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Abstract: Bacterial leaf pustule (BLP), caused by Xanthornonas axonopodis pv. glycines (Xag), is a
worldwide disease of soybean, particularly in warm and humid regions. To date, little is known about
the underlying molecular mechanisms of BLP resistance. The only single recessive resistance gene
rxp has not been functionally identified yet, even though the genotypes carrying the gene have been
widely used for BLP resistance breeding. Using a linkage mapping in a recombinant inbred line (RIL)
population against the Xag strain Chinese C5, we identified that quantitative trait locus (QTL) qrxp–
17–2 accounted for 74.33% of the total phenotypic variations. We also identified two minor QTLs,
qrxp–05–1 and qrxp–17–1, that accounted for 7.26% and 22.26% of the total phenotypic variations,
respectively, for the first time. Using a genome-wide association study (GWAS) in 476 cultivars of a
soybean breeding germplasm population, we identified a total of 38 quantitative trait nucleotides
(QTNs) on chromosomes (Chr) 5, 7, 8, 9,15, 17, 19, and 20 under artificial infection with C5, and
34 QTNs on Chr 4, 5, 6, 9, 13, 16, 17, 18, and 20 under natural morbidity condition. Taken together,
three QTLs and 11 stable QTNs were detected in both linkage mapping and GWAS analysis, and
located in three genomic regions with the major genomic region containing qrxp_17_2. Real-time
RT-PCR analysis of the relative expression levels of five potential candidate genes in the resistant
soybean cultivar W82 following Xag treatment showed that of Glyma.17G086300, which is located in
qrxp–17–2, significantly increased in W82 at 24 and 72 h post-inoculation (hpi) when compared to that
in the susceptible cultivar Jack. These results indicate that Glyma.17G086300 is a potential candidate
gene for rxp and the QTLs and QTNs identified in this study will be useful for marker development
for the breeding of Xag-resistant soybean cultivars.

Keywords: linkage mapping; GWAS; qPCR; Xanthornonas axonopodis pv. glycines; bacterial leaf
pustule; soybean
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1. Introduction

Bacterial leaf pustule (BLP), caused by the causal agent Xanthomonas axonopodis pv.
glycines (Xag), is one of the most destructive foliar diseases in susceptible soybean cultivars.
BLP causes a significant reduction in soybean yield and quality worldwide, especially
in the soybean production areas in China [1], Korea [2], Thailand [3,4], the USA [5,6],
and Benin [7], where seasonal high temperature and humidity favor Xag growth and
development. Thus, BLP disease is more severe in South China, especially at Yangtze–Huai
River Basins, in comparison with North China [1]. Recently, the incidence of BLP disease in
South China has been rising along with global warming and the frequent occurrence of
storms [1,8,9]. For example, the tropical storm ‘Rumbia’ caused an outbreak of BLP disease
in the soybean growing area of Jianghuai River Basin in China in August 2018. In addition,
it was reported that 88% of soybean growing in the fields in South Korea in 1998 were
severely infected by Xag. Similarly, it accounted for 20.7–34.9% of soybean yield losses in
Thailand in 1983 [2,10].

Xag infects soybean through natural openings and wounds on the abaxial surface
of soybean leaves with the possibility to extend to stalks and petioles [5,11]. Typical BLP
symptoms include small yellow-to-brown lesions with raised pustules in the lesion centers
on infected soybean leaves, causing premature defoliation [5,11]. The pustule lesions caused
by Xag can always be used as the infection sites by other microbial pathogens such as
bacterium Pseudomonas tabaci, the causal agent of soybean wildfire disease [5]. Moreover, the
BLP disease is easily misdiagnosed as Asian soybean rust caused by Phakopsora pachyrhizi [6],
and the application of inappropriate pesticides could cause unnecessary economic burden
to farmers.

To reduce economic losses in soybean production, disease resistance breeding is
considered as the most cost-effective, efficient, and environmentally safe approach to
achieve yield stability [12]. It was thought that a single major recessive resistance gene rxp
confers BLP resistance while its dominant allele and associated genes regulate the degree
of susceptibility [13,14]. The recessive rxp allele was originally determined in the soybean
cv. CNS (P.I. 71,569), which is a highly BLP-resistant (near immune) cultivar and was
developed in Nanjing, China [13]. To date, rxp has been widely used for the development of
commercial BLP-resistant soybean cultivars worldwide [13,15]. In addition, rxp also confers
resistance to soybean wildfire disease, which sometimes occurs with BLP disease [13].

The dominant Rxp allele, which confers susceptibility to the BLP disease, was orig-
inally found to be linked to the malate dehydrogenase (Mdh) locus with an about 16%
recombination in a population of 650 F2 soybean plants developed from the crosses of Clark
63 and P.I. 437,477B [16]. Then, the Rxp locus was mapped to the genomic region between
markers Satt372 and Satt014 on chromosome (Chr) 17 by using the hybrid offspring of
resistant parent Coker 237 and susceptible parent P.I. 97,100, as well as the resistant parent
Young and susceptible parent P.I. 416,937 [5].

QTL fine mapping located the recessive rxp in the 33-kb-long genomic fragment
between markers SNUSSR17_9 and SNUSNP17_12 on Chr 17, which contains three genes,
i.e., serine/threonine/tyrosine-protein kinase HT1 coding gene Glyma17g09770, membrane
protein coding gene Glyma17g09780, and zinc finger protein coding gene Glyma17g09790;
the latter two were predicted to be the key candidate resistance genes [2]. A GWAS study
identified one significant SNP in each of Glyma01g40560, Glyma01g40590, Glyma11g20310,
and Glyma17g09801 that was associated with BLP resistance [17]. An RNA-Seq analysis
identified the differentially expressed genes (DEGs) between resistant and susceptible
soybean varieties under the infection of Xag strain 8ra at 0, 6, and 12 h post-inoculation
(hpi) [18]. Interestingly, no significant difference was detected in the relative expression
levels of Glyma17g09780 and Glyma17g09790 between the resistant and susceptible soybean
varieties at 0, 6, and 12 hpi [18]. Several minor QTLs conferring resistance to various Xag
isolates were also identified on Chr 18, 05, 04, 13, 19, and 10 in the recombinant inbred lines
(RILs) derived from a cross between susceptible parent ‘Suwonl57’ and resistance parent
‘Danbaekkong’ using 76 SSR markers [14]. Furthermore, a novel QTL/gene responsible



