CEBPB) and increases FAO regulated by CPT1A in nasopharyngeal
carcinoma (NPC) cells. The upregulation of the PGC1α/CEBPB/CPT1A/FAO signaling
pathway confers the radiation resistance and is linked with poor outcome of patients with
NPC [115].

3.4.4. Crosstalk between Lipid Metabolism and DNA Repair Pathways

Healthy cells and cancer cells can utilize lipids from the bloodstream through the
de novo lipogenesis, but it was discovered that almost esterified FAs in tumor cells were
obtained through de novo synthesis [116]. The studies indicate that when cancer cells
have limited access to dietary cholesterol and fatty acids, de novo lipogenesis is activated
in cancer cells. The anti-proliferation effect of lipogenesis inhibitors can be augmented
by limiting exogenous fatty acid supplementation [104,117]. Efforts have been made to
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understand the relationship between de novo lipid synthesis and exogenous lipids and
determine their particular roles in chemo and radiation therapy resistance [118].

The ketogenic diet is a high-fat, low-carbohydrate diet that increases ketone bodies
in the blood. An intracranial mouse model of malignant glioma suggests that animals
receiving a ketogenic diet displayed elevated levels of β-hydroxybutyrate and enhanced
the anti-tumor effect of radiation [119]. This study indicates that cellular lipid metabolic
alterations induced through the ketogenic diet may be useful to treat human malignant
gliomas. This area is still under investigation, and several clinical trials are studying the
tolerability and efficacy of a ketogenic diet in patients with recurrent glioma. However,
the ketogenic diet failed to increase the efficacy of reirradiation in patients with recurrent
malignant gliomas [120,121].

It has been suggested that radiation-induced FASN expression is essential for glioma
cell survival [122]. Accordingly, it has been hypothesized that the uptake of exogenous
lipids can bypass the suppressed lipid biosynthesis caused by FASN inhibition. A recent
study reported that both exogenous and endogenous cholesterol could promote the radiore-
sistance of cancer cells in in vitro and in vivo models. In contrast, blocking sterol response
element-binding protein 1 (SREBP1) and FASN signaling can enhance radiation-induced
CRC cell death [123]. Cerulenin synthetic analog C75, an inhibitor of fatty acid synthase,
combined with X-ray irradiation can enhance radiation-induced apoptosis and delay the
spheroid growth of prostate carcinoma in vitro [115].

Furthermore, recent studies suggested that lung cancer cell sublines previously ex-
posed to the fractionated radiation in vitro confer notable radioresistance compared to
their parental cells. Chemical inhibition of carnitine palmitoyltransferase 1A (CPT1A) by
Etomoxir can significantly enhance radiosensitivity by downregulating the DNA repair
pathways promoting the survival of lung cancer cells exposed to the ionized radiation [124].
The roles of metabolic enzymes in the DNA repair pathways are summarized in Table 1.

Table 1. The metabolic enzymes involved in DNA repair pathways.

Metabolic Enzyme Canonical Function DNA Repair References

Isocitrate dehydrogenase (IDH) Conversion from isocitrate to
α-ketoglutarate HR [52,55]

Pyruvate dehydrogenase (PDH) Oxidization of pyruvate NHEJ and HR [56]

Pyruvate Kinase Muscle 2 (PKM2) Pyruvate production HR [57]

Glucose Transporter (GLUT)
Transportation of

monosaccharides across
cell membrane

NHEJ and HR [41,125]

Hexokinase (HK) Phosphorylation of six-carbon
glucose to glucose-6-phosphate NHEJ and HR [125]

Succinate dehydrogenase (SDH) Oxidation of succinate
to fumarate HR [126]

Fumarate Hydratase (FH) Conversion of fumarate to malate NHEJ and HR [62,63]

Glutamine synthetase (GS) Production of glutamine HR [78,81]

Argininosuccinate synthetase (ASS) Synthesis of argininosuccinate
from citrulline and aspartate NHEJ [127]

Arginase (ARG) Hydrolysis of arginine to
ornithine and urea NHEJ [128]

