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Abstract: Structural and biochemical studies have recently revealed a range of rationally engineered 
nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against 
mutational escape. In this study, we performed a comprehensive computational analysis of the 
SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH 
E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations 
and collective dynamics analysis with binding free energy scanning, perturbation-response 
scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric 
modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. 
By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with 
nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect 
of the Omicron variant on nanobody binding. The mutational scanning analysis supported the 
notion that E484A mutation can have a significant detrimental effect on nanobody binding and 
result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-
CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape 
mutants that alter response to binding without compromising activity. The network analysis 
supported these findings showing that VHH E/VHH V nanobody binding can induce long-range 
couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble 
of communication paths that is less dependent on specific mediating centers and therefore may be 
less sensitive to mutational perturbations of functional residues. The results suggest that binding 
affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be 
determined by structurally stable regulatory centers and conformationally adaptable hotspots that 
are allosterically coupled and collectively control resilience to mutational escape. 
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mutational sensitivity; binding free energy; allosteric interactions; signal transmission 
 

1. Introduction 
SARS-CoV-2 infection is transmitted when the viral spike (S) glycoprotein binds to 

the host cell receptor ACE2, leading to the entry of S protein into host cells and membrane 
fusion [1,2]. The full-length SARS-CoV-2 S protein consists of amino (N)-terminal S1 
subunit and carboxyl (C)-terminal S2 subunit where S1 is involved in the interactions with 
the host receptor and includes an N-terminal domain (NTD), the receptor-binding domain 
(RBD), and two structurally conserved subdomains (SD1 and SD2). Structural and 
biochemical studies established that the mechanism of virus infection may involve 
conformational transitions between distinct functional forms of the SARS-CoV-2 S protein 
in which the RBDs continuously switch between “down” and “up” positions [3–12]. The 
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SARS-CoV-2 antibodies are divided into several main classes, of which class 1 and class 2 
antibodies target epitopes that overlap with the ACE2 binding site [13–15]. The body of 
structural and biochemical studies of the SARS-CoV-2 S complexes with different classes 
of potent antibodies targeting distinct binding epitopes of the S-RBD as well as various 
antibody cocktails and combinations have revealed multiple conformation-dependent 
epitopes, highlighting the link between conformational plasticity and adaptability of S 
proteins and capacity for eliciting specific binding and broad neutralization responses 
[16–32]. These studies have examined SARS-CoV-2 S binding with antibodies showing 
that combinations of antibodies can provide efficient cross-neutralization effects through 
synergistic targeting of conserved and variable SARS-CoV-2 RBD epitope. Structural 
studies confirmed that the SARS-CoV-2 S protein could feature distinct antigenic sites, 
and some specific antibodies may allosterically inhibit the ACE2 receptor binding without 
directly interfering with ACE2 recognition [29]. Optimally designed antibody cocktails 
simultaneously targeting different binding epitopes on the SARS-CoV-2 RBD also 
demonstrated improved resilience against mutational escape [33–35]. 

Nanobodies or single-domain antibodies provide important advantages over 
traditional antibodies, including their smaller size and robust biochemical properties such 
as high thermal stability, high solubility, and ability to be bioengineered into novel 
multivalent, multi-specific, and high-affinity molecules, making them a class of emerging 
powerful therapies against SARS-CoV-2 [36–41]. Recent research efforts in the design, 
engineering, and structure-functional characterization of nanobodies and their binding 
with SARS-CoV-2 S proteins reflect a growing realization that nanobody combinations 
could deliver a powerful array of neutralizing and escape mutation resistant molecular 
assemblies capable of rationally exploiting distinct binding epitopes and the intrinsic 
plasticity of the SARS-CoV-2 S protein. Structural aspects and classification of the 
nanobodies binding with the SARS-CoV-2 S were recently discussed in a review [42], 
highlighting several classes of high-affinity nanobodies  

An ultra-potent synthetic nanobody, Nb6, neutralizes SARS-CoV-2 by stabilizing the 
fully inactive down S conformation preventing binding with ACE2 receptor [43]. A high-
affinity trivalent nanobody, mNb6-tri, can simultaneously bind to all three RBDs and 
inhibit the interactions with the host receptor by occupying the binding site and locking 
the S protein in the inactive state [43]. The size-exclusion chromatography and mass 
spectrometry revealed high-affinity RBD-targeting nanobodies that efficiently neutralize 
SARS-CoV-2 by using several distinct and non-overlapping epitopes [44]. The revealed 
dominant epitope targeted by Nb20 and Nb21 nanobodies overlaps with the ACE2 
binding site, showing that these nanobodies could competitively inhibit ACE2 binding 
and exploit structural mimicry to facilitate conformational changes that prematurely 
convert spike into a post-fusion state suppressing viral fusion [44]. Potent neutralizing 
nanobodies that resist circulating variants of SARS-CoV-2 by targeting novel epitopes 
were recently discovered [45]. The reported cryo-EM structures for different classes of 
nanobodies suggested mechanisms of high-affinity and broadly neutralizing activity by 
exploiting epitopes that are shared with antibodies as well as novel epitopes that are 
unique to the nanobodies [45]. The high-affinity nanobodies against SARS-CoV-2 S 
protein refractory to common escape mutants and exhibiting synergistic neutralizing 
activity are characterized by proximal but non-overlapping epitopes showing that 
multimeric nanobody combinations can improve potency while minimizing susceptibility 
to escape mutations [46]. These studies identified a group of common resistant mutations 
in the dynamic RBM region (F490S, E484K, Q493K/R, F490L, F486S, F486L, and Y508H) 
that evade many individual nanobodies. Structural versatility of nanobody combinations 
that can effectively insulate the S-RBD accessible regions suggested a mechanism of 
resistance to mutational escape in which combining two nanobodies can markedly reduce 
the number of allowed substitutions to confer resistance and thereby elevate the genetic 
barrier for escape [46,47]. Using human VH-phage library and protein engineering, 
several unique VH binders were discovered that recognized two separate epitopes within 



Int. J. Mol. Sci. 2022, 23, 2172 3 of 31 
 

 

the ACE2 binding interface with nanomolar affinity [47]. Multivalent and bi-paratopic VH 
constructs showed markedly increased affinity and neutralization potency to the SARS-
CoV-2 virus when compared to the standalone VH domain [47]. Using saturation 
mutagenesis of the RBD exposed residues combined with fluorescence-activated cell 
sorting for mutant screening, escape mutants were identified for five nanobodies and 
were mostly mapped to the periphery of the ACE2 binding site, with K417, D420, Y421, 
F486, and Q493 emerging as notable hotspots [48]. A wide range of rationally engineered 
nanobodies with efficient neutralizing capacity and resilience against mutational escape 
was recently unveiled that included the llama-derived nanobody VHH E bound to the 
ACE2- binding epitope and three alpaca-derived nanobodies, VHHs U, V, and W, that 
bind to a different cryptic RBD epitope [49]. Using X-ray crystallography and surface 
plasmon resonance-based binding competition, this study showed that combinations of 
nanobodies targeting distinct epitopes could suppress the escape mutants resistant to 
individual nanobodies, while the bi-paratopic VHH EV and VE nanobodies with two 
antigen-binding sites appeared to be even more effective than pairs VHH E+U, E+V, and 
E+W in preventing mutual escape [40,41,49]. Using single-domain antibody library and 
PCR-based maturation, two closely related and highly potent nanobodies, H11-D4 and 
H11-H4, were reported that recognize the same epitope immediately adjacent to and 
partly overlapping with the ACE2 binding region [50]. The crystal structures of these 
nanobodies bound to the S-RBD revealed binding to the same epitope, which partly 
overlaps with the ACE2 binding surface, explaining competitive inhibition of ACE2 
interactions. These studies demonstrated that nanobodies might have potential clinical 
applications due to the increased neutralizing activity and robust protection against 
escape mutations of SARS-CoV-2.  

The high-affinity nanobody cocktails of two noncompeting nanobodies can 
neutralize both wild-type SARS-CoV-2 and the variants [51]. Neutralization of SARS-CoV-
2 by low-picomolar and mutation-tolerant VHH nanobodies that bind synergistically to 
the opposite sides of the RBD produced a binding avidity effect unaffected by immune-
escape mutants K417N/T, E484K, N501Y, and L452R [52]. The nanobody cocktails from 
camelid mice and llamas that neutralize SARS-CoV-2 variants showed a remarkable 
ability of multivalent nanobodies to combat escaping mutations through synchronized 
avidity between binding epitopes. In particular, picomolar nanobodiesNb12 and Nb30 
revealed binding to a conserved RBD epitope outside of the ACE2-binding motif, which 
is not accessible to human antibodies allowing for combat escape mutations at E484 and 
N501 positions [53]. These studies suggested that nanobody mixtures and rationally 
engineered bi-paratopic nanobody constructs could offer a promising alternative to 
conventional monoclonal antibodies and may be advantageous for controlling a broad 
range of infectious variants while also suppressing the emergence of virus escape 
mutations. Furthermore, bi-paratopic nanobodies showed significant advantages 
compared to monoclonal antibodies, single nanobodies, and nanobody cocktails by 
effectively leveraging binding avidity and allosteric cooperativity mechanisms in 
combating escape mutations. The recent biophysical studies indicated that avidity-driven 
mechanisms might underlie functional effects of nanobody combinations and multivalent 
nanobody constructs to prevent viral escape making it possible to rationally engineer 
desirable levels of binding specificity and generation of ultra-potent molecules for 
targeting SARS-CoV-2 S proteins. Avidity-inspired nanobody therapeutics can leverage 
the emerging evidence of how binding affinity, avidity, and cooperativity are balanced in 
a complex thermodynamic mechanism of synchronous binding of multivalent nanobody 
constructs [38].  