Int. J. Mol. Sci. 2022, 23, 2113 3 of 18

for BLP resistance was located at 21.5 cM away from the SSR marker Sat_108 on Chr 10 in
P.I. 96,188, a soybean variety that only exhibits pustules without chlorotic haloes following
Xag infection [19]. In addition, a few disease resistance genes were reported to be involved
in BLP resistance in soybean. For example, the soybean LATERAL ORGAN BOUNDARY1
(GmLob1; Glyma.05g040500) was predicted to be targeted by the virulence factor (tal2b)
of Xag as its homolog CsLOB1 in Citrus sinensis has been reported as a resistance gene to
citrus canker disease caused by X. citri subsp. Citri (Xcc) [20,21]. A soybean lesion-mimic
mutant NT302 containing a defective hydroperoxide lyase (HPL) gene Glyma.12g191400
(GmHPL) exhibited high susceptibility to Xag strain C5, indicating GmHPL’s role in Xag
resistance [22].

In the present study, we assessed the BLP resistance level in a soybean RIL population
and an association panel of soybean breeding lines in multiple environments. Then, we
applied linkage mapping and GWAS for the identification of the BLP resistance QTLs and
quantitative trait nucleotides (QTNs) in the soybean genome, leading to the identification
of novel QTLs/QTNs. Our linkage mapping and GWAS revealed that BLP resistance is
governed by one single major QTL qrxp–17–2 and two minor QTLs qrxp–05–1 and qrxp–17–1
that were identified for the first time in the present study. The relative expression of five
potential candidate genes in the resistant soybean cultivar W82 and susceptible cultivar
Jack following Xag treatments showed that Glyma.17G086300, which is located in qrxp–17–2,
is a candidate gene for rxp.

2. Results
2.1. The BLP Resistance of the Soybean RIL and Association Panel Lines and Their Relationship
with Flowering Time

BLP resistance was assessed in the soybean RIL population under the artificial inocu-
lation condition and in the soybean association panel under both the artificial inoculation
and natural morbidity conditions. The frequency distributions of the phenotypic data of
soybean resistance to BLP disease exhibited a normal distribution pattern (Figure S1, see
Supplementary Materials). Under the artificial inoculation condition, the mean infection
responses (IRs) of the RIL in 2014–2015 and the association panel lines in 2014–2016 varied
from 4.08 ± 2.71 to 5.65 ± 2.62 and from 2.76 ± 1.54 to 3.64 ± 1.76, respectively (Table 1).
However, the mean IRs of the association panel lines under the national morbidity condition
in 2018 varied from 2.54 ± 1.72 to 4.33 ± 1.88 (Table 1), indicating the severity of the BLP
disease under the natural morbidity condition in 2018 (Figure 1). In addition, the BLP resis-
tance levels in both populations showed a continuous variation from 1 to 9 (Tables S1–S3),
demonstrating that the BLP resistance in these soybean lines is a quantitative trait and
regulated by multiple genes. Analysis of variance (ANOVA) of the BLP resistance in each
population under either condition (spray or the natural morbidity) indicated that the effects
of genotype (G), environment (E), and genotype × environment (G × E) interactions were
significant at the p < 0.001 level of significance (Table 1). The only exception came from
the G × E interactions in the RIL lines under the spray condition, which were significant
at the p < 0.05 level of significance. Moreover, the broad-sense heritability (h2) for BLP
resistance in the two populations under either condition was 79.81% or greater (Table 1),
indicating that the majority of phenotypic variation of BLP resistance in these soybean lines
was attributed to effects of genotype (G).

Additionally, the flowering time of the soybean association panel was recorded under
the natural morbidity condition in 2018 (Table S3) [23]. The correlation analysis showed a
significant negative correlation at the p < 0.05 level (r = −0.29) between the BLP resistance
level and flowering time, except the correlation was insignificant between the BLP resistance
level and flowering time in the 2018DT-natural environment (Table S4).

2.2. Genetic Linkage Map Construction and Linkage Mapping in the Soybean RIL Population

A genetic map used for linkage mapping analysis was constructed in the soybean
RILs. A total of 18.77 and 14.78 M reads and 1.58 and 1.24 Gbp bases of raw data were
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obtained for the two parents of the RIL population (Zhengyang and M8206), respectively.
In addition, the mapped reads of two parents were 11.82 and 9.22 M and the mapped bases
were 0.99 and 0.77 Gbp, respectively. The genome coverage of these two parents were 8.7
and 7.8%, respectively. For the RIL populations, a total of 66,677 SNPs were identified, and
the average SNP density across the soybean 20 chromosomes was 6.85 SNPs per 100 kb
(Table S5).

Table 1. Descriptive statistics and ANOVA for BLP disease resistance in soybean RIL and association
panel populations.

Population Environment Infection
Response a Range CV (%) b FG c FE d FG × E e h2 (%) f

RIL
2014JP-spray 5.65 ± 2.62 1–9 46.53 7.97 ** 116 ** 1.62 * 79.81
2015JP-spray 4.08 ± 2.71 1–9 66.49

Association
panel

2014JP-spray 3.64 ± 1.76 1–9 48.41 104.51 ** 7.79 ** 1.27 ** 91.63
2015JP-spray 3.62 ± 2.33 1–9 64.58
2016JP-spray 2.76 ± 1.54 1–8 55.98

Association
panel

2018JP-natural 4.33 ± 1.88 1–9 43.39 1425.04 ** 9.60 ** 2.56 ** 87.43
2018DT-natural 2.54 ± 1.72 1–8 68.00

a Mean ± standard deviation; b CV, coefficient of variation; c FG, the F-value of genotype; d FE, the F-value of
environment; e FG × E, the F-value of genotype × environment; f h2, heritability. * Significance at p ≤ 0.005;
** significance at p ≤ 0.001.