Thymidylate synthase (TS) Production of Thymidylate NHEJ [129]

Fatty acid synthase (FASN) Synthesis of fatty acid NHEJ [130]

Carnitine palmitoyltransferase
1A (CPT1)

Modulation of fatty acid
beta-oxidation No clear [124]



Int. J. Mol. Sci. 2022, 23, 2246 12 of 25

3.5. Tumor Metabolism and Immune Microenvironment

It is worth noting that an ideal radiation sensitizer only enhances the cell killing in
the irradiated tumors but does not display single agent toxicity on tumor and normal
cells. Therefore, almost no chemotherapy agent can meet these criteria as a radiation
sensitizer. These agents should be described as radiation modifiers accurately, which
exhibit synergistic actions with radiation treatment [131,132]. Some of the TME factors
considered as radiation modifiers are reviewed in this section.

3.5.1. Hypoxia-Inducible Factor and Vascular Endothelial Growth Factor

Further work in this area led to the discovery of hypoxia-inducible factor 1 alpha
(Hif1α) and vascular endothelial growth factor (VEGF) whose expressions in concert drive
angiogenesis, energy metabolism, and tumor cell invasion. Hypoxia-inducible factor-1a
(HIF-1a), overexpressed in advanced cancers, in part, due to aberrant vascularization,
often directly or indirectly reprograms the cancer-associated fibroblasts, macrophages, and
extracellular matrix. These non-tumorous cells in the TME are remodeled by hypoxia
and HIFs, leading to their functions to promote cancer growth [133]. VEGFs and their
receptors (VEGFRs) are important pro-angiogenic factors that regulate the formation of
new blood vessels. The tumor VEGF mediates the angiogenic response of irradiated
tumors and ameliorates the radiation resistance in different cancer types. Several classes of
inhibitors have been designed to target the VEGF activity or the surface receptor function to
reduce tumor-initiated angiogenesis [134]. Anti-VEGF monoclonal antibody bevacizumab,
targeting all isoforms of VEGF-A, is the most widely tested anti-angiogenesis therapy [135].
Clinical studies have demonstrated that bevacizumab benefits patients with advanced
colorectal cancer, cervical cancer, and renal cell carcinoma [136].

3.5.2. Glioma Stem Cells

Not all cancer cells are created equal, and they are instead organized hierarchically
in heterogeneous tumor populations. Cancer stem cells (CSC) are a subtle subpopulation
within a tumor, which possess self-renewal and DNA repair capacities. These features
give CSCs strong resistance to chemotherapy and radiation therapy. How to eradicate all
remaining CSC after surgical resection of a neoplasm become the root of tumor recurrence
and metastases.

3.5.3. Interplay between Cancer Cells and the Immune System

Immune cells within the TME display altered tumor metabolism in response to ra-
diation and immunotherapies likely contributing to treatment resistance and ultimately
recurrent disease [137]. In response to these cellular stresses, T cells, macrophages, and
other components of the adaptive and innate immune system produce altered levels of
oxidative species (ROS), fatty acid metabolism, and mTOR expression [138]. Although
precise drug delivery has been challenging thus far, these pathways remain promising
actionable targets and are being actively investigated in an attempt to “reprogram” the
TME following therapy [139]. Tumor initiating cell or glioma stem cell (GSC) metabolism
has been studied and remains an active area of research since their discovery in 1997 [140].
Using functional molecular imaging targeting the metabolite 2-[(18)F]fluoro-2-deoxy-D-
glucose researchers have demonstrated that GSCs display altered oxygen consumption,
intracellular ATP-levels, lactate production, glucose metabolism, and pyruvate kinase
expression (PKM1/PKM2) when compared to their progenitors [141]. Both the immune
modulating signals as well as the cells comprising the TME remain promising avenues
for future therapeutic targets and are worth further investigation by the neuro-oncology
community.
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4. Clinical Studies Targeting Metabolism of Brain Tumors

All potential glioma metabolic pathways involved in the radioresistance are shown
in Figure 2.
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acid synthase; GLSi, glutaminase inhibitor; GLUT1, glucose transporter inhibitor; HKi, hexokinase
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4.1. Targeting Glucose Metabolism