The emergence of variants of concern (VOCs) with the enhanced transmissibility and 
infectivity profile including the D614G variant [54–57], B.1.1.7 (alpha) [58–61], B.1.351 
(beta) [62,63], B.1.1.28/P.1 (gamma) [64], and B.1.1.427/B.1.429 (epsilon) variants [65,66] 
have attracted enormous attention in the scientific community and a considerable variety 
of the proposed mechanisms explaining functional observations from structural and 
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biochemical perspectives. The detection of common mutational changes such as D614G, 
E484K, N501Y, and K417N that are shared among major circulating variants B.1.1.7, 
B.1.351, and B.1.1.28/P.1 indicated that these positions could be particularly critical for 
modulation of the SARS-CoV-2 S protein responses. Biophysical studies of the SARS-CoV-
2 S trimers for these variants revealed structural and functional effects of mutations that 
can modulate dynamics and stability of the closed and open forms, increase binding to 
the human receptor ACE2, and confer immunity escape from vaccines and different clas-
ses of monoclonal antibodies and nanobodies [67–71].  

The recent VOC, omicron (B.1.1.529), displaying a large number of mutations in the 
S-RBD regions, has further intensified the scientific and public interest and concerns about 
the role and mechanisms underlying the emergence of variants [72–76]. The latest struc-
tural and biophysical tour-de-force investigation convincingly demonstrated that Omi-
cron-B.1.1.529 mutational diversity could induce a widespread escape from neutralizing 
antibody responses [75]. According to this study, mutations S477N, Q498R, and N501Y 
increase ACE2 affinity by 37-fold, serving to anchor the RBD to ACE2, while allowing the 
RBD region freedom to develop further mutations, including those that reduce ACE2 af-
finity in order to evade the neutralizing antibody response [75]. Strikingly, K417N, T478K, 
G496S, Y505H, and the triple S371L, S373P, S375F can reduce affinity to ACE2 while driv-
ing immune evasion and providing a final net affinity for ACE2 similar to the original 
virus. Structural studies examined several VOCs and demonstrated that Omicron variant 
RBD binds to human ACE2 with comparable affinity to that of the original virus [76]. The 
crystal and cryo-EM structures of Omicron RBD complexed with human ACE2 identified 
the role of key residues for receptor recognition showing that mutations E484A, Q493R, 
and Q493R are responsible for immune escape from monoclonal antibodies. 

Biophysical studies provided an enormous insight into the mechanisms underlying 
differential binding of the S protein variants to the host receptor ACE2 and antibodies. A 
series of illuminating biophysical investigations analyzed the biophysical properties of 
the SARS-CoV-2 S-glycoprotein binding to ACE2 on model surfaces and on living cells 
using force–distance (FD) curve-based atomic force microscopy (FD-curve-based AFM) 
[77,78]. By using atomic force microscopy and computer simulations, the kinetic and ther-
modynamic parameters of binding between the ACE2 receptors on the model surface and 
S-RBD variants (Alpha, Beta, Gamma, and Kappa) were investigated [78]. By providing 
unprecedented atomistic-level details and significant insight into molecular binding 
mechanisms of the SARS-CoV-2 variants, this study observed that the N501Y and E484Q 
mutations are particularly important for the greater stability, while the N501Y mutation 
is unlikely to significantly affect antibody neutralization [78]. By probing the interactions 
using AFM force spectroscopy, it was shown that the RBD mutations in different variants 
typically result in the higher stability and affinity of the complex with ACE2, which can 
mediate the increased transmissibility [78]. Moreover, integration of biophysical experi-
ments and molecular simulations support the idea of a stabilized interface through mul-
tiple weaker molecular interactions that cooperatively stabilize the interface between the 
RBD and the ACE2 receptor. 

Computer simulations and protein modeling also played an important role in shap-
ing our understanding of the dynamics and function of SARS-CoV-2 glycoproteins [79–
82]. All-atom molecular dynamics (MD) simulations of the full-length SARS-CoV-2 S gly-
coprotein embedded in the viral membrane, with a complete glycosylation profile, were 
first reported by Amaro and colleagues, providing an unprecedented level of details and 
significant structural insights about functional S conformations [81,82]. A simplified 
model of the SARS-CoV-2 virion integrated data from cryo-EM, x-ray crystallography, 
and computational predictions to build molecular models of structural SARS-CoV-2 pro-
teins assemble a complete virion model [83]. Multi-microsecond MD simulations of a 4.1 
million atom system containing a patch of viral membrane with four full-length, fully gly-
cosylated and palmitoylated S proteins allowed for a complete mapping of generic anti-
body binding signatures and characterization of the antibody and vaccine epitopes [84]. 
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MD simulations and free energy landscape mapping studies of the SARS-CoV-2 S proteins 
and mutants detailed conformational changes and diversity of ensembles, further sup-
porting the notion of enhanced functional and structural plasticity of S proteins [85–91]. 
Using data analysis and protein structure network modeling of MD simulations, residues 
that exhibit long-distance coupling with the RBD opening, including sites harboring func-
tional mutations D614G and A570D, which points to the important role of the D614G var-
iant in modulating allosteric communications in the S protein [87]. The free energy land-
scapes of the S protein derived from MD simulations together with nudged elastic path-
way optimization mapping of the RBD opening revealed a specific transient allosteric 
pocket at the hinge region that is located near the D614 position influences RBD dynamics 
[88].  

Computational and biophysical kinetics studies of the SARS-CoV-2 S trimer interac-
tions with ACE2 using the recent crystal structures also provided important insights into 
the key determinants of the binding affinity and selectivity [92–95]. Our recent studies 
combined simplified and atomistic MD simulations with coevolutionary analysis and net-
work modeling to present evidence that the SARS-CoV-2 spike protein function as an al-
losterically regulated machine that exploits the plasticity of allosteric hotspots to fine-tune 
response to antibody binding [96–105]. These studies showed that examining the allosteric 
behavior of the SARS-CoV-2 spike proteins may be useful to uncover functional mecha-
nisms and rationalize the growing body of diverse experimental data.  

Using MD simulations and protein stability analysis, we recently examined binding 
of the SARS-CoV-2 RBD with single nanobodies Nb6 and Nb20, VHH E, a pair combina-
tion VHH E+U, a bi-paratopic nanobody VHH VE, and a combination of CC12.3 antibody 
and VHH V/W nanobodies [105]. This study characterized the binding energy hotspots in 
the SARS-CoV-2 protein and complexes with nanobodies providing a quantitative analy-
sis of the effects of circulating variants and escaping mutations on binding that is con-
sistent with a broad range of biochemical experiments. The results suggested that muta-
tional escape may be controlled through structurally adaptable binding hotspots in the 
receptor-accessible binding epitope that are dynamically coupled to the stability centers 
in the distant binding epitope targeted by VHH U/V/W nanobodies [105]. Using com-
puter-based design of protein–protein interactions, a number of nanobodies were engi-
neered in silico and selected based on the free energy landscape of protein docking veri-
fied by the recently reported cocrystal structures [106]. Another computational study ex-
amined binding mechanisms of neutralizing nanobodies targeting SARS-CoV-2 S proteins 
[107]. All-atom MD simulations totaling 27.6 μs in length using the recently solved struc-
tures of the RBD of SARS-CoV-2 S protein in complex with nanobodies H11-H4, H11-D4, 
and Ty1 revealed interactions between S-RBD and the nanobodies and estimated that the 
binding strength of the nanobodies to RBD is similar to that of ACE2 [107]. 

In the present work, we expanded the analysis of the SARS-CoV-2 S protein binding 
with nanobodies by performing a large number of high resolution coarse-grained (CG) 
simulations followed by full atomistic reconstruction for the complete S protein trimer 
complexes with multivalent nanobodies Nb6, VHH E, and VHH E/VHH V nanobodies. 
In addition, we also performed all-atom MD simulations and provided a detailed com-
parative analysis of conformational dynamics profiles for the S trimer complexes with the 
examined panel of nanobodies. Atomistic dynamics and analysis of collective motions are 
combined with a battery of computational tools to examine energetics and allosteric inter-
actions, including binding free energy scanning, perturbation-response scanning, and net-
work modeling. Through the synergistic application of these simulation methods, we ex-
amine the atomic-level mechanisms of binding-induced allosteric modulation in the 
SARS-CoV-2 S trimer complexes with nanobodies. By quantifying energetic and allosteric 
determinants of the SARS-CoV-2 S binding with nanobodies, we also analyze the effects 
of escaping mutations and the effect of the Omicron variant mutations on nanobody bind-
ing. The results suggest that binding affinity and allosteric signatures of the SARS-CoV-2 



Int. J. Mol. Sci. 2022, 23, 2172 6 of 31 
 

 

complexes can be determined by a dynamic cross-talk between structurally stable regula-
tory centers and conformationally adaptable allosteric hotspots that collectively control 
resilience to mutational escape.  