Figure 1. Bacterial leaf pustule disease symptoms scaled by the disease spot numbers. The BLP
resistance performance of soybean plants were assessed as five levels, i.e., 1, 3, 5, 7, and 9. Scale bar
of 1 cm was used.

Using the composite interval mapping (CIM) method, we identified three QTLs, i.e.,
qrxp_5_1, qrxp_17_1, and qrxp_17_2, which were associated with BLP resistance in the RIL
population in the 2014JP– and/or 2015JP–spray environments (Table 2). Among them,
qrxp_5_1 and qrxp_17_1 were detected in the 2015JP–spray environment and located in
the physical intervals of 1–1,169,356 bp on Chr 05 and 5,158,677–5,994,063 bp on Chr 17,
respectively. The qrxp_5_1 explained for 7.26% of phenotypic variation of BLP resistance
with a negative effect, while qrxp_17_1 accounted for 22.26% of the phenotypic variation
of BLP resistance with a positive effect (Table 2). The qrxp_17_2 was detected in both
environments and located in the physical interval of 6,777,393–6,883,854 bp on Chr 17,
explaining for 74.33% of phenotypic variance in the 2014JP–spray environment, and located
in 6,293,843–6,883,854 bp on Chr 17, accounting for 34.68% of the phenotypic variance in
the 2015JP–spray environment (Table 2). The qrxp_17_2 showed a positive effect to BLP
resistance and was considered as the most stable QTL associated with BLP resistance in
soybean (Table 2).
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Table 2. BLP-resistant QTLs identified by linkage mapping in the soybean RIL population under the
artificial inoculation condition.

QTL Chromosome
Genetic
Position

(cM)
LOD Additive R2 (%) a

Confidence
Interval

(cM)

Physical Position
(bp) Environment

qrxp_5_1 5 0.01 4.17 −0.74 7.26 0.00~0.50 1~1,169,356 2015JP-spray
qrxp_17_1 17 26.91 9.08 1.32 22.26 24.60~27.90 5,158,677~5,994,063 2015JP-spray
qrxp_17_2 17 34.81 33.01 2.29 74.33 33.50~36.60 6,777,393~6,883,854 2014JP-spray

32.81 15.99 1.67 34.68 31.60~34.80 6,293,843~6,883,854 2015JP-spray
a Phenotypic variance (%) explained by the peak markers.

2.3. Population Structure and Linkage Disequilibrium (LD) Analyses in the Soybean
Association Panel

The 476 lines of the soybean association panel were genotyped using a high-density
soybean array that consisted of 61,166 high-quality SNPs [24]. Clustering analysis using
the neighbor joining method grouped all these lines into three groups (Figure 2A). The
principal component analysis (PCA) also grouped them into three groups (Figure 2B). The
first and second PCs explained for 17.27% and 5.02% of the total variance, respectively. The
results of clustering analysis and PCA showed that the soybean lines derived from the
same geographical locations and the same parental materials were generally grouped into
the same subpopulations. The LD analysis showed that the r2 decreased gradually as the
physical distance increased, and the LD decay distance was estimated at 1.39 Mb, where r2

dropped to being half of its maximum value of 0.74428 (Figure 2C).

Figure 2. Population structure (A), principal component analysis (PCA; B), and linkage disequilib-
rium (LD) decay (C) of the 476 lines of the soybean association panel according to the high-density
61,166 soybean array. The LD parameters, viz., “D’” and “r2” were calculated. The LD decay rate of
the population was measured as the chromosomal distance when the average r2 decreased to be half
of its maximum value.

2.4. Association Mapping in the Soybean Association Panel

BLP resistance in the association panel was evaluated under the artificial inoculation
condition by using Xag C5 in Jiangpu from 2014 to 2016. The GWAS analysis detected
38 QTNs that were significantly associated with BLP resistance under the recommended
threshold of −log10(p) ≥ 4 and distributed on eight chromosomes (Figure 3; Table S6).
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These QTNs explained for 3.26–6.04% of the phenotypic variation (Table S6). Among these
QTNs, Gm17_7603802 and Gm17_7603992 on Chr 17 explained for the highest amount of
phenotypic variation, i.e., 6.04%. A total of eight QTNs, i.e., Gm09_36501019, Gm17_7603802,
Gm17_7603992, Gm17_7712768, Gm17_7721556, Gm17_7736150, Gm17_7754016, and Gm17_
7754048, were identified in at least two environments (Table S6).

Figure 3. Manhattan and quantile–quantile (Q–Q) plots of genome-wide association study (GWAS)
for BLP resistance in 476 soybean accessions in Jiangpu 2014 (A), 2015 (B), and 2016 (C) under artificial
inoculation with C5 strain and in Dangtu (D) and Jiangpu (E) under natural morbidity condition.
The y-axis indicates −log10 of p-values with significant association at 4.0 (dotted line).

BLP resistance of the association panel was also evaluated under the natural morbidity
condition in Jiangpu and Dangtu in 2018. The GWAS analysis revealed that 34 SNPs were
associated with BLP assistance at the suggested threshold of −log10(p) ≥ 4 and distributed
on nine chromosomes (Figure 3; Table S7). Among them, Gm17_7712768 explained for
the phenotypic variation of 3.31–7.30% (Table S7). We found that 11 out of the 34 QTNs
were co-localized with the QTNs identified in the same association panel under the artifi-
cial inoculation condition (Table 3). These 11 QTNs were Gm05_7667820, Gm05_7668047,
Gm17_5628119, Gm17_5628133, Gm17_7603802, Gm17_7604008, Gm17_7712768, Gm17_
7721556, Gm17_7736150, Gm17_7754016, and Gm17_7754048. A total of 13 and 11 stable
QTNs associated with BLP resistance were identified in the association panel in≥2 environ-
ments under both the artificial inoculation and natural morbidity conditions, respectively
(Table 3; Tables S6 and S7). On the basis of the LD distance, we extended the significant
associated region to cover 1.39 Mb upstream and downstream of the most significantly
associated QTN positions (Table 3).