A post-hoc genomic analysis of RTOG 9802 supports the observations that patients
with IDH-mutant glioma can benefit from chemoradiation therapy [142]. Several novel
medicines targeting IDH mutant activity, such as ivosidenib (AG-120), IDH305, FT-2102,
AG-221, and AG-881 are currently being tested in clinical trials. Preliminary phase I clinical
data suggest that most of these IDH1 or 2 inhibitors are well tolerated, are associated
with lower cellular 2-HG levels, and have potential antitumor activity, especially in IDH1-
mutated gliomas. Phase I study NCT02073994 demonstrated that AG-120 with maximum
tolerated dose is associated with favorable safety profile and prolonged tumor control
in patients with advanced glioma [143]. Phase II study of IDH1 Inhibitor AG-120 in
combination with nivolumab is being investigated in patients with IDH1 mutant gliomas.
Studies to further evaluate the tumor control rate of IDH inhibitors with radiation in
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combination are ongoing [144,145]. Phase I/II trial NCT02273739 aims to determine the
safety and maximum tolerable dose of AG-221 in the treatment of several types of IDH2
mutated solid tumors. The results from this multicenter trial have been released, but are
not yet published in a peer-reviewed journal.

The administration of 2-DG to cancer patients has proved its efficacy in lowering
blood glucose levels and reducing the glycolysis rate in the cancer patients; however, side
effects exhibited include diaphoresis, flushing, drowsiness, and hypothermia, especially,
are associated with 2-DG uptake [146]. The limited success of this inhibitor is like due to
2-DG-mediated alteration of energy production and radiation responses vary substantially
in different cancer cell types [147].

Small molecule allosteric activator TEPP-46 stabilizes the tetrameric form of PKM2 and
blocks PKM2 nuclear translocation, inhibiting tumor growth in a preclinical setting [148].
The synergistic effect of TEPP-46 and radiotherapy is remains to be explored.

Hexokinase II (HK2) protein expression has been shown to be elevated in GBM, which
could serve as a useful therapeutic target [149]. The azole class of antifungal inhibitors
that includes ketoconazole and posaconazole also displayed the antitumor effect on GBM
in vitro in a small screening test. Two early phase I trials (NCT04869449 and NCT04825275)
have been posted in early 2021 to establish the neuro-pharmacokinetic profiles of these
HK2 inhibitors.

4.2. Targeting Amino Acid Metabolism

The mitochondrial enzyme glutaminases (GLS1 and GLS2) convert glutamine to gluta-
mate; then glutamate is further converted to TCA cycle the substrate, alpha-ketoglutarate,
via glutamate dehydrogenase (GLUD) [150]. To translate these findings to the clinic, a
GLS-specific inhibitor CB-839 was developed to determine if cancer cells can gain response
to chemotherapy or radiation treatment by suppressing glutaminolysis. CB-839 demon-
strated antiproliferative activity in a triple-negative breast cancer (TNBC) cells and human
epidermal growth factor receptor 2 (HER2)-positive breast cancer cells as a single agent
or combined with paclitaxel [82]. The c-Myc-regulated amino acid transporter ASCT2
(SLC1A5) regulates the glutamine uptake in cancer cells. In combination with an ASCT2
inhibitor V-9302, the glutamine dependent cells can be sensitized to CB-839 treatment in
several cancer types [151,152]. The ongoing phase Ib trial (NCT03528642) is investigating
the glutaminase inhibitor CB-839 in combination with radiation therapy and temozolomide
in treating patients with IDH-mutated diffuse or anaplastic astrocytoma.