2. Results and Discussion 
2.1. Conformational Dynamics and Collective Motions of the SARS-CoV-2 S Trimer Complexes: 
Nanobody-Induced Modulation of Flexibility and Escape Mutation Sites as Regulatory Hinges 

We performed multiple CG simulations of the SARS-CoV-2 S trimer protein com-
plexes with a panel of nanobodies (Figure 1) followed by all-atom reconstruction of tra-
jectories to examine how structural plasticity of the RBD regions can be modulated by 
binding and determine specific dynamic signatures induced by different classes of nano-
bodies targeting distinct binding epitopes. All-atom MD simulations with the explicit in-
clusion of the glycosylation shield could provide a rigorous assessment of the conforma-
tional landscape of the SARS-CoV-2 S proteins; such direct simulations remain technically 
challenging due to the size of a complete SARS-CoV-2 S system embedded onto the mem-
brane. We combined CG simulations with atomistic reconstruction and additional opti-
mization by adding the glycosylated microenvironment. CG-CABS trajectories were sub-
jected to atomistic reconstruction and refinement. In addition, and for a direct compara-
tive analysis, we also performed all-atom MD simulations of the S trimer complexes with 
nanobodies. Using a comparison of CG-CABS and MD simulations, we verified the relia-
bility of the proposed simulation model and examined how SARS-CoV-2 spike protein 
can exploit the plasticity of the RBD regions to modulate specific dynamic responses to 
nanobody binding. The conformational dynamics profiles for CG-CABS simulations de-
scribe the mean residue-based thermal fluctuations averaged over 100 independent CG 
simulations (Figure 2).  

 
Figure 1. Cryo-EM structures of the SARS-CoV-2 S trimer complexes with a panel of studied nano-
bodies. (A) The structure of the SARS-CoV-2 S trimer in the complex with Nb6 nanobody, pdb id 
7KKK. Nb6 nanobodies are shown in yellow spheres. (B) The S-RBD bound to Nb6. The S-RBD 
structure is shown in green surfaces. The binding epitope residues of the S-RBD bound structures 
are shown in red. The sites of circulating mutations K417, E484, and N501 are highlighted in cyan 
surfaces. Nb6 nanobody is in magenta ribbons. (C) The structure of the SARS-CoV-2 S trimer in the 
complex with VHH E nanobody, pdb id 7KSG. VHH E is in yellow spheres. (D) The S-RBD (in green 
surface) bound to VHH E (magenta ribbons). The binding epitope residues of the S-RBD bound 
structures are shown in red. The sites of circulating mutations K417, E484, and N501 are highlighted 
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in cyan surfaces. (E) The structure of the SARS-CoV-2 S trimer in the complex with VHH E/VHH V 
nanobody, pdb id 7B18. VHH E is in yellow and VHH V is in orange spheres. (F) The S-RBD (in 
green surface) bound to VHH E/VHH V nanobody (magenta ribbons). The binding epitope residues 
of the S-RBD bound structures are shown in red. The sites of circulating mutations K417, E484, and 
N501 are highlighted in cyan surface. The SARS-CoV-2 S trimer structures are shown in full spheres 
with protomers A,B,C colored in light green, red, and blue, respectively. The rendering of SARS-
CoV-2 S structures was done using the visualization program UCSF ChimeraX [108]. 

 
Figure 2. Conformational dynamics profiles of the SARS-CoV-2 S trimer complexes with nanobod-
ies. (A) The root mean square fluctuations (RMSF) profiles obtained from CG-CABS simulations of 
the SARS-CoV-2 S trimer in the complex with Nb6 nanobody, pdb id 7KKK (in orange lines), S 
trimer in the complex with VHH E nanobody, pdb id 7KSG (in maroon lines), and S trimer in the 
complex with VHH E/VHH V nanobody, pdb id 7B18 (in blue lines). (B) The RMSF profiles of the 
SARS-CoV-2 S trimer in the complex with Nb6 obtained from CG-CABS simulations (in orange 
lines) and all-atom MD simulations (in maroon lines). (C) The R MSF profiles of the SARS-CoV-2 S 
trimer in the complex with VHH E obtained from CG-CABS simulations (in orange lines) and all-
atom MD simulations (in maroon lines). (D) The RMSF profiles of the SARS-CoV-2 S trimer in the 
complex with VHH E/VHH V obtained from CG-CABS simulations (in orange lines) and all-atom 
MD simulations (in maroon lines). The position of the S-RBD core and flexible RBM regions are 
indicated by arrows. The S1 subunit (residues 14–685) and S2 subunit (residues 686–1163) are high-
lighted. The S1 domains include NTD (residues 14–306), RBD (residues 331–528), CTD1 (residues 
528–591), CTD2 (residues 592–685). The S2 domains and functional regions of the simulated struc-
tures include upstream helix (UH) (residues 736–781), fusion peptide proximal region (FPPR) seg-
ment (residues 828–853), heptad repeat 1 (HR1) (residues 910–985), central helix region (CH) (resi-
dues 986–1035), connector domain (CD) (residues 1035–1068), heptad repeat 2 (HR2), (residues 
1069–1163). (E) Structural organization of the S-RBD (shown in red ribbons). The central β strands 
(β1 to β4 and β7) (residues 354–358, 376–380, 394–403, 431–438, 507–516) are shown in blue. β5 and 
β6 strands (residues 451–454 and 492–495) are shown in yellow. The bound nanobody Nb6 is shown 
in cyan ribbons. (F) Superposition of Nb6 nanobody (in cyan ribbons) and VHH E nanobody (in 
blue ribbons). S-RBD is in red ribbons. 

A comparative analysis of the conformational flexibility profiles for the S trimer com-
plexes with Nb6, VHH E, and VHH E/VHH V nanobodies revealed stabilization of the 
interacting regions that was particularly strong in the complex with the VHH E/VHH V 
nanobody pair (Figure 2A). The RBD core α-helical segments (residues 349–353, 405–410, 
and 416–423) showed small thermal fluctuations in all complexes. The stability of the cen-
tral β strands (residues 354–363, 389–405, and 423–436) was especially pronounced in the 
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S trimer complex with Nb6 nanobody (Figure 2A). Both CG-CABS and all-atom MD sim-
ulation models reproduced the overall stability of the conserved S-RBD core formed by 
antiparallel β strands (β1 to β4 and β7) (residues 354–358, 376–380, 394–403, 431–438, 507–
516) (Figures 2 and 3). Atomistic MD simulations also showed only moderate fluctuations 
of β5 and β6) (residues 451–454 and 492–495) that connect the mobile RBM region to the 
central core (Figure 2). The results showed that Nb6 binding to the closed conformation 
of the S trimer could induce a more significant stabilization of the S-RBD and RBM resi-
dues (Figure 2A).  

Interestingly, all-atom MD simulations of the SARS-CoV-2 S trimer bound to Nb6 
revealed a more significant mobility of the RBD regions as compared to the conforma-
tional profile obtained in the CG-CABS simulations (Figure 2B). A greater level of flexibil-
ity was seen in CG-CABS and atomistic MD simulations for the S-RBD regions in the S 
trimer complexes with VHH E (Figure 2C) and VHH E/VHH V nanobodies (Figure 2D). 
Hence, the conformational plasticity of the RBD-up conformations can still be maintained 
in the complexes with nanobodies. In comparison with all-atom MD trajectories, the CG-
CABS model produced higher average residue oscillations, which is consistent with the 
previous validation studies of the CABS model [109]. Consistently, both CG-CABS and 
all-atom MD simulations highlighted the greater stability of the highly conserved S2 sub-
unit (residues 686–1162) as compared to a more adaptable S1 subunit that includes NTD 
(residues 14–306), RBD (residues 331–528), CTD1 (residues 528–591), and CTD2 (residues 
592–685) (Figure 2). In particular, all-atom MD simulations of the S trimer complex with 
VHH E nanobody showed a more significant difference in the stabilization of the S1 and 
S2 domains by displaying very small fluctuations in the S2 regions and larger fluctuations 
of the S1 regions. (Figure 2C). Although the VHH E epitope is very similar to that of other 
nanobodies in this class, such as Nb6, VHH E binds in a specific orientation in which an 
extended β-hairpin conformation protrudes into the RBD binding site (Figure 2B,C). Con-
formational dynamics profiles reaffirmed stability of the α-helical segments in the RBD 
that are located near the cryptic binding epitope (residues 369–384) targeted by the VHH 
V nanobody. Importantly, binding of the VHH V nanobody to the cryptic epitope re-
stricted mobility of the S2 subunit residues (Figure 2A). Based on these observations, we 
argue that these residues could provide a stable anchoring platform at the cryptic epitope 
for the VHH V nanobody, while allowing for optimization of binding interactions with 
the more dynamic RBD binding epitope (Figure 2).  