2.5. Co–Location Regions between Linkage Mapping and GWAS Analysis

The three QTLs identified by linkage mapping and the 11 stable QTNs identified by
GWAS were co-localized in three genomic regions (Tables 2 and 3; Figure 4). QTL qrxp_5_1
and two stable QTNs Gm05_7667820 and Gm05_7668047 were localized in genomic region
1, i.e., the 1–7,668,047 bp region on Chr 05. QTL qrxp_17_1 and QTNs Gm17_5628119
and Gm17_5628133 were localized in genomic region 2, i.e., the 5,158,677–5,994,063 bp
region on Chr 17. QTL qrxp_17_2 was co-localized with eight stable QTNs in the 6,777,393–
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7,754,048 bp region on Chr 17 of genomic region 3. Thus, these genetic regions are closely
linked to the causal effects of variations in the BLP resistance in soybean, making them
robust regions for the identification of candidate genes.

Table 3. QTNs associated with BLP resistance identified by GWAS in the soybean association panel
under artificial and natural morbidity conditions.

QTNs Chromosome Physical
Position (bp) −log10p a r2 (%) b Environment Significant Associated

Region

Gm05_7667820 5 7,667,820 4.06 3.30 2016JP-spray

6,277,820–9,057,820
4.21 3.42 2018DT-natural

Gm05_7668047 5 7,668,047 4.06 3.30 2016JP-spray
4.21 3.42 2018DT-natural

Gm09_36501019 9 36,501,019 4.65 3.87 2014JP-spray
35,111,019–37,891,0194.24 3.48 2015JP-spray

Gm17_5628119 17 5,628,119 4.64 3.86 2016JP-spray

4,238,119–7,018,119
4.45 3.65 2018DT-natural

Gm17_5628133 17 5,628,133 4.64 3.86 2016JP-spray
4.45 3.65 2018DT-natural

Gm17_7603802 17 7,603,802 4.14 3.39 2014JP-spray

6,213,802–8,993,802

4.99 4.20 2015JP-spray
6.87 6.04 2016JP-spray
8.74 7.88 2018DT-natural

Gm17_7604008 17 7,604,008 5.04 4.24 2016JP-spray
6.76 5.89 2018DT-natural

Gm17_7603992 17 7,603,992 4.14 3.39 2014JP-spray
4.99 4.20 2015JP-spray
6.87 6.04 2016JP-spray

Gm17_7712768 17 7,712,768 5.13 4.35 2015JP-spray

6.77 5.94 2018DT-natural
8.17 7.30 2018JP-natural
4.13 3.31 2015JP-spray

Gm17_7721556 17 7,721,556 4.95 4.17 2016JP-spray
6.46 5.64 2018DT-natural
8.32 7.45 2015JP-spray

Gm17_7736150 17 7,736,150 4.33 3.58 2016JP-spray
5.19 4.39 2018DT-natural
6.68 5.81 2014JP-spray

Gm17_7754016 17 7,754,016 4.05 3.30 2015JP-spray
5.11 4.32 2016JP-spray
6.66 5.83 2018DT-natural
8.14 7.26 2014JP-spray

Gm17_7754048 17 7,754,048 4.05 3.30 2015JP-spray
5.11 4.32 2016JP-spray
6.66 5.83 2018DT-natural
8.14 7.26

a p, the statistical p-value for the significance of the odds ratio in the GWAS. b r2 (%), phenotypic variance (%)
explained by the peak markers. Bold QTNs indicate that the markers can be located by GWAS under both artificial
inoculation and natural morbidity conditions. The significant associated region was 1.39 Mb upstream and
downstream of the most significantly associated QTN positions.

2.6. Effects of the Most Significant Alleles in Three QTNs Individually or in Combination on BLP
Resistance in Multiple Environments

Among the 11 stable QTNs identified by GWAS, Gm05_7667820, Gm17_5628119, and
Gm17_7603802 explained for the highest phenotypic variation in the three co-localized
genomic regions, respectively (Table 3). Thus, we assessed the effects of the most sig-
nificant alleles G/A, T/C, and T/C in the QTNs Gm05_7667820, Gm17_5628119, and
Gm17_7603802, respectively, on BLP resistance in multiple environments. The disease in-
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dexes of soybean cultivars containing Gm05_7667820 (G) and Gm17_7603802 (T) were
significantly lower than that of soybean varieties containing Gm05_7667820 (A) and
Gm17_7603802 (C) (Figure 5). Moreover, the disease indexes of the resistant soybean
cultivars containing the three resistance alleles GTT were significantly lower than that
containing the three susceptible alleles ACC (Figure 5). As a result, the cumulative ef-
fect of the three resistant alleles was able to increase the resistance for BLP disease in
resistant soybean.

Figure 4. Distribution of the quantitative trait loci (QTLs) for BLP resistance and quantitative trait
nucleotides (QTNs) related with BLP resistance in a physical map identified in previous and present
studies. Red color indicates the QTLs and QTNs that have been previously reported; green color
represents the QTLs and QTNs identified in the present study.

