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Abstract: Bladder cancer (BC) has a high recurrence rate worldwide. The aim of this study was to 

evaluate the role of fatty acid binding protein 6 (FABP6) in proliferation and migration in human 

bladder cancer cells. Cell growth was confirmed by MTT and colony formation assay. Western blot-

ting was used to explore protein expressions. Wound healing and Transwell assays were performed 

to evaluate the migration ability. A xenograft animal model with subcutaneous implantation of BC 

cells was generated to confirm the tumor progression. Knockdown of FABP6 reduced cell growth 

in low-grade TSGH-8301 and high-grade T24 cells. Cell cycle blockade was observed with the de-

crease of CDK2, CDK4, and Ki67 levels in FABP6-knockdown BC cells. Interestingly, knockdown 

of FBAP6 led to downregulation of autophagic markers and activation of AKT-mTOR signaling. 

The application of PI3K/AKT inhibitor decreased cell viability mediated by FABP6-knockdown ad-

ditionally. Moreover, FABP6-knockdown reduced peroxisome proliferator-activated receptor γ and 

retinoid X receptor α levels but increased p-p65 expression. Knockdown of FABP6 also inhibited 

BC cell motility with focal adhesive complex reduction. Finally, shFABP6 combined with cisplatin 

suppressed tumor growth in vivo. These results provide evidence that FABP6 may be a potential 

target in BC cells progression. 

Keywords: FABP6; bladder cancer; proliferation; cell cycle; migration; autophagy 

 

1. Introduction 

Bladder cancer (BC) is the 10th most-commonly diagnosed cancer worldwide, with 

high mortality and recurrence rates [1]. BC can be divided into non-muscle invasive BC 

(NMIBC, Ta and T1) and muscle invasive BC (MIBC, T2 and T3). Approximately 75% of 

BC patients are considered as NMIBC − the most prevalent type of BC. Transurethral re-

section of bladder tumor (TURBT) followed by immediate postoperative instillation of 

intravesical chemotherapy then adjuvant intravesical immunotherapy (BCG) or chemo-

therapy is the standard of care for NMIBC. Chemotherapy with gemcitabine and cisplatin 

is commonly used in muscle-invasive BC [2]. Despite state-of-the-art surgical techniques 

and neoadjuvant chemotherapy, the five-year survival rate is approximately 60% in MIBC 
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[3,4]. Consequently, there is an urgent need to find new targets for BC therapy to improve 

the outcome of survival and recurrence rates in patients with BC. 

Fatty acid binding proteins are intracellular lipid-binding proteins that act as chap-

erones for lipids. These proteins bind lipids in different organelles and regulate metabolic 

homeostasis through lipid signal transduction [5]. They are abundantly expressed in spe-

cific tissues, such as the liver and small intestine, where fatty acids are the dominant ma-

terial for lipid metabolism. Fatty acid binding protein 6 (FABP6) is also known as ileal bile 

acid-binding protein (IBABP). It is known for its unique ligand, bile acid, and directly 

governs the ileal bile acid transport system [6]. For all FABPs, there is a wealth of literature 

focusing on interrelations involving transcription factors, such as peroxisome proliferator-

activated receptors (PPARs). PPARs encompass a DNA-binding domain that controls 

gene expression. PPARs play a vital role in the regulation of lipid metabolism and may be 

related to FABPs. Previous research surrounding FABP6 has indicated its overexpression 

in colorectal cancers [7] and associated with the prognosis of pancreatic cancer [8]. How-

ever, the role of FABP6 has not been explored in urothelial carcinoma (UC). 

Dysregulation of the cell cycle usually causes abnormal proliferation of cancer cells, 

and the link to genetic instability usually plays a pivotal role in the transformation of nor-

mal cells into cancerous ones. In BC, dysregulated cell cycle has been proven to contribute 

to carcinogenesis of the urothelial epithelium [9]. The current study aimed to investigate 

the role of FABP6 in human bladder cancer cells. Therefore, TSGH-8301 and T24 were 

applied as low- and high-grade BC cell lines, respectively. The role of urothelial FABP6 

was examined with respect to cell proliferation and migration. This may represent prom-

ise for BC patient therapy and highlight potential targets to improve the development of 

BC treatment modalities. 

