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Abstract: The therapeutic potential of targeting adenosine A2A receptors (A2ARs) is immense due to
their broad expression in the body and central nervous system. The role of A2ARs in cardiovascular
function, inflammation, sleep/wake behaviors, cognition, and other primary nervous system func-
tions has been extensively studied. Numerous A2AR agonist and antagonist molecules are reported,
many of which are currently in clinical trials or have already been approved for treatment. Allosteric
modulators can selectively elicit a physiologic response only where and when the orthosteric ligand
is released, which reduces the risk of an adverse effect resulting from A2AR activation. Thus, these
allosteric modulators have a potential therapeutic advantage over classical agonist and antagonist
molecules. This review focuses on the recent developments regarding allosteric A2AR modulation,
which is a promising area for future pharmaceutical research because the list of existing allosteric
A2AR modulators and their physiologic effects is still short.

Keywords: adenosine A2A receptors; allosteric modulator; insomnia; slow-wave sleep; inflammation;
cardiovascular function; body temperature; drug development

1. Introduction

Adenosine is a naturally occurring purine nucleoside that regulates various physiologic
functions, including inflammation and wound healing, cardiac contraction, blood vessel
formation, vasodilation, learning, memory, sleep, and arousal [1–7]. Adenosine is released
by neurons and glial cells [8]. Extracellular adenosine modulates neuronal excitability,
synaptic plasticity, and the release and reuptake of several neurotransmitters [9–12]. The
effects of extracellular adenosine are modulated via four subtypes of G-protein coupled
adenosine receptors (GPCRs), denoted A1, A2A, A2B, and A3 [13]. Adenosine A2A receptors
(A2ARs) are broadly expressed in the brain, cardiovascular system, blood vessels, spleen,
thymus, leukocytes, and lung, making them an important drug target [14]. This review
focuses on allosteric A2AR modulation and the latest developments in this emerging field.

The therapeutic potential of targeting A2ARs has prompted the development of nu-
merous antagonist and agonist molecules to selectively control A2AR function. The myriad
A2AR agonists and antagonists are considered potential therapeutic agents for inflamma-
tion, sickle cell disease, ischemia-reperfusion injury, and central nervous system (CNS)
diseases [15,16]. The A2AR agonist regadenoson was approved by the US Food and Drug
Administration to boost blood flow during cardiac stress tests [16]. Many other agonists
and antagonists are undergoing clinical trials.

Medicinal chemists have made many efforts to develop small molecules as allosteric
modulators in recent years. Unlike agonist and antagonist molecules, allosteric modulators
evoke a selective physiologic response only where and when the orthosteric ligand is
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released [17]. GPCRs, including adenosine receptors, are allosterically regulated [17,18].
The list of existing allosteric A2AR modulators is short, however, and the physiologic
opportunities for modulators are just emerging, making allosteric A2AR modulation a
promising area for future research.

2. Adenosine and Its Receptors

Adenosine was initially recognized as a physiologic regulator of coronary vascular
tone; since then, a growing body of reports indicates that adenosine regulates cellular
functions through specific receptors present on the cell surface [19–21]. Adenosine is an
endogenous purine nucleoside consisting of adenine and D-ribose, and is formed through
hydrolysis of S-adenosylhomocysteine or adenosine monophosphate [22,23]. Adenosine
formation from S-adenosylhomocysteine relies on the intracellular activity of the enzyme S-
adenosylhomocysteine hydrolase, which bi-directionally assures the constant occupancy of
a bound adenosine concentration in the cells [24]. Different enzymes mediate the formation
of adenosine from adenosine monophosphate at both intracellular and extracellular levels.

Although adenosine does not exclusively act on synapses and is not stored in synaptic
vesicles, it has a direct role in synaptic processes and the regulation of various neuro-
transmitters in the CNS. Nucleoside transporters mediate adenosine release and reuptake
mechanisms through a concentration gradient between the intracellular and extracellular
spaces. Therefore, adenosine is postulated as a modulator that affects neurotransmitter
release and neuronal hyper- or depolarization and regulates glial cells [25]. Despite the
modulatory role of adenosine, neurotransmitter properties are also observed for adenosine,
which is due to the presence of the adenosine-producing enzyme in synapses. Extracellular
adenosine acts on neurons through specific adenosine receptors [26].