Figure 5. Effects of the alleles individually or in combination on BLP resistance over multiple envi-
ronments. The bar graph shows the mean disease index. The x-axis indicates the QTNs. The red color
indicates the resistant alleles, and the green color indicates the susceptible alleles. Genotypes with
resistant alleles at each locus had the lowest mean disease index, while genotypes with susceptible
alleles at each locus had the highest mean disease index. The p-values obtained from the t-test are
indicated above each bar: * p ≤ 0.05, ** p ≤ 0.01.
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2.7. Prediction of Candidate BLP Resistance Gene in Soybean

Among the three BLP resistance QTLs and the 11 stable BLP resistance QTNs co-
localized in three genomic regions, the genomic region 3 covers the single major recessive
resistance gene rxp. To further analyze the candidate genes of rxp in the genomic region 3,
we downloaded all the 120 genes located in the region from the Soybase website (Table S8).
Among them, 16 genes are located in qrxp_17_2. Haplotype analysis showed that the SNPs
in this genomic region were clustered into five haplotype blocks (Figure 6). The stable QTNs
associated with BLP resistance were clustered into the second haplotype block covering
21 genes located in the 170-kb-long genomic region from 7.59 to 7.76 Mb (Figure 6). The
remaining 83 genes are located between qrxp_17_2 and the second LD block (Table S8).
Genes in the literature that meet one of the following criteria were predicted to be candidate
BLP resistance genes: having been identified by gene mapping in soybean populations
under Xag treatment, being responsive to the infection of Xag strains in soybean, and the
paralogous genes responsive to the infection of Xanthornonas strains in other plant species.
As a result, a total of four genes (i.e., Glyma.17G086300, Glyma.17G090100, Glyma.17G090200,
and Glyma.17G090400) located between qrxp_17_2 and the second LD block were identified
to meet at least one of the three criteria (Table 4). Thus, these four genes together with
Glyma.05G040500 (the homolog of Glyma.17G086300, located near qrxp_5_1) were selected
as the candidate BLP resistance genes for further analysis (Table 4).

Figure 6. Haplotype–block analysis of the significant SNPs. (A) Association mapping results of
the 6.88–9.01 Mb genomic region on chromosome 17. (B) Linkage disequilibrium (r2) values and
haplotype blocks of the SNP markers observed in that region on chromosome 17. All the stable QTNs
significantly associated with BLP resistance were located in the second LD block from 7.49 to 7.76 Mb
containing 37 genes. Dark red, light red, and white color represent the strong, weak, and no LD
between pairs of SNPs, respectively.
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Table 4. Candidate resistance genes of rxp on chromosome 17 selected for further analysis.

Wm82.a2.1 Homolog in A. thaliana Gene Name Reference

Glyma.17G086300 AT5G63090 Lateral organ boundaries (LOB)
domain-containing protein 25 Kladsuwan et al., 2017

Glyma.17G090100 AT2G36330 CASP-like protein 4A3 Kim et al., 2010; Chang et al., 2016
Glyma.17G090200 AT3G47990 E3 ubiquitin-protein ligase SIS3-like Kim et al., 2010; Chang et al., 2016
Glyma.17G090400 AT4G23650 N.A. Chang et al., 2016

2.8. Differential Expression Analysis of Candidate BLP Resistance Genes in Soybean

In order to quantify the relative gene expression levels of each of the five candidate
resistance genes in resistant and susceptible soybean cultivars following Xag (strain EB08)
inoculation, we performed real-time RT-PCR (qPCR) in the leaf samples of cv. W82 (Xag
resistant) and cv. Jack (Xag susceptible) at 0, 12, 24, 48, 72, and 120 hpi by using Cons4
and Cons6 as the internal control (or reference) genes (Tables S9 and S10) [25]. The average
relative expression levels of Glyma.17G090100, Glyma.17G090200, and Glyma.17G090400
in W82 showed no significant difference from that of Jack across the six time points after
Xag EB08 treatments (Figure 7A–C). In comparison to Jack, however, the average relative
expression levels of Glyma.17G086300 was significantly increased in W82 at 24 and 72 hpi,
while that of Glyma.05G040500 was significantly decreased in W82 at 24, 48, and 120 hpi
(Figure 7D,E).

Figure 7. Relative expression levels of candidate BLP resistance genes Glyma.17G090100 (A),
Glyma.17G090200 (B), Glyma.17G090400 (C), Glyma.17G086300 (D), and Glyma.05G040500 (E) in
BLP-resistant (W82) and -susceptible (Jack) soybean cultivars following Xag infection. The Xag strain
EB08 was resuspended in 10 mM MgCl2 buffer to a final concentration of 1 × 108 CFU/mL. Then,
the bacterial suspension was injected on the leaves of W82 and Jack with 10 mM MgCl2 buffer being
used as the mock treatment. The inoculated soybean leaves were sampled at 0, 12, 24, 48, 72, and
120 hpi, representing different stages of Xag infection. The relative expression levels were measured
using qRT-PCR with the ATP-binding cassette transporter gene Cons4 and an F-box protein family
gene Cons6 being used as the reference genes. The relative expression levels were calculated using the
comparative threshold Pfaffl method. Values are the mean ± the standard error of three independent
biological repetitions. Asterisks denote statistically significant difference (* p ≤ 0.05, ** p ≤ 0.01)
between W82 and Jack by Student’s t-test.
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3. Discussion

Soybean BLP is a worldwide disease and causes serious soybean yield reduction
under high temperature and humidity. To date, only the soybean genotypes containing the
unidentified recessive resistance gene rxp have been used in BLP resistance breeding, even
though soybean BLP resistance is a quantitative trait that is regulated by multiple genes
and affected by the interaction between genotypes and environment in the field. Although
several BLP resistance QTLs have been identified previously, little is known about the
underlying molecular mechanisms of BLP resistance in soybean. In the present study, we
combined linkage mapping and GWAS to identify the BLP resistance QTLs and QTNs in
soybean, leading to the identification of a potential candidate gene for rxp.

The linkage mapping and GWAS methods are frequently utilized to identify disease
resistance QTLs. Linkage mapping is based on the co-segregation of genetic regions
over the genome in bi-parental families [26,27]. A drawback of this method is that the
construction of the RIL populations is very time-consuming and laborious. Another
drawback of this method is that it is only able to detect allelic diversity between the
bi-parents, and its resolution highly depends on the number of recombination events.
Considering QTL intervals usually extend over several cM, this limited resolution makes
it extremely challenging to identify the target genes. This challenge could be overcome
by using GWAS, which studies nature populations composed of numerous varieties [28].
GWAS can be used to detect the loci with multiple alleles over a genome. It can also
be used to narrow down the detected QTL regions [28]. This is why GWAS has been
used to identify the target genes associated with traits in various plant species [23,29,30].
However, the effectiveness of GWAS was limited by factors such as the false positives,
linkage disequilibrium, complex population structures, and the alleles with the substantial
effects on trait phenotypes but low frequencies in the populations [31,32]. Thus, linkage
mapping and association analysis can be used together to facilitate genetic architecture
analysis and the identification of target genes underlying large QTLs [33,34].