2. Results 

2.1. Expression Pattern of FABP6 in Uroepithelium, Low- and High-Grade Urothelial 

Carcinomas 

H&E staining revealed representative images of non-neoplastic uroepithelium, low- 

and high-grade urothelial carcinomas (UC) (Figure 1A). Corresponding immunohisto-

chemistry sections had enhanced FABP6 staining in both low- and high- grade UC. In 

addition, bladder neoplasms (orange) showed higher FABP6 expression levels than nor-

mal tissues (blue) in the Gene Expression Profiling Interactive Analysis (GEPIA) [10] (Fig-

ure 1B). FABP6 expression in different BC cell lines was analyzed by Western blotting 

(Figure 1C). The above results indicated increased FABP6 expression in bladder neo-

plasms. 
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Figure 1. FABP6 expression in BC cells. (A) Hematoxylin and eosin (H&E) staining (a to c, upper 

column) of normal urinary bladder tissue, low-grade urothelial carcinoma, and high-grade urothe-

lial carcinoma. Immunohistological analysis of FABP6 in the lower column (d to f, original magni-

fication was ×400). (B) The correlation of FABP6 expression with survival time was analyzed using 

the Gene Expression Profiling Interactive Analysis (GEPIA) website. The blue column shows normal 

bladder tissue (n = 28), and the red column displays BC tissue (n = 404). *, p < 0.05 compared to 

normal tissue. (C) FABP6 protein expression was detected by western blotting in low-grade TSGH-

8301, and high-grade J82 and T24 cells. GAPDH was a loading control. 

2.2. Knockdown of FABP6 Inhibited Survival and Colony Formation in BC Cells 

The MTT assay was used to evaluate the effects of siFABP6 on the survival of human 

BC cells. The knockdown effect of siFABP6 in BC was shown in Supplementary Figure 

S1A,B. After 72 h transfected with siFABP6, reductions in viability of TSGH-8301 and T24 

cells were observed by 33% and 25%, respectively (Figure 2A). Subsequently, colony for-

mation of TSGH-8301 and T24 cells infected with lentiviral-shFABP6 or Scramble Control 

was evaluated. The knockdown effect of shFABP6 in BC was shown in Supplementary 

Figure S1C. The results showed that the colony number was reduced following FABP6 

knockdown (Figure 2B). These results indicated that downregulation of FBAP6 in UC cells 

inhibited cell survival and colony formation abilities. 
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Figure 2. Downregulating FABP6 expression decreased cell viability. (A) The survival rates of 

TSGH-8301 and T24 cells were analyzed after siFABP6 transfection for 48 and 72 h using MTT as-

says. ns showed not significant compared to control group. (B) Colony formation assays for TSGH-

8301 and T24 cells were analyzed after lentiviral infection of shFABP6 (#834 and #012). Cell colonies 

were further visualized after Coomassie blue staining and quantified after 10 days of incubation. *, 

p < 0.05; **, p < 0.01; ***, p < 0.001 compared to control group. 

2.3. Knockdown of FABP6 induced Cell Cycle Arrest of BC Cells 

Cell cycle regulation is critical for cancer cell viability. Cell cycle distribution was 

detected by flow cytometry after FABP6 reduction. The results showed that knockdown 

of FABP6 led to accumulation in the S and G2/M phases in TSGH-8301 and T24 cells (Fig-

ure 3A,B). As shown in Figure 3A, quantitative analysis of S phase distribution of TSGH-

8301 cells increased to 32.7% and 35.9% in the shFABP6 group compared to the shControl 

group (28.2%). In contrast, both S and G2/M arrest was observed in T24 cells. As shown 

in Figure 3B, the G2/M phase and S phase distribution significantly increased to 17.2% 

and 39.1%. We further investigated the mechanism of cell cycle arrest in BC cells. 
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Figure 3. Knockdown of FABP6 induced S and G2/M phase cell-cycle arrest in BC cells. Cell-cycle 

status was investigated using PI staining after knockdown of FABP6 in (A) TSGH-8301 and (B) T24 

cells. Cells were treated with 1 mg/mL doxycycline for three days, and then cells were collected and 

fixed in 70% alcohol. Then, cells were stained with PI and analyzed by flow cytometry. 10,000 cells 

were acquired for analysis. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared to control group. 