Arginine, one of the common amino acids, has been linked to improving the immune
system in people with brain tumors. A clinical trial has been completed to assess if the
oral administration of arginine in powder form changes the immune function of GBM
patients (NCT02017249). A pegylated form of prokaryotic arginine deiminase (ADI-PEG 20)
has been investigated in phase I and II clinical trials and has been shown to catalyze the
irreversible hydrolysis of arginine to citrulline and ammonia thus creating low cellular
arginine levels [73]. A phase I study evaluating the safety and tolerability of ADI-PEG 20
in combination with radiotherapy and temozolomide in newly diagnosed GBM started
recently (NCT04587830). The efficacy of this combination therapy is remains to be defined.
PRT811 is a protein arginine N-methyltransferase 5 (PRMT5) inhibitor that exhibits the
blood-brain barrier penetration. Although PRMT5 does not directly alter the arginine
metabolism, it has been pursued as an alternative treatment choice because patients with
high-grade gliomas have limited treatment options (NCT04089449).
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4.3. Targeting Nucleic Acid Metabolism

Several clinical trials have tested to the combination of radiation therapy and radiation
sensitizer/modifier 6-MP with adjuvant chemotherapy regimens in patients with primary
malignant brain tumors. Although no increase in hematologic toxicity was observed, the ad-
dition of 6 MP did not demonstrate a significant survival benefit [153,154]. A phase II study
evaluates the efficacy and safety of craniospinal radiation combined with 6-thioguanine,
procarbazine, dibromodulcitol, lomustine, and vincristine (TPDCV) chemotherapy for treat-
ing pediatric astrocytoma and adult anaplastic ependymoma; the combination of TPDCV
chemotherapy and radiation therapy does not differ substantially from radiation alone in
with progression-free survival and overall survival [155].

Gemcitabine as a nucleoside analog currently is investigated in several solid tumors.
Although gemcitabine has a modest ability to pass BBB, the concentration of gemcitabine
in glioma cells is high enough for radiation sensitization [156]. Pre-irradiation gemcitabine
chemotherapy demonstrated the safety profile but not effective in tumor control in phase II
studies with newly diagnosed and recurrent GBM patients [157,158]. The phase I study
evaluating gemcitabine concurrent with radiotherapy in patients with newly diagnosed
malignant glioma yields promising outcomes [159].

4.4. Targeting Lipid Metabolism

BXQ-350 is a novel antitumor agent that suppresses glioma growth through interacting
with the cancer cell membrane. BXQ-350 consists of two components, including the human
lysosomal protein saposin C and the cell membrane phospholipid dioleoylphosphatidyl-
serine (DOPS). The safety profiles and pharmacodynamics of BXQ-350 are being deter-
mined in several pediatric and adult brain tumors at the phase I stage (NCT04771897,
NCT02859857, and NCT04404569).

A recent study indicated that abundant cholesterol supply is essential to sustain
the progression of glioma cells [160]. Evolocumab is an FDA-approved proprotein con-
vertase/kexin type 9 serine protease inhibitor for hypercholesterolemia treatment. To
re-purpose this antibody inhibitor to cancer patients, NCT04937413 is a phase 0 study to
determine the pharmacokinetics and pharmacodynamics of evolocumab in patients with
high-grade glioma.

4.5. Targeting Immune Modulation

Hif-1α supports cancer cell survival under hypoxic conditions through its activation of
nuclear factor kappa B (NF-κB) as well as promotion of expression of ligands for program
death receptor 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) [161].
To date, 31 trials have investigated inhibitors of the PD-1/PDL-1/CTLA-4 axis in high-
grade gliomas. Checkmate-143 (NCT 02017717), a randomized phase III trial, found a
small improvement in progression free survival, median overall survival, and overall
response rate with the addition of ipilimumab to nivolumab versus nivolumab alone in
GBM [162]. Checkmate-548 (NCT 02667587) is an actively accruing phase III clinical trial
in newly diagnosed GBM patients with an unmethylated MGMT promoter; patients are
randomized to temozolomide and radiation therapy or nivolumab and radiation. The phase
2 clinical trial NCT02968940 explored the hypofractionated radiation therapy combined
with avelumab in adult GBM patients with IDH mutation. Avelumab is a fully humanized
monoclonal antibody blocking the interaction between PD-L1 and PD-1 and restoring
the cytotoxic T cell response. The trial has been completed; however, no results have
been reported. Although PD-1/PDL-1 inhibitors haven’t had the same success as in
NSCLC/SCLC, they remain a viable therapeutic option in this patient population which
hasn’t seen significant progress since temozolomide was adopted as first line therapy in
2005 [163].