Earlier studies have reported four QTLs/marker–trait association (MTA) genomic
regions on Chr 01, 10, 11, and 17 in soybean, correspondingly, with the single recessive
resistance gene rxp being located on Chr 17 [2,17,19]. In this study, we identified three
genomic regions that contain three BLP resistance QTLs and 11 stable BLP resistance QTNs
and were significantly associated with BLP resistance by combining linkage mapping and
GWAS analysis (Figure 3; Tables 2 and 3). Moreover, two new minor QTLs, qrxp_5_1 (in
genomic region 1) and qrxp_17_1 (in genomic region 2), were identified on Chr 05 and 17,
respectively, for the first time (Table 2). These two new QTLs were further confirmed by
the co-localization of QTNs Gm05_7667820 and Gm05_7668047 with qrxp_5_1 and QTNs
Gm17_5628119 and Gm17_5628133 with qrxp_17_1 (Tables 2 and 3). Moreover, genomic
region 3 containing qrxp_17_2 and eight QTNs was located in the same genomic region
as rxp (7.30 Mb) (Figure 4). We also evaluated the effects of the most significant SNPs
Gm05_7667820, Gm17_5628119, and Gm17_7603802, which were distributed in the three
genomic regions of soybean, on the improvement of BLP resistance. The average resis-
tance of soybean lines containing all the three resistance alleles significantly increased
when compared with that containing the three susceptible counterparts (Figure 5). Thus,
BLP-resistant soybean cultivars can be developed through polymerization breeding. Fur-
thermore, the QTLs and QTNs identified in this study can be used for marker-assisted
selection of BLP-resistant soybean lines.

Using fine mapping and GWAS, Kim et al. [2] and Chang et al. [17] predicted Glyma17g09780
(Glyma.17G090100), Glyma17g09790 (Glyma.17G090200), and Glyma.17g09801 (Glyma.17G090400)
as the candidate genes for rxp. Among them, Glyma.17G090100 is a casparian strip mem-
brane domain protein (CASP) gene containing transmembrane regions and similar to
that in Mildew Resistance Locus O (MLO) in barley, which confers powdery mildew
resistance [35]. Glyma.17G090200 is a C3H4-type zinc finger gene whose homolog in
Arabidopsis, AT3G47990, encodes an E3 ubiquitin-protein ligase SIS3-like protein (SUGAR-
INSENSITIVE 3), a positive regulator of sugar signaling during early seedling development,
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and is responsive to cabbage leaf curl virus (CaLCuV) infection [36,37]. Glyma.17G090400
contains a significant SNP, bacterial pustule 1-g3, in the 5′-end untranslated region (5′-UTR)
and encodes a calcium-dependent protein kinase 3 (CPK3), a key regulator of both pattern-
triggered immunity (PTI) and effector-triggered immunity (ETI) in Arabidopsis [17,38].
However, all of these three genes are not differentially expressed genes (DEGs) between
resistant and susceptible soybean varieties under the infection of Xag strain 8ra at 0, 6, and
12 h post-inoculation (hpi) [18].

Instead, we identified four candidate resistance genes for rxp in the present study.
We further tested the relative expression levels of these four candidate genes together
with Glyma.05G040500 (the homolog of Glyma.17G086300, located near qrxp_5_1) in W82
(resistant) and Jack (susceptible) at 0, 12, 24, 48, 72, and 120 hpi under the infection of
virulent Xag strain EB08. In order to overcome the dilution effect, we selected eight locations
along the veins of each leaf for pathogen injection. In addition, we designed six sampling
time points after treatment to prevent false negative results caused by insufficient sampling
time points. According to the qPCR results, no significant difference was found between
W82 and Jack at 12 hpi, which is consistent with the result of the reported RNA-Seq
analysis [18]. However, we found that the expression of Glyma.17G090400 increased
10 times in W82 and Jack under infection than mock treatment at 72 hpi. Interestingly, the
relative expression levels of two Lob genes Glyma.17G086300 and Glyma.05G040500 showed
a significant difference between W82 and Jack treated with EB08. When compared with
that in Jack, the former significantly increased in relative expression levels in W82 at 24 and
72 hpi, while the latter significantly decreased in relative expression levels in W82 at 24, 48,
and 120 hpi (Figure 7). Glyma.17G086300 and its paralog Glyma.05G040500 were predicted
to be targeted by virulence factor tal2b, a transcription activator-like effector (TALE) of
Xag [20]. Xanthomonas pathogens can secrete TALEs to activate multiple susceptibility genes
in many plant spaces. For example, it can secrete TALE PthA to activate the expression of
the canker susceptibility gene CsLOB1 in citrus [21]. Taken together, Glyma.17G086300 is a
candidate gene for rxp.

4. Material and Methods
4.1. Plant Materials

A soybean RIL population and an association panel of soybean breeding lines were
used in this study. The RIL population consisting of 126 F2:9 lines was developed by using
the soybean cvs. Meng8206 and Zhengyang, which are resistant and susceptible to Xag
strain C5, respectively [39], as the parents, and used for linkage mapping. These RIL
lines along with the two parents were planted at Jiangpu Experimental Station, Nanjing,
Jiangsu Province (latitude 33◦03′ N; longitude 118◦63′ E) in 2014 and 2015. The association
panel containing 476 soybean breeding lines [24] was used for GWAS. These breeding lines
were planted at Jiangpu Experimental Station in 2014, 2015, 2016, and 2018 and at Dangtu
Experimental Station, Maanshan, Anhui Province (latitude 31◦34′ N; longitude 118◦29′ E)
in 2018.