In both TSGH8301 and T24 cells, the protein levels of CDK2, CDK4, and cyclin D3 

were significantly downregulated (Figure 4A). Moreover, the expression of p-p53, p21, 

and Ki-67 proteins was decreased following FABP6 knockdown (Figure 4B and Supple-

mentary Figure S3). Thus, the knockdown of FABP6 inhibited proliferation via cell-cycle 

arrest in BC. Apoptosis was not induced by FABP6 inhibition in BC cells with no cleaved 

caspase 3 and PARP being observed (Supplementary Figure S2). 
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Figure 4. Effects of FABP6 inhibition on cell-cycle related protein expression. (A) Western blot anal-

ysis of CDK2, CDK4, cyclin A, and cyclin D3 expression after knockdown of FABP6 for 72 h in 

TSGH-8301 and T24 cells. (B) Western blot analysis of p-p53, p53, p21 and ki-67 expression after 

knockdown of FABP6 for 72 h in TSGH-8301 and T24 cells. GAPDH was a loading control. *, p < 

0.05; **, p < 0.01; ***, p < 0.001 compared to siNegative control group (siNeg). 

2.4. Reducing of FABP6 Inhibited Autophagy Markers via Akt/mTOR Pathway 

FABPs have also been found to be correlated with autophagy under ER stress and 

mitochondrial stress [11]. After knockdown of FABP6 for 72 h, p-AKT and p-mTOR were 

upregulated in both TSGH8301 and T24 cell lines (Figure 5A,B). As shown in Figure 5C,D, 

p62 protein, which binds to LC3B leading to autophagosome degradation [12] was down-

regulated by FABP6 reduction, which may lead to blockage of autophagy. In addition, the 

mRNA level of p62 was unaffected while FABP6 was inhibition (Supplementary Figure 

S4B). The levels of the autophagy marker, LC3B-II, were lower in the siFABP6 group than 

in the control group (Figure 5C,D). Intriguingly, the PI3K inhibitor LY294002 showed an 

additional inhibitory effect of cell growth by FABP6 knockdown (Figure 5E,F). Moreover, 

application of LY294002 could not reverse the reduction of p62 and LC3B-II (Supplemen-

tary Figure S4). Together, these results may suggest that knockdown of FABP6 suppressed 

autophagic markers. 

 

Figure 5. Effects of FABP6 knockdown on mTOR/Akt and autophagy in BC cells. (A) Western blot-

ting analysis of p-AKT, AKT, p-mTOR, and mTOR after knockdown of FABP6 for 72 h in TSGH-

8301 and T24 cells. (B) Western blotting analysis of expression of p62 and LC3B-I/LC3B-II after 

knockdown of FABP6 for 72 h. Left panel: TSGH-8301 cell line; right panel: T24 cell line. (C) PI3K 

inhibitor LY294002 (20 μM) or DMSO were co-treated with siFABP6 for 72 hr Cell survival was 

measured using MTT assays. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared to siNeg group. ###, p < 

0.001 compared to siFABP6 group. 

Additionally, the proteasome inhibitor MG132 and the lysosomal inhibitor NH4Cl 

were employed to investigate whether degradation systems involved in FABP6 reduction 

inhibited LC3B-II expression. Only MG132 recovered the expression of LC3B-II in FABP6 

knockdown cells (Supplementary Figure S3A). MTT assays further showed that regard-

less of the cell line, treatment with MG132 led to an additional effect of reduced cell sur-

vival (Supplementary Figure S5B). 
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2.5. FABP6 Inhibition Decreased Nuclear Receptor PPARγ/RXRα and Activated NF-kB 

Signaling 

PPARs are nuclear receptors that combine with retinoid X receptors (RXRs) to be sen-

sors of lipid signaling in the context of autophagy regulation [13]. The protein levels of 

PPARγ and RXRα were reduced after the knockdown of FABP6 in both cell lines (Figure 

6A). Immunostaining of p-p65 observed an upregulation after FABP6 inhibition (Figure 

6B). Thereafter, we examined the total, nuclear, and cytosolic protein levels of NF-κB. As 

expected, the results showed an increase in NF-κB levels after FABP6 silencing (Figure 

6C). Accordingly, FABP6 inhibition induced NF-κB activation, which might be antago-

nized by PPARγ modulation. 