To highlight similarities and differences in the mobility profiles derived from CG-
CABS and all-atom MD simulations, we performed a simple statistical analysis and com-
puted averages and standard deviations of the RMSF values. In addition, to compare CG-
CABS and all-atom MD trajectories and establish a correspondence between the dynamics 
profiles produced through atomistic reconstruction of CG-CABS trajectories and all-atom 
MD simulations, we computed the average Spearman’s correlation coefficient (rs) between 
the respective RMSF profiles. Given the differences between these simulation models, the 
correlation analysis confirmed a similar pattern of protein flexibility, yielding statistically 
significant correlation rs = 0.68 for the S trimer complexes with Nb6, rs = 0.723 for the S 
trimer complexes with VHH E, and only slightly lower rs = 0.624 for the complex with 
VHH E/VHH V nanobody. These results are similar to the outcome of the large-scale val-
idation study that yielded the average Spearman’s correlation coefficient of rs ~ 0.7 be-
tween the RMSFs of the CG-CABS and atomistic simulations for the diverse protein set 
[109]. Interestingly, this study also showed that correlations among MD trajectories ob-
tained from different all-atom force fields could vary in a similar range (0.75–0.82) [109]. 
The observed similarities of the conformational dynamics profiles suggested that CG-
CABS simulations could provide a fairly accurate and affordable simulation approach for 
quantifying flexibility of the SARS-CoV-2 S complexes with the panel of nanobodies. In 
general, our results supported the previous studies [109], indicating that atomistic recon-
struction of CG-CABS trajectories could produce adequate protein flexibility profiles that 
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are consistent with all-atom simulations and, due to a much lower cost, allow for multiple 
independent runs and accumulation of statistically significant averages. 

Structural maps of the conformational dynamics profiles for the S-RBD complexes 
with Nb6 (Figure 3A), VHH E (Figure 3B), and VHH VE (Figure 3C) illustrated an appre-
ciable mobility of the NTD and RBD residues in the 3-up complexes with VHH E and 
VHH E/VHH V nanobodies. The closed conformation of the S trimer complex with Nb6 
is more rigid (Figure 3A), but an appreciable level of mobility could be seen in the S1 
subunit NTD and RBD regions. The results showed that the open state of the S trimer 
bound to VHH E nanobody (Figure 3B) with all RBDs in the up position are generally 
more flexible in the S1 regions, while structural rigidity of the S2 regions becomes even 
more pronounced for these states. Accordingly, collective movements of the S1 regions 
anchored by the rigid S2 core could become more pronounced in the more dynamic open 
states, allowing for large rigid body movements of the NTD and RBD regions.  

 
Figure 3. Structural maps of the conformational mobility profiles for the SARS-CoV-2 S protein var-
iants obtained from CG-CABS simulations. The dynamics maps for the SARS-CoV-2 S trimer in the 
complex with Nb6 nanobody, pdb id 7KKK (A), S trimer in the complex with VHH E nanobody, 
pdb id 7KSG (B), and S trimer in the complex with VHH E/VHH V nanobody, pdb id 7B18 (C). The 
structures are in sphere-based representation rendered using UCSF ChimeraX [108] with the rigid-
ity-to-flexibility sliding scale colored from blue to red. The positions of sites of circulating mutations 
K417, E484, and N501 are shown in large spheres and highlighted for the protomers. The structural 
maps are projected onto the original cryo-EM structures. 

This dynamics pattern is consistent with the notion that single nanobody binding to 
the ACE2 binding site can only partly restrict the intrinsic mobility of the RBD regions, 
allowing for conformational adaptability and potential escape from neutralization. Inter-
estingly, the conformational dynamics map of the open S trimer complex with VHH 
E/VHH V nanobodies showed a more significant rigidification of the entire S protein, in-
cluding both S1 and S2 subunits (Figure 3C). Although the RBDs are in the up position, 
nanobody binding at two distinct epitopes can impose more severe restrictions on the 
RBD movements and arguably allow for more effective inhibition of the RBD-ACE2 inter-
actions. 

We characterized collective motions for the SARS-CoV-2 S-RBD complexes averaged 
over low-frequency modes using principal component analysis (PCA) of the trajectories 
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(Figure 4). The local minima along these profiles are typically aligned with the hinge cen-
ters, while the maxima correspond to the moving regions undergoing concerted move-
ments. The low-frequency ‘soft modes’ are often functionally important as mutations or 
binding can exploit and modulate protein movements along the pre-existing slow modes 
to induce allosteric transformations. The overall shape of the essential profiles in the 
SARS-CoV-2 S trimer complex with Nb6 showed suppressed movements of RBDs that are 
in the down position (Figure 4A,B). On the other hand, the profile displayed larger func-
tional displacements of the NTD regions. The immobilized hinge positions of the S trimer 
corresponded to positions F318, L387, F429. The slow mode profile of the S trimer complex 
with Nb6 showed the reduced RBD mobility, but the tip of the RBM loop (residues 473–
483) remained mobile in functional dynamics. The sites of typical nanobody-escaping mu-
tations (G447, Y449, L452, F490, Q493, Y508) correspond to the low mobility RBD regions 
in slow modes of the S trimer (Figure 4A,B). Although the RBD region harboring 
E484/F486 positions undergoes some functional motions in the slow modes, these move-
ments are relatively moderate as compared to the NTD fluctuations that dominate collec-
tive dynamics. Nb6 binding could be severely compromised by the E484K mutation, while 
other sites of nanobody-escaping mutations are likely to be suppressed by the nanobody 
[43]. This may be partly explained based on the functional dynamics profiles in which 
most of these positions are immobilized by Nb6 binding, whereby the absence of func-
tional motions could restrict the mutational escape potential. The fact that only the tip of 
the RBM region and E484/F486 remain more prone to changes could allow for E484K mu-
tation to escape Nb6 binding and adopt a conformation evading efficient nanobody inter-
actions. The slow mode profile of the S trimer complex with VHH E nanobodies in which 
all RBDs are in the up position showed a clearly different pattern (Figure 4C,D). In this 
case, the RBDs correspond to moving regions. The rigid hinge centers are located at con-
served F318 and V534, F592 residues. Several local hinge positions are aligned with I358, 
A363, Y365, L387 in the RBD core due to constraints imposed by RBD interactions with 
NTD of the adjacent protomer. The local maxima of the slow mode profile corresponded 
to V350, V369, S371, F377, K378, G447, Y449, L452, and 476–492 cluster (Figure 4C,D). 
Some of these functionally mobile residues are not involved in the interactions with VHH 
E nanobody (V350, V369, S371, F377, K378) and allow for conformational rearrangements 
of these flexible RBD regions. Instructively, nanobody binding can be partly escaped by 
mutations Y369H, S371P, F377L, and K378Q/N, even though these modifications are not 
currently circulating. 
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Figure 4. The slow mode displacement profiles of the SARS-CoV-2 S trimer structures. The low-
frequency essential mobility profiles are averaged over the first three major low-frequency modes. 
The essential mobility profiles of the SARS-CoV-2 S trimer in the complex with Nb6 nanobody, pdb 
id 7KKK (A), S trimer in the complex with VHH E nanobody, pdb id 7KSG (C), and S trimer in the 
complex with VHH E/VHH V nanobody, pdb id 7B18 (E). Structural maps of the slow mode profiles 
for the SARS-CoV-2 S trimer in the complex with Nb6 nanobody (B), S trimer in the complex with 
VHH E nanobody, (D), and S trimer in the complex with VHH E/VHH V nanobody (F). The struc-
tures are in sphere-based representation rendered using UCSF ChimeraX [108] with the rigidity-to-
flexibility sliding scale colored from blue to red. The positions of sites of circulating mutations K417, 
E484, and N501 are shown in large spheres and highlighted for the protomers. The structural maps 
are projected onto the original cryo-EM structures. 

Hence, the sites of escaping mutations are aligned with the functionally moving RBD 
regions, which may experience functional displacements and affect the RBD confor-
mation, thereby reducing the efficiency of VHH E binding. The largest peaks in the slow 
mode profile are aligned with K417, F456, and RBM residues E484/F486 (Figure 4C,D). 
Movements of these positions may affect the fidelity of nanobody binding, and mutations 
in these positions, particularly E484K, can escape the nanobody effect owing to the inher-
ent functional plasticity in this region. This may contribute to a certain level of vulnera-
bility shown by nanobodies Nb6 and VHH E targeting the ACE2-binding site to mutations 
in K417 and E484 residues. Structural maps of the slow mode profiles for the S complex 
with VHH E (Figure 4D) illustrate the greater mobility of the RBM residues and plasticity 
of the binding epitope. A similar picture was observed for the collective dynamics analysis 
of the S complex with VHH VE nanobody (Figure 4E,F). Our analysis indicated that the 
VHH VE nanobody could modulate conformational dynamics without dramatically alter-
ing collective motions but rather fine-tune dynamic changes at the binding site. These 
findings are consistent with the experimental evidence showing that VHH E and VHH V 
nanobodies that target two independent epitopes can activate the SARS-CoV-2 fusion ma-
chinery [49]. Although VHH VE binding can curtail flexibility of the S1 regions and im-
pose structural constraints in the binding sites, functional RBD motions are still character-
istic of the S complexes may contribute to mutational adaptation as sequences containing 
mutations in both interfaces were detected in the presence of VHHs E and V [49]. The 
results may explain why flexible RBD sites F486 and F490 are often featured as common 
sites of escape mutants that dominate the VHH E interface [49]. 
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2.2. Mutational Scanning Identifies Structural Stability and Binding Affinity Hotspots in the 
SARS-CoV-2 Complexes and Explains Patterns of Nanobody-Escaping Mutations 

By employing conformational ensembles of the S trimer complexes with nanobodies, 
we performed mutational scanning and computed binding free energy changes for stud-
ied SARS-CoV-2 S complexes with NB6, VHH E, and combination of VHH E/VHH V. In 
silico mutational scanning was done using the BeAtMuSiC approach [110–112]. This ap-
proach allows for accurate predictions of the effect of mutations on both the strength of 
the binding interactions and on the stability of the complex using statistical potentials and 
neural networks. This approach showed a comparable performance and accuracy as phys-
ics-based FoldX potentials [113–116]. The BeAtMuSiC approach adapted in our study was 
further enhanced through ensemble-based averaging of binding energy computations. 
The binding free energy ΔΔG changes were computed by averaging the results of compu-
tations over 1000 samples obtained from simulation trajectories.  