Purinergic receptors are the natural target of purine molecules such as adenosine and
adenosine triphosphate. These receptors were recognized for the first time in 1978 [27].
Two types of purinergic receptors, P1 and P2, were subsequently identified based on their
pharmacologic profile [28]. P1 receptors recognize adenosine as a primary natural ligand
and are therefore also called adenosine receptors. Each of the four types of adenosine
receptors, A1R, A2AR, A2BR, or A3R, is characterized by a distinct pharmacologic profile.
These receptors are members of the GPCR superfamily [17]. A2ARs and A2BRs are Gs-
coupled receptors, and their activation increases the activity of adenylyl cyclase, the enzyme
that initiates cyclic AMP (cAMP) synthesis in the cells. A1Rs and A3Rs are Gi/q coupled
receptors, and their activation through adenosine or agonist molecules inhibits the activity
of adenylyl cyclase, which suppresses cAMP synthesis in the cells.

3. A2AR and Its Physiologic Roles

The four types of adenosine receptors, A1R, A2AR, A2BR, or A3R, react with extra-
cellular adenosine [13]. The activation of A2BRs reportedly requires a high adenosine
concentration. Unlike A2BRs, adenosine levels under basal physiologic conditions are ade-
quate to activate A1Rs, A2ARs, and A3Rs with relatively equal potency. The pharmacologic
strength of an endogenous ligand or agonist at its receptor, however, relies on the number
of receptors on the cells. Higher concentrations of adenosine are needed to show an effect
in the presence of only a few receptors. Local expression of the A1Rs and A2ARs in the brain
is suggested to be relatively higher than that of the other two adenosine receptors [6,29].

A2ARs were first identified by Libert and colleagues when they cloned several orphan
GPCRs from the dog thyroid [30]. Afterward, A2ARs were cloned from other species,
including guinea pigs, mice, rats, and humans [31–34]. As with the other GPCRs, A2ARs
induce classical secondary messenger pathways. The A2AR signaling pathway may vary
depending on the cell and tissue type in which the receptors occur. For example, Gs is
the major G-protein associated with A2ARs in the peripheral system. On the other hand,
A2ARs in the striatum, where they are highly expressed, mediate their effects mainly
through Golf activation in the rat. Active Gs and Golf proteins stimulate adenylyl cyclase
(Figure 1) which increases cellular cAMP levels and activates protein kinase A (PKA)
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which then phosphorylates and promotes cAMP-responsive element-binding protein 1
(CREB1) [16,35]. Activation of A2ARs also activates extracellular signal-regulated kinases
(ERK) and several other kinases of the mitogen-activated protein kinase (MAPK) family
which trigger specific cellular responses [36]. A2ARs form heterodimer structures with other
GPCRs (e.g., metabotropic glutamate type 5 receptor (mGluR5)/A2AR, cannabinoid recep-
tor type 1 (CB1)/A2AR, dopamine D2 receptor (D2R)/A2AR, dopamine D3 receptor/A2AR),
and even CB1/A2AR/D2R heterotrimers [37–41].
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Figure 1. Neuronal A2AR signaling cascades. A2AR is a Gs(olf)-protein-coupled receptor involved
in various physiologic processes. (1) The allosteric modulation sites may be pharmacologically
relevant for avoiding adverse effects on the cardiovascular and other peripheral systems. (2) Binding
of adenosine and an allosteric modulator to A2ARs enhances the activation of cyclic adenosine
monophosphate (cAMP) and protein kinase A (PKA), resulting in the phosphorylation of calcium
ion channels and increased influx of Ca+2 into the cytoplasm. (3) The PKA pathway also promotes
neural progenitor cell (NPC) survival, proliferation, and differentiation; and activation of the mitogen-
activated protein (MAP)-kinase pathway. (4) PKA-mediated phosphorylation of the cAMP-responsive
element binding protein 1 (CREB-1) regulates the expression of genes such as c-fos, enkephalin (ENK),
neurotensin, and zinc finger protein 268 (zif268). (5) The secretion of brain-derived neurotrophic
factor (BDNF) and activation of tropomyosin receptor kinase B (TrkB) receptors in response to A2AR
activation in hippocampal neurons may be relevant for cognitive functions such as learning and
memory. (6) A2AR activation may be a counter mechanism to control the activation and expression
of dopamine D2 receptors (D2Rs). Long-term imbalance of D2R signaling leads to impairments
in cognitive and motor functions and the development of Parkinson’s and Huntington’s diseases.
(7) Activation of A2AR in the nucleus accumbens increases slow-wave sleep in mice. Solid black
arrows represent the primary signaling pathway of A2ARs, and dashed black arrows represent
secondary signaling pathways. A: Adenosine; D: Dopamine.
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The development of electron microscopy, selective radioligands, and antibodies has
greatly contributed to A2AR distribution mapping. Furthermore, advancements in electron
microscopy helped to determine the interactions of agonists and antagonists with their
receptors and receptor density in particular regions. A2ARs are concentrated on GABAer-
gic medium-sized spiny neurons of the striatum, core and shell regions of the nucleus
accumbens (NAc), olfactory tubercule, and dopamine-rich areas of the brain [16].