 

Figure 6. Effects of FABP6 knockdown on PPARγ and NF-κB signaling pathways. (A) Expression 

of PPARγ, RXRα, p-p65, and p65 was analyzed after FABP6 knockdown for 72 h. GAPDH was a 

loading control. (B) Immunostaining of p-p65 after siFABP6 72 h post-transfection. DAPI was coun-

ter stained for nucleus. Scale bar = 20 μm. (C) Nuclear and cytosolic p-p65 expression was analyzed 

by nuclear fractionation. Lamin and GAPDH served as nuclear and cytosolic loading controls, re-

spectively. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared to siNeg group. 

2.6. Reducing of FABP6 Decreased Cell Migration and Invasion Characteristics in siFABP6-

Transfected TSGH-8301 and T24 Cells 

To determine whether FABP6 is involved in BC cell migration and invasion, wound 

healing assays and transwell assays were performed. Compared with the control group, 

cell migration was decreased by 40% ± 4% in both TSGH-8301 and T24 cells after wound-

ing (Figure 7A). The number of invasive T24 cells declined considerably to 73% compared 

to the siNegative control group (Figure 7B). In addition, focal adhesive proteins, including 

integrin β1, p-focal adhesion kinase (p-FAK), and p-paxillin were reduced by FABP6-

knockdown in both cell lines (Figure 7C). In addition, E-cadherin and N-cadherin were 

unaffected after FABP6 knockdown, except the reduction of E-cadherin in T24 cells (Sup-

plementary Figure S6). Our findings suggested that FABP6-knockdown decreased the mi-

gration and invasive capabilities of TSGH-8301 and T24 cells. 
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Figure 7. Effect of FABP6 knockdown on cell migration and invasion in BC cells. (A) Cell migration 

was detected using wound healing assays in siNeg and siFABP6 groups 72 h post-transfection. 8 h 

after scratching, the wound area was captured and analyzed using ImageJ software. (B) Cell inva-

sion was detected using Transwell migration assays using Matrigel. After siFABP6 transfection for 

72 h, T24 cells were incubated in the upper chamber. After cells were seeded on the Matrigel for 24 

h, cells in the lower chamber were observed by Coomassie blue staining and counted using ImageJ 

software. (C,D) The expression of integrin β1, p-FAK, FAK, p-paxillin, and paxillin was analyzed 

after FABP6 knockdown for 72 h. GAPDH was a loading control. *, p < 0.05; **, p < 0.01; ***, p < 0.001 

compared to siNeg group. 

2.7. FABP6-Knockdown Suppressed BC Cell Growth In Vivo 

We established a mouse model by subcutaneous injection of T24 cells to further eval-

uate the effect of FABP6 on BC cell growth in vivo (Figure 8A). The results suggested that 

knockdown of FABP6 combined with cisplatin (2.5 mg/kg) treatment remarkably sup-

pressed tumor growth after five weeks as shown by BLI value (Figure 8B). Loss of body 

weight was observed in the cisplatin treatment groups compared to that in the non-cis-

platin-based groups (Figure 8C). These results indicated that combination of FABP6 inhi-

bition and cisplatin suppressed BC cell progression. 
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Figure 8. Knockdown of FABP6 suppressed BC cell growth in vivo. BALB/c nude mice were subcu-

taneously injected with T24 cells and allowed to grow for 3 weeks. Cisplatin (2.5 mg/kg) and vehicle 

were then intraperitoneally injected every 3 days for 3 weeks. (A) Tumor volumes were measured 

using IVIS spectrum every 3 days before and during drug administration. The IVIS images were 

shown each group at five weeks. (B) Luminescent intensity of photons emitted from each tumor 

was quantified. (C) Body weight was measured every 3 days. *, p < 0.05 compared with scramble 

control group. 