We first analyzed the mutational profiles for the S trimer 3-down complex with Nb6 
(Figure 5). Mutational sensitivity analysis of the S binding with Nb6 showed results that 
were generally consistent with our earlier studies when using MD simulations of the S-
RBD complex [105]. In the S trimer complex, however, a single Nb6 molecule is positioned 
at the interface between two adjacent RBDs (Figure 1) [43]. The experimental studies sug-
gested that a single Nb6 can stabilize two adjacent RBDs in the down state and prime the 
binding site for a second and third Nb6 molecule to stabilize the 3 RBD-down S confor-
mation [43]. Mutational scanning of the S trimer revealed the binding energy hotspots in 
each protomer that are distributed through two interfaces, each interacting with a differ-
ent Nb6 molecule (Figure 5). One of the interfaces corresponded to the cryptic binding 
RBD site where one Nb6 molecule interacts with N343, V367, S371, S373, V374, W436 
hotspots (Figure 5). Our previous studies showed that highly conserved sites F374 and 
W436 are important coevolutionary centers that are often implicated in interactions with 
neutralizing antibodies [98,99]. The other Nb6 molecule binds to the ACE2-binding site 
on the RBD where the key binding energy hotspots corresponded to hydrophobic residues 
Y449, L453, L455, F456, Y489, F490, G496, and Y505 (Figure 5). A number of these positions 
are also binding affinity hotspots for ACE2, as evident from deep mutagenesis scanning 
of SARS-CoV-2 interactions with the ACE2 host receptor [117–120]. The interaction pat-
tern and similarity in the binding energy hotspots with ACE2 supported the notion of 
structural mimicry that may be efficiently exploited by Nb6 nanobody to competitively 
inhibit the ACE binding region.  
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Figure 5. The mutational scanning heatmap for the SARS-CoV-2 S trimer complex with Nb6 nano-
body, pdb id 7KKK (A,B) and VHH E nanobody, pdb id 7KSG (C,D). The binding energy hotspots 
correspond to residues with high mutational sensitivity. The heatmaps show the computed binding 
free energy changes for all single mutations on the binding epitope sites. The squares on the 
heatmap are colored using a 3-colored scale—from blue to yellow, with yellow indicating the largest 
destabilization effect. (B,D) Structural map of the binding epitopes and binding energy hotspots for 
Nb6 and VHH E. The S-RBD is shown in green surface. The epitope residues are shown in red and 
the binding energy hotspots are shown in blue surface. The computed standard errors of the mean 
for the binding free energy changes are based on selected samples from atomistic trajectory recon-
structed from CG-CABS simulations (~1000 samples) and are within 0.0.7–0.16 kcal/mol. 

The mutational sensitivity map also sheds some light on the structure-functional role 
of sites targeted by common resistant mutations (F490S, E484K, Q493K/R, F490L, F486S, 
F486L, and Y508H) that evade many individual nanobodies [46]. Indeed, we found that 
E484, F486, and F490 positions can be sensitive to Nb6 binding (Figure 5). In particular, it 
was experimentally determined that Nb6 binding could be severely impeded by E484K 
mutation [49]. We specifically examined the effect of mutations present in the S-B.1.1.7 
variant (N501Y) and S-B1.351 variant (K417N, E484K, N501Y on Nb6 and VHH E binding. 
It appeared that K417N and N501Y mutations only moderately affected nanobody bind-
ing. Somewhat more moderate but still noticeable destabilization changes can be induced 
in the S trimer complexes with VHH E nanobody upon mutations of L452 and E484 sites 
(Figure 5). Hence, these nanobody-escaping mutations center at highly antigenic sites. The 
moderate stability for sites of escaping mutations is consistent with the notion that the 
virus tends to target positions where mutations would not appreciably perturb the RBD 
folding stability that is a prerequisite for proper activity of spike protein and binding with 
the host receptor. By targeting dynamic and structurally adaptable hotspots such as E484, 
F486, and F490 that are relatively tolerant to mutational changes, the virus tends to exploit 
conformational plasticity in these regions in eliciting specific escape patterns that would 
impair nanobody binding. 

For the S trimer complex with VHH VE nanobody, the binding footprint revealed 
several clusters of binding energy hotspots (Figure 6) targeting two different epitopes. The 
S-RBD hotspot residues correspond to Y449, L452, F456, F486, Y489, F490, and Y508 (Fig-
ure 5A). In agreement with the experiments [49], mutations at the VHH E interface 
Y449H/D/N, F490S, S494P/S, G496S, and Y508H produced destabilizing ΔΔG changes ex-
ceeding 2.0 kcal/mol (Figure 6). The binding epitope for VHH V is fairly large and includes 
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Y369, N370, S371, A372, S373, F374, F377, L378, C379, Y380, G381, V382, S383 residues. 
The hotspot positions in the second cryptic epitope corresponded to the conserved and 
stable residues Y369, S371, F374, F377, C379, Y380 (Figure 6). The escaping mutations 
Y369H, S371P, F374I/V, T376I, F377L, and K378Q/N at the VHH U interface resulted in 
considerable destabilization losses (Figure 6). Hence, flexible RBD sites F486 and F490 are 
consistently featured as common binding energy hotspots for these complexes, which 
may explain why escape mutants in these positions are known to dominate at the VHH E 
interface [49]. The results confirmed that nanobody combinations could alleviate the 
emergence and impact of escape mutants that target F456, F490, and Q493 residues. 

 
Figure 6. The mutational scanning heatmap for the SARS-CoV-2 S trimer complex with VHH VE 
nanobody, pdb id 7B18. The binding energy hotspots correspond to residues with high mutational 
sensitivity. The heatmaps show the computed binding free energy changes for all single mutations 
on the binding epitope sites. The squares on the heatmap are colored using a 3-colored scale—from 
blue to yellow, with yellow indicating the largest destabilization effect. Structural map of the bind-
ing epitopes and binding energy hotspots for VHH VE. The S-RBD is shown in green surface. The 
epitope residues are in red, and the binding energy hotspots are shown in blue surface. The com-
puted standard errors of the mean for the binding free energy changes are based on selected samples 
from atomistic trajectory reconstructed from CG-CABS simulations (1000 samples) and are within 
0.15–0.23 kcal/mol. 

Consistent with our earlier studies [105], mutational scanning and energetic cartog-
raphy analysis suggested that VHH E/VHH V can use binding of VHH V at the cryptic 
binding site to form a structurally stable anchoring platform that allows for modulation 
of functional movements of VHH E and provides allosteric control over structural changes 
in the RBM epitope. Due to synergistic avidity effects, binding of the VHH E arm at the 
RBM epitope may then lower the entropic penalty and allow for local structural accom-
modations to compensate for the loss of binding interactions. This may underlie a mech-
anism by which multivalent nanobodies can leverage long-range couplings to synergisti-
cally inhibit distinct binding epitopes and suppress mutational escape.  