A2ARs play a significant role in regulating the indirect pathways of the basal ganglia in
the brain (Figure 2) [16]. The basal ganglia have an evolutionarily conserved essential role in
learned habits, goal-directed movements, and locomotion [42]. The basal ganglia carry out
their functions through direct and indirect circuits, originating in conspicuous populations
of striatal medium spiny neurons that project to different output structures. Direct pathway
neurons express excitatory dopamine D1 receptors (D1Rs) and inhibitory A1Rs, whereas
indirect pathway neurons express inhibitory D2Rs and excitatory A2ARs [43]. Studies in
mice revealed that both direct- and indirect pathway medium spiny neurons are active
during mouse locomotion but quiescent during inactive phases [44], and chemogenetic
activation of direct and indirect pathways neurons increases and decreases locomotor
activity, respectively [45]. Moreover, recent findings indicate that optogenetic activation of
indirect pathway neurons in the NAc, a part of the brain that is associated with motivation
and pleasure, induces slow-wave sleep, whereas inhibition suppresses slow-wave sleep [46].
Other observations show that when an action does not result in a reward, increased activity
of indirect pathways occurs, suggesting a role of the indirect pathways in controlling
goal-directed behavior [47].
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Figure 2. Expression of A2ARs in the central nervous system (CNS), autonomic nervous system
(ANS), circulatory system, and musculoskeletal system. (1) CNS A2ARs are mainly expressed in
the basal ganglia (BG), including the dorsal pallidum, the nucleus accumbens in the ventral part
of the striatum, and the dorsal striatum comprising the caudate and putamen. (2) A2ARs are also
expressed in the sympathetic and parasympathetic ANS. (3) The distribution of A2ARs is not limited
to the nervous system; A2ARs are also found in the circulation system, including heart, blood vessels,
lymphoid cells (immune cells), and smooth muscle cells of the musculoskeletal system.
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Apart from medium-sized spiny neurons in the basal ganglia, A2ARs are expressed in
various other tissues, including smooth muscle cells, thymus, blood platelets, endothelial
and lymphoid cells, leukocytes, spleen, blood vessels, lung, heart, and neurons in sympa-
thetic and parasympathetic nervous systems [14,48] (Figure 2). A2ARs have a wide range
of physiologic functions in the body, such as protecting tissues from inflammatory damage,
mediating vasodilation, and supporting the formation of new blood vessels.