3. Discussion 

FABP6 inhibition blocked cell proliferation via cell-cycle arrest. CDK2 and CDK4 re-

duction arrest the G1 cell-cycle in MCF-7 human breast cancer cells [14]. Cyclin D3 is es-

sential for the G1/S transition [15]. Additionally, cyclin D3 has been reported to be used 

as a predictive marker in breast cancer, and its reduction decreases malignant cell migra-

tion and invasion [16]. However, the driving force to pass the G2 checkpoint in human 

cells depends on p53 and p21 [17]. P21 inhibits CDK2 and CDK4 by blocking pRb phos-

phorylation [18]. According to our results, suppression of FABP6 expression in BC de-

creased the expression of p53, p21, CDK2, and CDK4. Abrogation of FABP6 expression 

increased cell-cycle arrest in the G2/M phase, which may be due to CDK2, CDK4, and 

cyclin D3 reductions in BC. 

Mice treated with cisplatin (4 mg/Kg) show significantly reduced body weights from 

week 2 to week 6 compared to a saline group [19]. Previous studies also showed that ad-

ministrating cisplatin to mice significantly reduced their body weight [20–22]. A lower 

body weight in the cisplatin treatment group than in control group is also observed in 

breast cancer-bearing mice [23]. Accordingly in our study, the body weight was lower in 

the cisplatin treatment group than in the control group. 

P62 plays a critical role in autophagy, proliferation, and migration. Moreover, p62 

has been reported to modulate endogenous and environmental stress [24]. When the au-

tophagic flux is inhibited by chloroquine or bafilomycin A1, both p62 and LC3B-II accu-

mulation are observed [25]. In contrast, the p62 protein expression was decreased after 

FABP6 reduction in BC cells without mRNA levels changing. Meanwhile, LC3B-II was 

downregulated by FABP6 knockdown. On the other hand, knockdown of p62 inhibits 

proliferation and migration in lung adenocarcinoma [26]. Accordingly, the autophagic 

flux, proliferation, and migration might be inhibited by p62 reduction in FABP6 knock-

down BC cells. 
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Activation of the Akt/mTOR pathway serves as a negative regulator of autophagy 

[27]. Pharmacological inhibition of autophagy was found to induce cytotoxicity with ac-

cumulation of cellular stress markers in leukemia, breast cancer, and colon cancer cells 

[28]. In addition, p62 protein, a component of the autophagosome, is frequently upregu-

lated following deficient autophagy [29]. The current study of FABP6-knockdown in BC 

revealed increased p-Akt and p-mTOR protein levels with decreased autophagy marker 

p62 and LC3B-II. Previous studies have characterized the potential of autophagy inhibi-

tors in the treatment of BC by enhancing chemotherapy sensitivity [30]. After knocking-

down FABP6, an increase in autophagy was not observed, but, rather, showed deficiency, 

suggesting that autophagy may protect BC cells from cell cycle-arrest or even cell death. 

Defective autophagy may cause metabolic disorders, and thus autophagy probably plays 

a pro-survival role in this scenario. Targeting FABP6 may serve as a therapeutic oppor-

tunity for regulating BC cell viability, cell-cycle, and cell autophagy. 

Different FABP isoforms have distinct functions in PPARs [31]. PPARγ expression is 

correlated with inflammation, lipid, and cellular metabolism [32,33]. Additionally, PPAR 

and RXR heterodimers have been associated with FABP1 and FABP4 transcription [33]. 

Activation of FABP1 in HepG2 cells induces PPARα and PPARγ transactivation [34]. 

PPARγ is strongly enhanced in FABP4-null preadipocytes, which leads to adipogenesis 

[35]. In contrast, Src inhibition decreases PPARγ expression and subsequently reduces 

FABP4, which blocks cell survival in lung cancer cells [36]. Therefore, FABPs may contrib-

ute to the expression of PPAR. Moreover, PPARγ activation leads to the repression of pro-

inflammatory genes and inhibits the expression of cytokines by inhibiting the NF-κB path-

way [37]. According to our results, suppression of FABP6 expression in BC decreased 

PPARγ levels and RXRα, which may lead to NF-κB activation.  

4. Materials and Methods 

4.1. Cell Culture  

The bladder cancer cell line Tri-Service General Hospital-8301 (TSGH-8301) was pro-

vided by Dah-Shyong Yu, M.D. from the Division of Urology, Tri-Service General Hospi-

tal, National Defense Medical Center (Taipei, Taiwan). The TSGH-8301 cell line was 

grown in RPMI 1640 medium. T24 was grown in McCoy’s 5a medium and obtained from 

the Bioresource Collection and Research Center (BCRC, Hsinchu, Taiwan). J82 cells were 

obtained from ATCC and grown in RPMI 1640 medium. These cell lines were supple-

mented with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, Massa-

chusetts, USA), L-Glutamine, and sodium pyruvate (Corning, Corning, New York, USA) 

in a sealed incubator at 37 °C and 5% CO2. 