We also examined the effect of Omicron mutations in the RBD (G339D, S371L, S373P, 
S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, 
Y505H) on binding of Nb6, VHH E, and VHH E/VHH V nanobodies (Figure 7). Im-
portantly, some of the Omicron mutations could significantly affect Nb6 binding, partic-
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ularly G446S, E484A, G496S, and Y505H modifications (Figure 7A,B). The results con-
firmed the important role of E484 and N501 positions for protein stability and binding 
affinity, which is consistent with the atomic force spectroscopy studies showing the im-
pact of mutations in these sites on binding energetics with the host receptor [78]. Recent 
studies also showed that Omicron mutations S477N, Q498R, and N501Y could increase 
ACE2 affinity anchoring the RBD to ACE2 [75]. These mutations have a moderate desta-
bilization effect on Nb6 nanobody binding, thus potentially reducing the neutralization 
capacity. Moreover, it was proposed that K417N, T478K, G496S, Y505H, and the muta-
tions at the cryptic epitope S371L, S373P, S375F can reduce affinity to ACE2 while driving 
immune evasion [76]. According to our data, most of these mutations, particularly G496S, 
Y505H, S371L, and S373P, could indeed adversely affect protein stability and binding af-
finity with Nb6 nanobody (Figure 7A,B). This suggests that the Omicron variant could 
escape the neutralization by Nb6 and this class of nanobodies with a significant overlap 
with the ACE2-binding site and binding epitope that includes most of the mutational sites. 
For VHH E binding, the large binding affinity loss resulted from E484A, Q493R, G496S, 
and N501Y mutations (Figure 7C,D). Importantly, these mutations are among common 
resistant mutations that evade many individual nanobodies [46]. Moreover, structural 
studies showed that Omicron mutations E484A, Q493R, and Q498R are largely responsi-
ble for immune escape from monoclonal antibodies. According to the recent study, the 
Omicron variant can escape the neutralization of many monoclonal antibodies, where the 
K417N, Q493R, and E484A Omicron mutations affect the recognition of class 1 and 2 an-
tibodies targeting the ACE2 binding epitope [121]. Our results indicated that both Nb6 
and VHH E could be sensitive to these Omicron mutations that appeared to reduce bind-
ing affinity and therefore have the potential to compromise neutralization of this class of 
nanobodies. These observations are consistent with the most recent study of 17 nanobod-
ies tested against SARS-CoV-2 variants showing that efficient neutralization of the Omi-
cron variant may be observed for synergistic nanobodies targeting multiple unique bind-
ing epitopes and exploiting conserved and cryptic epitope accessible only in the receptor-
binding domain up conformation [122]. The important revelation of this analysis is appre-
ciably smaller binding free energy changes induced by RBD-Omicron mutations in the 
SARS-CoV-2 S protein complex with VHH E/VHH V nanobodies (Figure 7E,F). In this 
case, a noticeable reduction of binding affinity was observed only for E484A, Q493R, and 
G496S mutations. These mutations emerged as a consistent hotspot among Omicron RBD 
variants that affected binding affinity with all examined nanobodies (Figure 7). It was re-
cently shown that these mutations in the Omicron spike are compatible with the usage of 
diverse ACE2 orthologues for entry and could amplify the ability of the Omicron variant 
to infect animal species [123]. Interestingly mutations in G446, S477, T478, E484, F486 are 
associated with resistance to more than one monoclonal antibody, and substitutions at 
E484 can confer a broad resistance [124]. Moreover, mutations at the E484 position (E484A, 
E484G, E484D, and E484K) confer partial resistance to the convalescent plasma, showing 
that E484 is also one of the dominant epitopes of spike protein [123,124]. The experimental 
studies also showed that E484 is the “Achilles’s heel” for several important classes of an-
tibodies and nanobodies [44,45,125]. The mutational scanning analysis supported the no-
tion that E484A mutation can have a significant detrimental effect on nanobody binding 
and result in Omicron-induced escape from nanobody neutralization.  
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Figure 7. The mutational sensitivity analysis of the Omicron RBD mutations in the SARS-CoV-2 S 
trimer complexes with nanobodies. The binding free energy changes caused by Omicron RBD mu-
tations on S trimer binding with Nb6 (A), VHH E (C), and VHH E/VHH V nanobody (E). The com-
puted standard errors of the mean for the binding free energy changes are based on number of 
selected samples from atomically reconstructed CG-CABS trajectories (~1000 samples) and are gen-
erally within 0.07–0.18 kcal/mol. The error bars are shown in whisker error bar style. (B) Structural 
view of the S-RBD (in red ribbons) bound to Nb6 nanobody (in pink ribbons). (D) Structural view 
of the S-RBD (in red ribbons) bound to VHH E nanobody (in pink ribbons). (F) Structural view of 
the S-RBD (in red ribbons) bound to VHH E (in pink ribbons) and VHH V (in magenta ribbons). The 
positions of Omicron-RBD mutations are shown in spheres and annotated. 

Interestingly, our results also showed that VHH E/VHH V nanobody binding could 
be potentially less sensitive to Q498R, N501Y, and Y505H mutations (Figure 7E,F) as com-
pared to binding of a single nanobody VHH E (Figure 7C,D). Accordingly, synergistic 
combinations of nanobodies targeting distinct binding epitopes may be more resistant to 
mutational escape and become less sensitive to the Omicron mutations. This is consistent 
with recent experiments on nanobodies and nanobody combinations, showing a remark-
able ability of synergistic and especially multivalent nanobodies to combat escaping mu-
tations through avidity-driven mechanisms between binding epitopes [53]. Moreover, the 
latest report of the design of a bi-paratopic nanobody, Nb1-Nb2, with high affinity and 
super-wide neutralization breadth against multiple variants [126]. Deep-mutational scan-
ning experiments demonstrated that bi-paratopic Nb1-Nb2 is resistant to mutational es-
cape against more than 60 RBD mutations and retains tight affinity and strong neutraliz-
ing activity against the Omicron virus. These illuminating experimental studies provide 
some support to our findings, suggesting that synergistic combinations targeting 
nonoverlapping epitopes on the RBD could be more effective in combating Omicron mu-
tations than single nanobodies. It is worth noting that a broad spectrum mutational re-
sistance of the discovered tetravalent bi-paratopic nanobody Nb1-Nb2 is significantly en-
hanced by exploiting unique and partially separated binding epitopes that emerged as a 
result of the bivalent fusion of Nb1 and Nb2 [126]. 

2.3. Perturbation Response Scanning of the SARS-CoV-2 S Complexes with Nanobodies 
Highlights Allosteric Role of Escaping Mutation Sites 

Using the perturbation-response scanning (PRS) method [127–134], we quantified the 
allosteric effect of each residue in the SARS-CoV-2 complexes with a panel of studied 
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nanobodies. The effector profiles estimate the propensities of a given residue to influence 
allosteric dynamic changes in other residues and are applied to identify regulatory 
hotspots of allosteric interactions as the local maxima along the profile. We propose that 
escaping variations could preferentially target structurally adaptable regulatory centers 
of collective movements and allosteric communications in the SARS-CoV-2 S complexes. 
To validate this hypothesis, we probed the allosteric effector potential of the S residues in 
complexes with studied nanobodies.  

The PRS effector profile for the S-RBD residues in the complex with Nb6 showed a 
significant overlap with the complex with ACE2 (Figure 8A,B). In the complex with Nb6, 
several effector peaks corresponding to structurally stable RBD regions (residues 348–352, 
400–406) as well as S371, S373, V374, W436 positions from the cryptic site involved in in-
teractions with Nb6 nanobody. The largest effector values corresponded to RBD residues 
Q493, G496, L452, and Y508 (Figure 8A). Notably, a number of local maxima were also 
aligned with the sites of escaping mutations, particularly Y449, L452, L453, F490, L492, 
Q493, and Y508 positions (Figure 8A). Hence, these residues can exhibit a strong allosteric 
potential in the complex and function as effector hotspots of allosteric signal transmission 
(Figure 8A,B). In contrast, sites of circulating mutations K417, E484, and N501 belong to 
local minima of the profile, which implies these residues are flexible sensors or transmit-
ters of allosteric changes. This analysis also suggested that sites of escaping and circulat-
ing mutations may play a role in allosteric couplings of stable and flexible RBD regions 
that control signal propagation in the spike protein. While modifications of K417 and 
N501 residues appeared to trigger moderate changes in the binding affinity, the perturba-
tions inflicted on these sites would have a significant effect on allosteric signaling in the 
complex. The results indicated that functional RBD sites might play complimentary roles 
in allosteric communications in the S complexes. While positions L452, Q493, G496 corre-
spond to local maxima of the PRS profile and can assume the role of the effector regulatory 
points that could dispatch allosteric signals through RBD regions, other functional sites 
such as more flexible E484, F486, and Y501 are aligned with local minima and may act as 
receivers/transmitters of the allosteric signal involved in functional RBD movements. 
Structural mapping of allosteric effector hotspots for the S trimer complex with Nb6 nano-
body revealed two clusters of residues: one cluster is in the S-RBD core region near the 
cryptic binding epitope, and the second cluster is near the RBM epitope (Figure 8B). These 
clusters form a network of functional centers that connects two binding epitopes and al-
low for signal transmission in the complex. It is particularly interesting given that Nb6 
binds only to one of these binding epitopes. This suggests that allosteric effector centers 
in the RBD are allocated near the binding epitopes and are intrinsic to the S protein archi-
tecture. In this context, the pre-existing network of allosteric effector centers can be acti-
vated and modulated by nanobody binding that can exploit specific effector hotspots to 
allosterically propagate the binding signal to other epitopes and functional regions. We 
also found that the E484 site may be a critical effector hotspot for Nb6 binding. Allosteric 
versatility of this functional site could make it vulnerable to mutations which may alter 
collective dynamics and potentially be a driver of resistance to nanobodies. Indeed, mu-
tations in the epitope centered on the E484 position (F486, F490) were shown to strongly 
affect neutralization for different classes of nanobodies. 
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Figure 8. The PRS effector profiles for the SARS-CoV-2 S trimer complexes with Nb6 nanobody, pdb 
id 7KKK (A), VHH E nanobody, pdb id 7KSG (C), and VHH VE nanobody, pdb id 7B18 (E). The 
PRS effector profiles for the SARS-CoV-2 S complexes are shown in maroon-colored lines with or-
ange-colored filled circles. For comparison, the PRS profiles are superimposed with the respective 
profiles for the S-RBD complex with ACE2 shown in cyan-colored lines (pdb id 6M0J). The sites of 
escaping mutations for nanobody binding are indicated by maroon-colored filled squares, and RBD 
sites K417, E484, and N501 targeted by global circulating variants are highlighted in blue-colored 
filled diamonds. The positions of sites of circulating variants E484 and N501 are indicated by arrows 
on panels (A,C,E). These sites are aligned with the local minima of the PRS profile and may act as 
receivers/transmitters of the allosteric signal involved in functional RBD movements. Structural 
maps of the allosteric effector hotspots corresponding to the local maxima of the PRS profile are 
shown for the SARS-CoV-2 S trimer complex with Nb6 nanobody (B), S trimer complex with VHH 
E nanobody (D), and S trimer complex with VHH E/VHH V nanobody (F). The S-RBDs are shown 
in red-colored ribbons rendered using UCSF ChimeraX [108]. Structural positions of allosteric effec-
tor centers are shown in red spheres. The important functional sites subjected to circulating muta-
tions K417, E484 and N501 are shown in blue spheres. The bound nanobodies Nb6 (B) and VHH E 
(D) are shown in pink-colored ribbons. VHH E/VHH V nanobody is shown in pink and magenta-
colored ribbons, respectively (F). 