Seeds were sowed in a randomized complete blocks design (RCBD) with three repli-
cations with 1 × 0.25 m hill plots and 50 cm row spacing. Five soybean lines with five
biological replicates per line were planted in each single row plot with 20 cm distance
between accessions. Three seedlings of each line were kept and grown to maturity after
seed germination. Field management was conducted under normal conditions.

4.2. Pathogen Inoculation

BLP resistance was assessed in these soybean plants under both artificial inoculation
and natural morbidity conditions. The artificial inoculation was carried out by using a
highly pathogenic Xag strain C5 [1] to evaluate BLP resistance in the soybean RIL and
association panel lines at Jiangpu in 2014, 2015, and 2016, which were named as ‘2014JP–
spray’, ‘2015JP–spray’, and ‘2016JP–spray’, respectively. The C5 strain was restreaked on
nutrient agar (NA) medium (BBL; Becton Diskinson and Co., Cockeysville, MD, USA) from
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a 30% glycerol stock at −80 ◦C and incubated at 28 ◦C for 24–48 h [1]. Then, a single colony
was grown overnight in the nutrient broth (NB) liquid medium (BBL; Becton Diskinson
and Co. Ltd., Cockeysville, MD, USA) on a rotary shaker (220 rpm) at 28 ◦C. The bacterial
culture was diluted to a final concentration of 3 × 108 CFU/mL using sterilized distilled
water and sprayed onto both sides of the soybean leaves at the early flowering stage with a
high-pressure atomizer [40]. Ten days later, the inoculated plants were sprayed again with
the same strain.

The natural morbidity condition in 2018 was used to evaluate BLP resistance in the
association panel at Jiangpu and Dangtu Experimental Stations due to an outbreak of BLP
disease in the soybean growing area of Jianghuai River Basin in China in August 2018, which
resulted from the stormy weather brought by the tropical storm ‘Rumbia’. These inoculation
environments were named as ‘2018JP–natural’ and ‘2018DT–natural’, respectively.

4.3. Disease Assessment

To evaluate the resistance of the soybean RIL and association panel lines under the
artificial inoculation condition, we counted the disease spot numbers on the inoculated
leaves of soybean plants at 14 days post-inoculation (DPI). The infection responses (IR)
in the soybean genotypes under the artificial inoculation condition were grouped at five
levels: Level 1, no apparent disease spots; Level 3, the existence of 5–20 localized disease
spots; Level 5, the existence of 20–50 irregular spots; Level 7, the existence of >50 irregular
disease spots that formed a small lesion covering 10–25% of leaf area; and Level 9, a large
lesion covering more than 25% of leaf area (Figure 1).

When we considered the severity of the BLP disease under the natural morbidity
condition in 2018, the five levels used to evaluate the susceptibility of soybean lines under
the natural morbidity condition were Level 1, 0–20 disease spots; Level 3, 20–50 irregular
disease spots; Level 5, >50 irregular disease spots that form a small lesion covering 10–25%
of leaf area; Level 7, a large lesion covering 25–50% of leaf area; and Level 9, a large lesion
covering more than 50% of leaf area (Figure 1).

Three biological replicates of each line were planted in a randomized complete block
design with three blocks per environment. The average resistance levels of the three replicates
per block in each environment were used for linkage mapping and association analysis.

4.4. Phenotypic Data Analysis

Descriptive statistics, such as mean, standard deviation (SD), maximum and minimum
trait values, coefficients of variation (CV%), and skewness and kurtosis, in both soybean
populations for BLP disease response were calculated using the origin pro 2018 software
(Origin Lab, Northampton, MA, USA). The analysis of variance (ANOVA) for BLP disease
resistance level of both soybean populations was performed to evaluate the effects of
genotype (G), environment (E), and genotype × environment interaction (G × E) in the
joint environments using the PROC GLM of SAS 9 (SAS Institute, 2010, Inc., Cary, NC, USA).
Broad-sense heritability (h2) of BLP resistance of both soybean populations for combined
environments was estimated as the following equation: h2 = σ2

g/(σ2
g + σ2

ge/n + σ2
e/nr),

where σ2
g is the genetic variance, σ2

ge is the genotype × environment interaction variance,
σ2

e is the error variance, n is the number of environments, and r valid points is the number
of replications within an environment [41].

4.5. Genetic Linkage Map Construction and Linkage Mapping in the Soybean RILs

RAD-seq (restriction-site-association DNA sequencing) [42] was used to genotype the
126 individuals of the RIL population and the two parents. Briefly, the genomic DNA was
extracted from approximately 1 g of young leaves of individual plants of the RIL population
and the two parents using the cetyltrimethylammonium bromide (CTAB) method [43]. The
DNA fragments of 400~700 bp in length obtained by TaqI digestion were sequenced on
Illumina HiSeq 2000 instrument following the standard protocol for MSG (multiplexed
shotgun genotyping), and 90 mer paired-end reads were generated. The reads from RIL
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lines were aligned against the Williams 82 reference genome (Glyma.Wm82.a1.v1.1) [44]
using the SOAP2 software (version 2.21) [45]. The SNP calling was performed using Real
SFS software [46] on the basis of the Bayesian estimation. Finally, the high confidence
SNPs were obtained by following the filtering criteria as follows: 50 < depth < 2500, a
probability of site mutation = 95%, and every SNP loci being separated by at least 5 bp.
Bin maps were then constructed for the 126 RIL lines. Consecutive SNPs were examined
with a slightly modified sliding-window approach (window size: 15 SNPs, step size: one
SNP) [47]. Recombination breakpoints were determined as the window sledded along
the chromosome. Windows with 11 or more SNPs from either parent and windows with
fewer SNPs from a single parent were considered to be homozygous and heterozygous,
respectively. The consecutive 30-kb-long intervals with the same genotype in each line were
joined into a bin using a PERL script according to the breakpoint information [48]. Finally,
the genetic map of bin markers was constructed for the RIL population using JoinMap
4.0 [49].