Several A2AR agonists and antagonists are currently in clinical trials. The selective
A2AR agonist regadenoson was approved by the US Food and Drug Administration to
increase blood flow in cardiac nuclear stress tests. On the other hand, the effects of A2AR
antagonists for the treatment of Parkinson’s disease (PD) are promising. Other trials have
been conducted with several agonists and antagonists aimed at treating infectious disease,
ischemia-reperfusion injury, cancer, inflammation, sickle cell disease, diabetic nephropathy,
and other CNS disorders. The increasing number of reports and patents demonstrates the
growing interest in targeting the A2AR [16].

4. The Concept of Allosteric Modulation

The most common method to stimulate receptors in pharmacology and biochemistry
is to target orthosteric sites with their endogenous ligand, agonists, or antagonists. On
the other hand, studies show that receptor activity can be altered by small molecules that
bind to an allosteric site different from the site where the endogenous ligand, agonists,
or antagonists would bind [49]. The small molecules that bind to the allosteric sites of
the receptors are termed allosteric modulators. Unlike endogenous ligands, agonists, or
antagonists, an allosteric modulator cannot itself activate or inactivate receptors but alters
the receptor’s response to substrates that bind to orthosteric sites in two ways: (1) increase
or decrease affinity, i.e., the ability of orthosteric substances to bind receptors, and (2)
increase/decrease efficacy, i.e., the ability of orthosteric substances to activate receptors [50].
Allosteric modulators reportedly change the receptor conformation, which alters the effect
of the endogenous ligand, agonist, and antagonist binding [51]. The concept of receptor
modulation is not straightforward with respect to practical implementation. Allosteric
modulators do not necessarily equally alter the affinity and efficacy of endogenous ligands,
agonists, or antagonists of the receptors. An allosteric modulator may alter the efficacy or
affinity of the endogenous ligand, but not that of the agonist or antagonist of the receptors
or vice versa [52].

The term ‘allostery’ was first used in enzymology studies in the early 1960s [53–55].
Subsequently, allosteric modulation has been identified for all receptor superfamilies,
including GPCRs, nuclear hormone receptors [56,57], receptor tyrosine kinases [58,59],
and ligand/voltage-gated ion channels [60–64]. The term “allosteric” began to be used
increasingly in the literature, and a broad spectrum of allosteric modulators was described.
Consequently, the classification of allosteric modulators was necessary to avoid possible
confusion [65–67]. Three properties are considered in the classification of allosteric modula-
tors: (1) affinity modulation of the orthosteric ligand, (2) modulation of the signaling effect
of the orthosteric ligand, and (3) direct effects of the allosteric modulator in the absence
of the orthosteric ligand. Moreover, allosteric modulators are classified in terms of their
effects on orthosteric ligands as positive allosteric modulators (PAM), negative allosteric
modulators (NAM), or silent allosteric modulators, also known as neutral allosteric lig-
ands [68]. PAMs enhance the agonist/antagonist affinity and efficacy, whereas NAMs
decrease orthosteric ligand affinity and efficacy. Unlike PAMs and NAMs, silent allosteric
modulators do not affect the agonist or antagonist activity of orthosteric ligands, but bind to
the allosteric site of the receptors and prevent PAMs or NAMs from binding to the same site,
thereby inhibiting the activity of positive/negative allosteric modulators [52]. It is impor-
tant to note that activities of allosteric modulators are therefore limited by where and when
the orthosteric ligand is released. Thus, in contrast to agonists or antagonists, allosteric
modulators promise greater safety and fewer side effects in therapeutic applications.
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5. Allosteric A2AR Modulation