The PRS profile of the S timer complex with VHH E nanobody (Figure 8C,D) featured 
RBD positions L452, Q493, G496, Q498, Y508 among pronounced peaks of the distribution, 
suggesting that these sites could function as regulatory sites of allosteric signaling in the 
complex. Similar to the Nb6 complex, the structural map of the effector centers highlights 
a cluster near the cryptic binding site of the RBD core. The overall preservation of the 
topology and distribution of the allosteric effector centers is evident from our analysis, 
supporting the notion of pre-existing regulatory control points in the S protein. Instruc-
tively, the PRS profile for the S complex with VHH VE nanobody that binds to two differ-
ent binding sites revealed a partial redistribution of the allosteric centers (Figure 8E,F). In 
this case, the dominant, sharp peak corresponded to a cluster of residues (S371, S373, 
V374, F377, K378) from the cryptic site that interacts with VHH V. Smaller local peaks are 
associated with the RBD positions from the ACE2-binding site, primarily Q493, Q498, 
andY508 (Figure 8E). As a result, VHH VE binding could shift the distribution towards 
allosteric sites from the cryptic binding site that regulate signal propagation in the S com-
plex, while functional residues from the RBM binding site may serve as sensors of the 
binding signal. The diminished dependency of allosteric signaling induced by VHH VE 
nanobody on the common sites of escaping mutations may be related to the effects of 
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multimeric nanobody combinations that allow for a reduction in susceptibility to escape 
mutations. This suggests a plausible mechanism by which bi-paratopic nanobodies can 
leverage dynamic couplings to synergistically inhibit distinct binding epitopes and sup-
press mutational escape. To summarize, perturbation-based scanning results revealed the 
allosteric role of functional sites targeted by escaping mutations and the Omicron variant. 
Collectively, our findings suggested that SARS-CoV-2 S protein may exploit the plasticity 
of specific allosteric hotspots to generate escape mutants that alter response to binding 
without compromising activity.  

2.4. Network Centrality Analysis of Global Mediating Centers in the SARS-CoV-2 Complexes 
with Nanobodies Identifies Clusters of Allosteric Hotspots Targeted by Escaping Mutations 

Network-centric models of protein structure and dynamics can allow for a more 
quantitative analysis of allosteric changes, identification of regulatory control centers, and 
mapping of allosteric communication pathways. The residue interaction networks in the 
SARS-CoV-2 spike trimer structures were built using a graph-based representation of pro-
tein structures [135,136] in which residue nodes are interconnected through dynamic cor-
relations [137]. By employing network centrality calculations for the equilibrium ensem-
bles of the SARS-CoV-2 S trimer complexes with nanobodies [138,139], we computed en-
semble-averaged distributions of the short path residue centrality (Figure 9). This network 
metric was used to identify mediating centers of allosteric interactions in the SARS-CoV-
2 complexes. In the context of the network-based centrality analysis, residues mediating a 
significant number of shortest pathways between all possible residue pairs in the system 
are identified by higher betweenness centrality.  

The network centrality profiles revealed several characteristic cluster peaks that are 
shared among complexes (Figure 9). However, nanobody binding can modulate this dis-
tribution and change the relative contribution of mediating centers. In the S trimer com-
plexes with N6 and VHH E nanobodies that target the ACE2-binding sites, we observed 
the largest peak localized in the cluster of F490, L492, Q493, G496, Q498, and Y508 posi-
tions residues (Figure 9A,B). The second peak is aligned with Y449, L452, L453, and L455 
RBD positions. In network terms, this implies that allosteric signaling in the S complexes 
with Nb6 and VHH E can be mediated by these sites that serve as central communication 
hubs. As a result, mutations in these positions and loss of interactions can affect not only 
the local structural environment of the mutated sites but also impact the global network 
organization of the system. Strikingly, a significant number of these mediating centers 
corresponded to residues involved in the Omicron variant. Hence, multiple Omicron RBD 
mutations (such as Q493R, G496S, Q498R, N501Y, Y505H) may have a measurable effect 
on allosteric couplings in the complexes with Nb6 and VHH E nanobodies, which would 
likely render some level of resistance to nanobody-induced neutralization.  
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Figure 9. Network centrality analysis of the SARS-CoV-2 S trimer complexes with nanobodies. (A) 
The ensemble-averaged short path betweenness centrality for the SARS-CoV-2 S trimer in the com-
plex with Nb6 nanobody, pdb id 7KKK (A), S trimer in the complex with VHH E nanobody, pdb id 
7KSG (C), and S trimer in the complex with VHH E/VHH V nanobody, pdb id 7B18 (E). The residue-
based profiles are shown for the S trimers are shown in maroon-colored filled bars. The sites of 
escaping mutations for nanobody binding are highlighted in blue-colored filled diamonds. (B) The 
structure of the SARS-CoV-2 S trimer in the complex with Nb6 nanobody. The S trimer is shown in 
full spheres with protomers A,B,C colored in light green, red, and blue, respectively. Nb6 nanobod-
ies are shown in yellow spheres. The structural maps are projected onto the original cryo-EM struc-
tures. The rendering of SARS-CoV-2 S structures was done using the visualization program UCSF 
ChimeraX [108]. The sites of escaping mutations are highlighted in large spheres colored according 
to the respective protomer. A closeup of the S-RBD bound to Nb6. S-RBD is in orange ribbons, and 
Nb6 is in magenta ribbons. The sites of escaping mutations are shown in orange spheres and corre-
spond to the highlighted positions in the centrality profile. (D) The structure of the SARS-CoV-2 S 
trimer in the complex with VHH E nanobody. VHH E is in yellow spheres, and sites of escaping 
mutations are shown in spheres. A closeup of the S-RBD bound to VHH E with sites of escaping 
mutations in orange spheres. The annotations are the same as in panel B. (F) The structure of the 
SARS-CoV-2 S trimer in the complex with VHH E/VHH V nanobody. VHH E is in yellow spheres 
and VHH V is in orange spheres. A closeup of the S-RBD bound to VHH E/VHH V with sites of 
escaping mutations in orange spheres. VHH E is in magenta ribbons, and VHH V is in red ribbons. 

In contrast, in the S complex with bi-paratopic VHH VE nanobody, a partial redistri-
bution of the network centrality distribution was detected, pointing to the reduced peaks 
in the RBD residues from the ACE2-binding site, while showing a moderate centrality for 
S-RBD core residues from the cryptic site (S371, F374, S375, F377, C379, Y380). The ob-
served modulation of high centrality peaks and broadening of the distribution showed 
that many residues feature a moderate level of centrality. As a result, VHH VE nanobody 
binding can induce long-range couplings between the cryptic binding epitope and ACE2-
binding site through a broader ensemble of communication paths that is less dependent 
on specific mediating centers and therefore may be less sensitive to mutational perturba-
tions of functional residues. This suggests a plausible mechanism by which bi-paratopic 
nanobodies can leverage dynamic couplings to synergistically inhibit distinct binding 
epitopes and suppress mutational escape.  
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3. Materials and Methods  
3.1. Structure Preparation and Analysis  

All structures were obtained from the Protein Data Bank [140,141]. During the struc-
ture preparation stage, protein residues in the crystal structures were inspected for miss-
ing residues and protons. Hydrogen atoms and missing residues were initially added and 
assigned according to the WHATIF program web interface [142,143]. The structures were 
further pre-processed through the Protein Preparation Wizard (Schrödinger, LLC, New 
York City, NY, USA) and included the check of bond order, assignment, and adjustment 
of ionization states, formation of disulfide bonds, removal of crystallographic water mol-
ecules and co-factors, capping of the termini, assignment of partial charges, and addition 
of possible missing atoms and side chains that were not assigned in the initial processing 
with the WHATIF program. The missing loops in the studied cryo-EM structures of the 
SARS-CoV-2 S protein were reconstructed and optimized using template-based loop pre-
diction approaches ModLoop [144], ArchPRED server [145] and further confirmed by 
FALC (Fragment Assembly and Loop Closure) program [146]. The side-chain rotamers 
were refined and optimized by the SCWRL4 tool [147]. The conformational ensembles 
were also subjected to all-atom reconstruction using the PULCHRA method [148] and 
CG2AA tool [149] to produce atomistic models of simulation trajectories. The protein 
structures were then optimized using atomic-level energy minimization with composite 
physics and knowledge-based force fields as implemented in the 3Drefine method [150]. 
The atomistic structures from simulation trajectories were further elaborated by adding 
N-acetyl glycosamine (NAG) glycan residues and optimized.  