Composite interval mapping (CIM) model of WINQTLCartographer2.5 [50] was
used to detect QTLs for BLP resistance in RILs in each environment. A bin map with
2600 bin markers was constructed, covering 2630.2 cM. The phenotypic variance explained
by a single QTL was calculated by using WINQTLCartographer2.5 software with the
PVE = (VG/VP) × 100% (PVE: phenotypic variation explanation; VG: genetic variance of
QTL; VP: phenotypic variance). The walk speed was set at 1 cM, and the window size was
set at 10 cM. A log likelihood of 2.5 was used as the threshold for the presence of QTLs [50].
The QTLs were named according to the normal nomenclature [49].

4.6. Genotyping, Population Structure, and LD Analysis in the Soybean Association Panel

Genotyping was conducted as described in Li et al. [26] and Karikari et al. [24]. Briefly,
the genomic DNA of each plant in the association panel was extracted using the CTAB
method [43] and genotyped by the restriction site-associated DNA sequencing (RAD-Seq)
technology. After Taq I digestion, the DNA fragments of 400–600 bp in length were obtained
and then sequenced using Illumina HiSeq 2000 instrument (Illumina, San Diego, CA, USA).
After being filtered, the high-quality SNPs with a >5% minor allele frequency (MAF)
were used for principal component analysis (PCA), kinship analysis, LD analysis, and
GWAS analysis. The genotyping data are available in the NCBI database (PRJNA648781,
https://www.ncbi.nlm.nih.gov/bioproject/?term=prjna648781, accessed on 20 May 2020)
and the National Center for Soybean Improvement website (http://ncsi.njau.edu.cn/info/
1149/2070.htm, accessed on 20 May 2020).

Population structure analysis including the PCA of whole-genome SNPs and the
construction of the neighbor-joining tree for the 476 lines in the association panel was
performed using the TASSEL software version 5.2 [51] as described in Karikari et al. [24].

The linkage disequilibrium (LD) between pairwise SNPs was analyzed by calculating
the LD parameter value, i.e., the squared Pearson correlation coefficient (r2) using the RTM–
GWAS V1.1 software [52]. A vcf format genotype file including the 60,315 high-quality
filtered SNPs created by the TASSEL software was used as the input file in the RTM–GWAS
V1.1 software. For LD analysis, the maximum inter-locus distance was set at 5 Mb, and
the minimum r2 threshold was set at 0.05. The calculated r2 against the physical distance
between pairs of SNP markers was visualized using the origin pro 2018 software (Origin
Lab, Northampton, MA, USA) with scatter plot and polynomial fitting. The LD decay rate
was the physical distance where the r2 dropped from its maximum value to the half [51].

4.7. Association Analysis and Haplotype Block Analysis

Association analysis was performed by running mixed linear model (MLM) including
the principal component analysis matrix (PCA) and the kinship matrix (K), i.e., MLM
(PCA+K) using the TASSEL software version 5.2 [51]. Manhattan and quantile–quantile
plots (QQ–plot) were created by using the qqman R package to visualize the GWAS re-
sult [53]. The distribution of p-values and the significant loci associated with BLP resistance

https://www.ncbi.nlm.nih.gov/bioproject/?term=prjna648781
http://ncsi.njau.edu.cn/info/1149/2070.htm
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over the whole genome in the GWAS panel were shown in the Manhattan graph. The signif-
icant threshold −log10(p) = 4.0 was used to control the genome-wide type I error rate [53].
The SNPs detected in at least two environments were considered as being relatively stable.
A haplotype block analysis was performed using the Haploview software (version 4.2) [54].

4.8. Gene Annotation and Candidate Gene Prediction

The names and physical locations of the identified genes were downloaded from the
Soybase database (https://soybase.org, accessed on 20 May 2020). Gene annotations were
conducted according to the NCBI database. All the genes that respond to Xag infection
were considered as potential candidate genes.

4.9. qPCR

Total RNA extracted from leaf samples of soybean cvs. W82 (resistant) and Jack (sus-
ceptible) following the treatment of Xag strain EB08 at 0, 12, 24, 48, 72, and 120 hpi in Zhao
et al. [25] was used for cDNA synthesis and qPCR analysis of the relative expression levels
of the five candidate genes, i.e., Glyma.17G090100, Glyma.17G090200, Glyma.17G090400,
Glyma.17G086300, and Glyma.05G040500 in both cultivars. Three biological replicates were
designed for each treatment, and three leaves of each biological replicate were infected
as three technical replicates. Primer design and stepwise optimization of qPCR condi-
tions including annealing temperatures, primer concentrations, and cDNA concentration
ranges were conducted as described in Zhao et al. [25] so that R2 ≥ 0.99 and E = 100 ± 5%
were achieved for the best primer pair for each gene. The relative expression levels were
calculated using Cons4 and Cons6 as the two reference genes [25] and the Pfaffl method [55].
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Abbreviations

BLP bacterial leaf pustule
Xag Xanthornonas axonopodis pv. glycines
GWAS genome-wide association study
QTLs/QTNs quantitative trait loci/nucleotides
MAS marker-assisted selection
Psg Pseudomonas syringae pv. Glycinea
RIL recombinant inbred line
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YHSBLP Yangtze–Huai soybean breeding germplasm population
NA plate nutrient agar plate
NB nutrient broth; MSG, multiplexed shotgun genotyping
RAD–seq restriction site-associated DNA sequencing
SD standard deviation
CV% coefficient of variation
ANOVA analysis of variance
MCIM mixed composite interval mapping
Add additive effects
PVE phenotypic variance explanation
MAF minor allele frequency
MDR missing data ratio
PCA principal component analysis
LD linkage disequilibrium
MLM mixed linear model
K kinship control
Q–Qplot quantile–quantile plots
hpi hours post-inoculation
SD standard deviation
MR moderately resistant
NJZM–RIL RIL population consisting of 289 F2:9 lines derived through single seed descent

SSD
single seed descent; the method from F2 generation of Zhengyanghuangdou x
Meng8206 cross

HLP Helix–loop–helix
qPCR real-time quantitative reverse-transcription PCR
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