Adenosine receptors are among the first known allosterically regulated GPCRs. Early
studies demonstrated that amiloride and its analogs are allosteric A2AR inhibitors [17,18,69].
Subsequent studies revealed that the amiloride analog 5-(N,N-hexamethylene)-amiloride
(HMA) is a potent allosteric A2AR inhibitor. The other amiloride analogs, benzamil, 5-(N-
methyl-N-isobutyl)amiloride (MIBA), 5-(N-methyl- N-guanidinocarbonyl-methyl)amiloride
(MCGMA), and phenamil, were found to be more effective allosteric inhibitors than
amiloride at rat A2ARs [17,70]. Moreover, amiloride and its analogues do not affect
the dissociation rate of the agonist [3H]CGS21680 (3-{4-[2-({6-amino-9-[(2R,3R,4S,5S)-5-
(ethylcarbamoyl)-3,4-dihydroxyoxolan-2-yl]-9H-purin-2-yl}amino) ethyl]phenyl}propanoic
acid), but increase the dissociation rate of the antagonist [3H]ZM241385 (4-(2-{[7-amino-2-
(furan-2-yl)[1,2,4]triazolo[1,5-a] [1,3,5] triazin-5-yl]amino}ethyl)phenol) from A2ARs [71].
By contrast, sodium ions, for example, deteriorate the dissociation rate of the antago-
nist [3H]ZM241385 from A2ARs in a dose-dependent manner [17]. It is important to
note that other adenosine receptor agonists and antagonists are differentially affected by
amilorides [70]. A new approach specifically targeting the sodium ion pocket, known as
fragment-screening based on affinity mass spectrometry, led to the discovery of fragment
Fg754 as a new A2AR NAM carrying a novel azetidine moiety and exhibiting inhibitory
potency comparable to HMA. Subsequent simulations of the molecular dynamics, structure-
activity relationship studies of the ligand, and nuclear magnetic resonance analyses in
solution revealed the unique binding mode and antagonistic properties of Fg754, which is
distinctly different from HMA [72]. In addition, cholesterol is reported to be a weak PAM
of A2ARs [73].

Identification of binding sites for allosteric modulators on A2ARs based on the crystal
structure of the receptor is critical for the development of new allosteric modulators. Two
tightly linked residues, histidine residue number 278 (His278) in transmembrane domain
1 and glutamic acid13 in transmembrane domain 7 of the human A2AR, are reported to
be the most crucial components for agonist recognition and play a partial role in the
allosteric regulation by sodium ions [70,71,74–77]. Studies of the crystal structure of the
antagonist-bound adenosine A2AR revealed that a highly conserved aspartate (Asp) residue
in the second transmembrane domain is involved in sodium modulation of GPCRs [78].
Comparative studies of crystal structures in which a sodium ion bound in the allosteric
site of human protease-activated receptor 1 [79], the β1-adrenergic receptor [80,81], the
human δ-opioid receptor [82], and the human adenosine A2AR [78] show that sodium ions
interact with the common residues Asp2.50 (superscript numbers refer to the Ballesteros and
Weinstein residue numbering system [83]) serine3.39, tryptophan6.48, asparagine (Asn)7.45,
and Asn7.49, either directly or through water-mediated hydrogen bonding [83]. Pre-crystal
structure studies revealed that the positively charged sodium ion forms a permanent
salt bridge with the negatively charged amino acid Asp2.50, suggesting that this residue
represents the most conserved sodium ion binding site among GPCRs [84].

Subsequent studies on the crystal structure of the A2AR at 1.8 Å resolution provided
sufficient resolution to confirm that Asp2.50 interacts directly with sodium ions via the salt
bridge [78]. The crystal structures of agonist complexes for two variants in the first sodium
coordination shell of the human A2A adenosine receptor have also been reported [85]. A
fluorine-19 nuclear magnetic resonance spectroscopy study suggested that A2ARs have
four distinct activation states; a partial agonist that favors the population of an active
state (S3), an active state induced by full agonists (S3′ ), and two inactive states (S1–2); this
study also demonstrated that sodium ions enhance the inactive states of A2ARs [86]. In
contrast, partial agonists and HMA induce active states, indicating that HMA competes
with sodium ions for interaction with A2ARs [84]. Moreover, all-atom simulations of
molecular dynamics have shown that Fg754 can steadily enter the transmembrane domain
core and form contacts with transmembrane helices 2, 3, 6, and 7, and extracellular loop
2. Particularly, the azetidine moiety of Fg754 may occupy the sodium ion-binding site by
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forming a salt bridge [72]. Another molecular dynamics simulation study described the
allosteric effects of a mini-Gs protein on A2ARs [87].