4.2. Small Interfering RNA (siRNA) Transfection 

TSGH-8301 and T24 cells were plated at a density of 5 × 105 cells per well in 6-well 

plates. The next day, the cells were transfected with FABP6 siRNA (50 nM; siGENOME 

SMARTPool) or non-targeting control siRNA (Horizon Discovery, Cambridge, UK) using 

Lipofectamine 3000 reagent (Thermo Fisher Scientific) according to the manufacturer’s 

instructions for 48 or 72 h of transfection. The siRNA sequences were showed in Supple-

mentary Table S1. 

4.3. Short Hairpin RNA (shRNA) Transfection 

Due to applying the knockdown FABP6 in animal model, we developed the inducible 

shFABP6 stable knockdown cell line which could be induced by doxycycline. The lentivi-

rus expression plasmids pLKO-shScramble (ASN0000000003) and pLKO-shFABP6 

(TRCN0000419834, and TRCN0000447012) were purchased from the National RNAi Core 

Facility at Academia Sinica (Taipei, Taiwan). The sequences were showed in Supplemen-

tary Table S2. 
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4.4. Lentivirus Production 

The lentivirus production was by 293T cells transfected pLKO-shScramble or pLKO-

shFABP6 with pCMV-dR8.91, and pMD.G using Lipofectamine 3000 reagent (Thermo 

Fisher Scientific) according to the manufacturer’s instructions. The lentivirus was col-

lected after 24- and 52-h transfection and was used to infect TSGH-8301 and T24 cells, 

followed by puromycin (2 µg/mL) selection. 

4.5. MTT Assays 

Cells were seeded in 96-well culture plates at a density of 5 × 103 cells/well. To analyze 

cell survival under knockdown of FABP6 in TSGH-8301 and T24 cells, different siRNA or 

vehicle-only control groups were transfected for 48 or 72 h. Next, MTT reagent (3-(4,5-

dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, Sigma-Aldrich, Brulington, 

MA, USA) was added to each well and incubated for 3 h. The MTT solution was removed, 

followed by the addition of dimethyl sulfoxide (DMSO, Sigma) to dissolve insoluble form-

azan. The optical absorbance was measured at 570 nm using an ELISA reader Synergy 

HTX (BioTek Instruments, Winooski, Vermont, USA). 

4.6. Flow Cytometric Cell-Cycle Analysis 

TSGH-8301 and T24 cells were seeded in 6 cm dishes at 4 × 105 cells/well and 3 × 105 

cells/well, respectively. After induction for 3 days, the cells were harvested and washed 

with PBS. The cells were collected and fixed in 70% alcohol. After fixation, RNase was 

added and the cells were stained with propidium iodide (PI) dye (Sigma). Cell-cycle dis-

tribution was analyzed using Attune NxT Flow Cytometer (Thermo Fisher Scientific) and 

FlowJo software (BD Biosciences, Franklin Lakes, New Jersey, USA). 

4.7. Western Blotting 

4 × 105 cells/well of TSGH-8301 cells or 3 × 105 cells/well of T24 cells were seeded in 6 

cm plates. Cells were treated with mammalian protein extraction buffer (Cytiva, Marlbor-

ough, MA, USA) with phosphatase and protease inhibitor cocktail EDTA free (Med-

ChemExpress, Monmouth Junction, New Jersey, USA) to dissociate cells from the plate 

using cell scrapers. A Q700 Sonicator (Qsonica, Newtown, Connecticut, USA) was used to 

disrupt cell membranes and to obtain a protein extract solution by centrifugation. Protein 

concentrations were measured using a protein assay kit (Bio-Rad, city, Hercules, Califor-

nia, USA). 5× SDS Loading Sample buffer (30% glycerol, 10% sodium dodecyl sulfate, 5% 