Int. J. Mol. Sci. 2022, 23, 2246 16 of 25

5. Metabolic Imaging for Assessment of Radiation Response for Glioma
5.1. Metabolites/Tracers and Guiding Radiation Planning/Retreatment

The most common and prevalent radiotracer is F-18-fluorodexyglucose (F18-FDG),
which is a surrogate for metabolic activity, common in neoplastic processes. Unfortunately,
F18-FDG PET demonstrates diffuse activity in the brain given its high metabolic demand,
making the tumor to background ratio not ideal for differentiating tumor from normal
brain. This is especially true when differentiating tumor recurrence from post-treatment
changes, such as pseudoprogression and radiation necrosis.

Radiolabeled amino acids were introduced in the 1980s as positron emission tomog-
raphy (PET) tracers for brain tumors [164], due to an increased amino acid utilization
within glial tumors. Active amino acid transport in tumor cells is supposed to be one
of the rate-limiting factors of amino acid imaging and is upregulated in tumor cell mem-
branes [165,166]. This provides a high tumor to background ratio compared to normal
brain tissue. Amino acid PET has demonstrated higher diagnostic accuracy when com-
pared to MRI for glioma grading, differentiation of glioma from non-neoplastic lesions,
and differentiation of glioma recurrence from treatment induced changes. Amino acid PET
is superior to MRI for assessment of treatment response as well as delineation of glioma
extent for enhancing and non-enhancing tumors.

In glioma, patients’ treatment-related effects, otherwise known as pseudoprogres-
sion or radiation necrosis, limits the reliability of conventional MRI to assess treatment
response [167]. Several studies reported only a limited value of early post-radiotherapy
quantitative FDG PET changes for the assessment of response to radiotherapy, either alone
or with concomitant temozolomide [168,169]. Early changes of tumor-to-brain FET uptake
ratios following chemoradiation with temozolomide in newly diagnosed GBM patients
have been shown to be a strong predictor for progression-free and overall survival [170,171].
In contrast, changes in the volume of contrast enhancement on MRI were not associated
with survival.

5.2. The Application of Metabolic Imaging in Clinical Trials

Development of [18 F] DASA-23 for imaging tumor glycolysis has been tested in
the Phase 1 study (NCT03539731) to evaluate the pyruvate kinase M2 (PKM2) expression
in patients with intracranial tumors or recurrent GBM as well as healthy volunteers by
positron emission tomography (PET) scan technique. The primary goal of this study is
to determine whether the [18F]DASA 23 PET scan can predict tumor’s responsiveness to
antitumor therapy. This trial is currently recruiting new patients. Similarly, hyperpolarized
carbon-13 pyruvate is also being tested in the NCT04019002 trial launched recently by the
University of California, San Francisco.

Branched-chain amino acids (BCAAs) are essential amino acids, including valine,
leucine, and isoleucine. The imbalanced BCAAs in serum is a physiological evidence of
chronic liver diseases [172]. Tryptophan, a BCAA, was used as a radioactive tracer in the
brain using PET scanning in an ongoing clinical trial (NCT02367482). The goal of this
study is to determine if tryptophan metabolism is a useful approach to distinguish between
different types of brain tumors. We summarized the selected agents targeting glioma
metabolism that are evaluated in preclinical studies and clinical trials (Table 2).
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Table 2. List of drugs and imaging techniques targeting glioma metabolism in clinical trial.