3.2. Coarse-Grained Simulations 
Coarse-grained (CG) models are computationally effective approaches for simulations 

of large systems over long timescales. We employed a CABS-flex approach that effi-
ciently combines a high-resolution coarse-grained model and efficient search protocol 
capable of accurately reproducing all-atom MD simulation trajectories and dynamic pro-
files of large biomolecules on a long time scale [151–156]. In this high-resolution model, 
the amino acid residues are represented by Cα, Cβ, the center of mass of side chains and 
another pseudoatom placed in the center of the Cα-Cα pseudo-bond. In this model, the 
amino acid residues are represented by Cα, Cβ, the center of mass of side chains and the 
center of the Cα-Cα pseudo-bond. The CABS-flex approach, implemented as a Python 
2.7 object-oriented standalone package [154,155], was used in this study to allow for ro-
bust conformational sampling proven to accurately recapitulate all-atom MD simulation 
trajectories of proteins on a long time scale. Conformational sampling in the CABS-flex 
approach was conducted with the aid of Monte Carlo replica-exchange dynamics and 
involves local moves of individual amino acids in the protein structure and global moves 
of small fragments [151–153]. The default settings were used in which soft native-like re-
straints are imposed only on pairs of residues fulfilling the following conditions: the dis-
tance between their Cα atoms was smaller than 8 Å, and both residues belong to the same 
secondary structure elements. The CABS-flex default distance restraints moderately pe-
nalize the position of restrained residues if their distance differed from the distance in the 
original cryo-EM structure becomes more than 1 Å. In these settings, loop regions are fully 
unrestrained. A total of 100 independent CG-CABS simulations were performed for each 
of the studied systems. In each simulation, the total number of cycles was set to 10,000, 
and the number of cycles between trajectory frames was 100. MODELLER-based recon-
struction of simulation trajectories to all-atom representation provided by the CABS-flex 
package was employed to produce atomistic models of the equilibrium ensembles for 
studied systems [121].  
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3.3. Molecular Dynamics Simulations  
All-atom MD simulations were performed for an N, P, T ensemble in explicit solvent 

using NAMD 2.13 package [157] with CHARMM36 force field [158]. Long-range non-
bonded van der Waals interactions were computed using an atom-based cutoff of 12 Å 
with switching van der Waals potential beginning at 10 Å. Long-range electrostatic inter-
actions were calculated using the particle mesh Ewald method [159] with a real space cut-
off of 1.0 nm and a fourth-order (cubic) interpolation. SHAKE method was used to con-
strain all bonds associated with hydrogen atoms. Simulations were run using a leap-frog 
integrator with a 2 fs integration time step. Energy minimization after addition of solvent 
and ions was carried out using the steepest descent method for 100,000 steps. All atoms 
of the complex were first restrained at their crystal structure positions with a force con-
stant of 10 Kcal mol−1 Å−2. Equilibration was done in steps by gradually increasing the 
system temperature in steps of 20 K starting from 10 K until 310 K, and at each step, 1ns 
equilibration was done, keeping a restraint of 10 Kcal mol-1 Å-2 on the protein Cα atoms. 
After the restraints on the protein atoms were removed, the system was equilibrated for 
additional 10 ns. An NPT production simulation was run on the equilibrated structures 
for 500 ns, keeping the temperature at 310 K and constant pressure (1 atm). In simulations, 
the Nose–Hoover thermostat [160] and isotropic Martyna–Tobias–Klein barostat [161] 
were used to maintain the temperature at 310 K and pressure at 1 atm, respectively. Prin-
cipal component analysis (PCA) of MD trajectories was carried out based on the set of 
backbone heavy atoms using the CARMA package [162].  

3.4. Mutational Scanning and Sensitivity Analysis 
We conducted mutational scanning analysis of the binding epitope residues for the 

SARS-CoV-2 S protein complexes. Each binding epitope residue was systematically mu-
tated using all possible substitutions, and corresponding protein stability changes were 
computed. The BeAtMuSiC approach [110–112] was employed, which is based on statis-
tical potentials describing the pairwise inter-residue distances, backbone torsion angles, 
and solvent accessibilities, and considers the effect of the mutation on the strength of the 
interactions at the interface and on the overall stability of the complex. The binding free 
energy of protein-protein complex can be expressed as seen in Equation (1) by the differ-
ence in the folding free energy of the complex and folding free energies of the two protein 
binding partners: 

com A B
bindG G G GΔ = − −  (1)

The change of the binding energy due to a mutation was calculated then as the fol-
lowing Equation (2): 

mut wt
bind bind bindG G GΔΔ = Δ − Δ  (2)

We leveraged rapid calculations based on statistical potentials to compute the ensem-
ble-averaged binding free energy changes using equilibrium samples from simulation tra-
jectories. The binding free energy changes were computed by averaging the results over 
1000 equilibrium samples for each of the studied systems. 

3.5. Perturbation Response Scanning  
The Perturbation Response Scanning (PRS) approach [127–134] follows the protocol 

originally proposed by Bashar and colleagues [129,130] and was described in detail in our 
previous studies [133]. In brief, through monitoring the response to forces on the protein 
residues, the PRS approach can quantify allosteric couplings and determine the protein 
response in functional movements. In this approach, it 3N × 3N Hessian matrix 𝐻 whose 
elements represent second derivatives of the potential at the local minimum connect the 
perturbation forces to the residue displacements. The 3N-dimensional vector Δ𝑅 of node 
displacements in response to 3N-dimensional perturbation force follows Hooke’s law 𝐹 =
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𝐻 ∗ 𝛥𝑅. A perturbation force is applied to one residue at a time, and the response of the 
protein system is measured by the displacement vector ∆𝑅(𝑖) = 𝐻ିଵ𝐹(௜)  that is then 
translated into N×N PRS matrix. The second derivatives matrix 𝐻 is obtained from simu-
lation trajectories for each protein structure, with residues represented by 𝐶ఈ atoms and 
the deviation of each residue from an average structure was calculated by  ∆R௝(𝑡) = R௝(𝑡) − 〈R௝(𝑡)〉, and corresponding covariance matrix C was then calculated by ∆R∆R். 
We sequentially perturbed each residue in the SARS-CoV-2 spike structures by applying 
a total of 250 random forces to each residue to mimic a sphere of randomly selected direc-
tions. The displacement changes, ∆𝑅௜ is a 3N-dimensional vector describing the linear re-
sponse of the protein and deformation of all the residues. Using the residue displacements 
upon multiple external force perturbations, we compute the magnitude of the response of 

residue k as 
2)(i

kΔR  averaged over multiple perturbation forces F(i), yielding the ikth 

element of the N×N PRS matrix. The average effect of the perturbed effector site 𝑖 on all 
other residues is computed by averaging over all sensors (receivers) residues 𝑗 and can 
be expressed as〈(∆𝑅௜)ଶ〉௘௙௙௘௖௧௢௥. The effector profile determines the global influence of a 
given residue node on the perturbations in other protein residues and can be used as 
proxy for detecting allosteric regulatory hotspots in the interaction networks. In turn, the 
j th column of the PRS matrix describes the sensitivity profile of sensor residue j  in re-

sponse to perturbations of all residues and its average is denoted as 〈(∆𝑅௜)ଶ〉௦௘௡௦௢௥. The 
sensor profile measures the ability of residue j to serve as a receiver of dynamic changes 
in the system. 

4. Conclusions 
In this study, we performed a comprehensive computational analysis of the SARS-

CoV-2 S trimer complexes with Nb6, VHH E, and VHH E/VHH V nanobodies. We com-
bined CG-CABS and all-atom MD simulations with binding free energy scanning, pertur-
bation-response scanning, and network centrality analysis to examine mechanisms of 
nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 S trimer 
complexes with nanobodies. By quantifying energetic and allosteric determinants of the 
SARS-CoV-2 S binding with nanobodies, we also examined nanobody-induced modula-
tion of escaping mutations and the effect of the Omicron variant on nanobody binding. 
The mutational scanning analysis supported the notion that E484A mutation can have a 
significant detrimental effect on nanobody binding and result in Omicron-induced escape 
from nanobody neutralization. The results suggested that by targeting structurally adapt-
able hotspots such as E484, F486, and F490 that are relatively tolerant to mutational 
changes, the virus tends to exploit conformational plasticity in these regions in eliciting 
specific escape from nanobody binding. Using PRS analysis, we found that escaping mu-
tational variants could preferentially target structurally adaptable regulatory centers of 
collective movements and allosteric communications in the SARS-CoV-2 S complexes. We 
suggested that reduced dependency of allosteric signaling induced by VHH VE nanobody 
on the common sites of escaping mutations may be related to the effects of multimeric 
nanobody combinations that allow for reduction of susceptibility to escape mutations. 
Our findings showed that SARS-CoV-2 S protein might exploit the plasticity of specific 
allosteric hotspots to generate escape mutants that alter response to binding without com-
promising activity. The network analysis supported these findings, showing that VHH 
V/VHH E nanobody binding can induce long-range couplings between the cryptic bind-
ing epitope and ACE2-binding site through a broader ensemble of communication paths 
that is less dependent on specific mediating centers and therefore may be less sensitive to 
mutational perturbations of functional residues. The results suggest that binding affinity 
and long-range communications of the SARS-CoV-2 complexes with nanobodies can be 
determined by structurally stable regulatory centers and conformationally adaptable 
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hotspots that are allosterically coupled and collectively control resilience to mutational 
escape.  
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Abbreviations 
SARS Severe Acute Respiratory Syndrome 
RBD Receptor Binding Domain 
ACE2 Angiotensin-Converting Enzyme 2 (ACE2) 
NTD N-terminal domain 
RBD receptor-binding domain 
CTD1 C-terminal domain 1 
CTD2 C-terminal domain 2 
FP fusion peptide 
FPPR fusion peptide proximal region 
HR1 heptad repeat 1 
CH central helix region 
CD connector domain 
HR2 heptad repeat 2 
TM transmembrane anchor 
CT cytoplasmic tail 
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