β-mercaptoethanol, 250 mM Tris-HCL, pH 6.8, and 0.02% bromophenol blue) was added 

in different amounts based on the different protein concentrations. Next, 60 or 80 µg of 

protein samples was electrophoresed on 10% acrylamide gels by SDS-PAGE. Protein sam-

ples were then transferred to nitrocellulose membranes (Bio-Rad). The membranes were 

blocked in blocking buffer and incubated with primary antibodies at 4 °C overnight. The 

membranes were washed with TBST buffer (Tris-base, sodium chloride, Tween 20) and 

incubated with HRP-conjugated secondary antibody (Cell Signaling Technology, Dan-

vers, Massachusetts, USA) (antibody dilution 1:5000 in blocking buffer) at room tempera-

ture. Chemiluminescent detection reagents (Bio-Rad) were applied to the blots, and pro-

tein signals were detected by Xplorer (SPOT Imaging, Sterling Heights, Michigan, USA). 

The antibodies used are listed in Supplementary Table S3. 

4.8. Wound Healing Scratch Assay 

To analyze cell migration under FABP6 knockdown in TSGH-8301 and T24 cells, dif-

ferent siRNA or vehicle-only groups were transfected for 72 h. After transfection, a wound 

was scratched into confluent cell monolayers using a 200 µL pipette tip. Cells were 

washed with PBS 3 times, aspirated, and RPMI-1640 medium was replaced. Wound width 

images were captured using a microscope at 10× objective magnification (100× total 
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magnification) 0 and 8 h after scratching, and the wound areas were analyzed using Im-

ageJ software.  

4.9. Transwell Assays 

T24 cells were seeded in the upper chamber of a Transwell at a density of 5 × 104 

cells/well Corning. Before seeding, 3% Matrigel mixed with McCoy’s 5A medium was 

added to the upper chamber and incubated for at least 2 h at 37 °C. After incubation at 37 

°C for 24 h, cells in the lower chamber were fixed with formalin and stained with Coo-

massie Brilliant Blue G250 (Sigma). The invading cells were enumerated using three ran-

dom microscope fields from each transwell in each experiment. 

4.10. Xenograft Mouse Model 

All animal experiments were approved by the Laboratory Animal Center of the Na-

tional Defense Medical Center, Taiwan (IACUC No. 19-157). BALB/c nude mice (18 weeks, 

20–25 g) were purchased from BioLASCO (Taipei, Taiwan). The animals were anesthe-

tized with an O2/isoflurane mixture. Next, 1 × 106 T24-Luc2 cells with inducible knock-

down of FABP6 or a scrambled control were implanted subcutaneously into the right 

flank of mice. Three weeks after implantation, the twenty mice were assigned to four 

groups (n = 5 each group): vehicle-only control, shFABP6, vehicle control + cisplatin, and 

shFABP6 + cisplatin. Cisplatin was administered via intraperitoneal injection at 2.5 mg/kg 

every 3 days for 5 weeks. Doxycycline (2 mg/mL) in drinking water with 0.1% sucrose was 

replenished once every 2 days after implantation. Body weight was measured once every 

three days, and a non-invasive in vivo imaging system (IVIS Spectrum, Perkin-Elmer, 

Waltham, Massachusetts, USA) detection for tumor volume was used every 3 days. After 

5 weeks experimental period, vehicle-only control group left three animals, vehicle control 

+ cisplatin group left four animals, and shFABP6 + cisplatin group left three animals. The 

mice were sacrificed then.  

4.11. Statistical Analysis 

Data are presented as means ± SEM from at least three independent experiments. 

Differences between means were assessed using the Kruskal–Wallis test. The Mann–Whit-

ney U test was used for post-hoc analysis. Statistical significance was set at p < 0.05. 

5. Conclusions 

FABP6 inhibition reduced cell growth by arresting the cell-cycle with decreased 

CDK2 and CDK4 abundance, and cyclin D3 expression. AKT/mTOR was activated by 

FABP6-knockdown; however, blocking AKT signaling could not rescue FABP6-reduced 

cell viability. Moreover, declines in PPARγ and RXRα levels were observed after FABP6 

knockdown. Additionally, FABP6 inhibition also reduced migration, with a decrease in 

focal adhesive complexes. Thus, FABP6 may be a potential therapeutic target for BC in the 

future. 
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