Target Type Drug NCT Number Status Clinical Trial
Phase

Combined
with

Radiotherapy

IDH1 and IDH2
mutant

Inhibitor AG-120

NCT04056910 Recruiting Phase II N

NCT03343197 Active, not
recruiting Phase I N

NCT02073994 Active, not
recruiting Phase I N

NCT04195555 Recruiting Phase II N

Inhibitor IDH305 NCT02381886 Active, not
recruiting Phase I N

Inhibitor FT-2102 NCT03684811 Active, not
recruiting

Phase I|
Phase II N

Inhibitor AG-221 NCT02273739 Completed Phase I|
Phase II N

Inhibitor AG881
NCT03343197 Active, not

recruiting Phase I N

NCT02481154 Active, not
recruiting Phase I N

NCT04164901 Recruiting Phase III N
PDH Inhibitor CP-613 No trial NA NA NA

PKM2 Inhibitor TEPP-46 No trial NA NA NA
GLUT1 Inhibitor WZB117 No trial NA NA NA
GLS1 Inhibitor CB-839 NCT03528642 Recruiting Phase I Y

PHGDH Inhibitor
NCT-502 No trial NA NA NA
NCT-503 No trial NA NA NA
CBR-5884 No trial NA NA NA

Arginine
Metabolism Inhibitor ADI-PEG 20 NCT02029690 Terminated Phase I N

Oral Arginine NCT02017249 Completed Phase I N
TS Inhibitor 5-FU NCT01498783 Completed Phase II N

FASN Inhibitor TVB-2640 NCT03032484 Active, not
recruiting Phase II N

Lipid
Metabolism Inhibitor BXQ-350

NCT02859857 Completed Phase I N

NCT04404569 Recruiting Phase I N

Ketosis Inhibitor Ketogenic diet
and metformin NCT04691960 Recruiting Phase II N

Carbohydrate
metabolism Inhibitor Metformin NCT02149459 NA Phase I Y

Valine
metabolism Imaging C13 N15 Valine NCT02305056 Terminated Phase I N

Pyruvate
metabolism Imaging

Hyperpolarized
Carbon C13

Pyruvate
NCT04540107 Recruiting Phase I N

Tryptophan
metabolism Imaging

Positron
emission

tomography
NCT02367482 Recruiting NA N

Lactate and
other

metabolites
Imaging

Magnetic
Resonance

Spectroscopy
NCT01138813 Completed NA N

Metabolic
Tumor Volume Imaging

Magnetic
Resonance

Spectroscopy
NCT02006563 Completed NA N
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6. Conclusions

Resistance to chemo- and radiotherapy is the decisive implication of cancer treatment
failure. Recent advances in high-throughput technologies, have allowed us to classify
gliomas into different categories based on their genetic and epigenetic lesions, instead
of the histopathological classifications conventionally used by clinical pathologists. This
systematic and molecular knowledge of glioma cells allows us to revisit many signal-
ing pathways and complex interactions, including cancer metabolism and DNA repair
activities. In glioma cells, intracellular glucose, lipid, amino acid, and nucleotide levels
are dramatically upregulated through extracellular uptake, de novo synthesis, and other
molecular mechanisms; in so doing, the metabolic reprogramming supports aggressive
proliferation, progression, and chemoradiation resistance in gliomas. One of the resistance
mechanisms is that aberrant glioma metabolism boosts the rapid repair of DNA lesions
introduced by radiotherapies. Through decades of study, it has been proven that the
strategy of genetic and pharmacological inhibition of glioma metabolism combined with
radiotherapy has achieved limited success to different solid tumors, including glioma.
However, it is necessary to consider the inter-and intra-tumoral heterogeneity and the
immune TME because glioma cells can dodge the therapeutic stress (e.g., radiotherapy)
through fostering tumor cell evolution and interacting with different TME cell populations.
A better understanding of the role of these factors in metabolic reprogramming may help
us develop novel therapeutic strategies in the future.

We recognize the following limitations. (1) Due to the lack of available information
on the blood-brain barrier (BBB) permeability, we cannot truly predict the efficacy of
these therapeutic agents alone or in combination with radiation therapy. However, these
radiation and chemotherapy can also disrupt the structure of BBB, thereby allows the entry
of these agents. (2) Many solid malignancies, including glioma, are treated with radiation
therapy and/or chemotherapy that trigger the same or similar molecular pathways leading
to the very similar outcome and, therefore, extend this review to other malignancies.
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