In conclusion, the effects of amiloride and its derivatives on A2ARs are well studied.
While the findings indicate that amiloride competes with sodium ions at the allosteric site
of the A2AR, with Asp being the crucial amino acid, the allosteric binding site(s) of other
small molecules selective for A2ARs remain unknown.

6. Allosteric A2AR Modulators and Their Potential Clinical Application

Allosteric A2AR modulation could be a new target for drug discovery [88]. Allosteric
modulators can selectively elicit a physiologic response where and when the orthosteric
ligand is released, thereby reducing the risk of an adverse effect of A2AR activation. More-
over, the possibility of saturating allosteric effects offers greater potential for fine-tuning
the physiologic response in a positive or negative direction. As allosteric modulators have
no pharmacologic effect beyond the saturation dose, these molecules are associated with a
lower risk for adverse effects than orthosteric ligands, giving them a potential therapeutic
advantage over classical agonists and antagonists [18,89].

Some compounds act as allosteric A2AR modulators, such as sodium ions, amiloride,
and potassium-sparing diuretics, that also modulate other GPCRs than A2ARs [90]. For
example, PD120918 is reported to enhance the activity of A2AR agonists in the rat stria-
tum [91]. In contrast, thiadiazoles such as SCH-202676 alter the binding characteristics
A2AR agonists and antagonists [92]. Some studies, however, suggest that thiadiazoles act
as binding or oxidizing agents for SH groups rather than as allosteric modulators [92]. To
date, only a relatively small number of selective allosteric A2AR modulators have been
reported (Table 1) [93].
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Table 1. Allosteric A2AR modulators and their functions.

Name Type Pharmacology Structure Physiologic Effects

3,4-Difluoro-2-((2-fluoro-4-
iodophenyl)amino)benzoic

acid

Allosteric
enhancer/modulator

Enhanced adenosine signaling at
mouse A2ARs.
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inflammatory protein-1α, 1β, and 2,
interleukin-1α, keratinocyte chemokine,

and RANTES (regulated upon
activation, normal T cell expressed and
presumably secreted) in macrophages
and splenocytes, reduced circulating
plasma tumor necrosis factor-α and
monocyte chemoattractant protein-1

levels, and increased plasma
interleukin-10 during

lipopolysaccharide-induced
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Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 20 
 

 

Table 1. Allosteric A2AR modulators and their functions. 

Name Type Pharmacology Structure Physiologic Effects 

3,4-Difluoro-2-((2-fluoro-4-iodo-
phenyl)amino)benzoic acid 

Allosteric en-
hancer/modulator 

Enhanced adenosine signaling at 
mouse A2ARs. 

  

Induced slow wave sleep without 
affecting cardiovascular function 
or body temperature in wild-type 

male mice [94,95]. 

AEA061  
Allosteric en-

hancer/modulator  

Enhanced adenosine and inosine sig-
naling and increased effect of the 

A2AR agonist CGS 21680. 
 Not disclosed 

Inhibited the production of tumor 
necrosis factor-α, macrophage in-
flammatory protein-1α, 1β, and 2, 
interleukin-1α, keratinocyte chem-

okine, and RANTES (regulated 
upon activation, normal T cell ex-
pressed and presumably secreted) 
in macrophages and splenocytes, 
reduced circulating plasma tumor 

necrosis factor-α and monocyte 
chemoattractant protein-1 levels, 

and increased plasma interleukin-
10 during lipopolysaccharide-in-

duced endotoxemia [96,97]. 

N-(3-Benzyl-5-phenyl-3H-[1,2,3]triazolo[4,5-
d]- pyrimidin-7yl-)-(4-aminophenyl)-amine 

Allosteric modulator  
Inhibited the binding of antagonists 
and agonists at the A2AR orthosteric 

site [93]. 

  

Unknown Unknown



Int. J. Mol. Sci. 2022, 23, 2101 9 of 21

Table 1. Cont.

Name Type Pharmacology Structure Physiologic Effects

N6-[(4-Nitro)-phenyl]-9-benzyl-2-
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1-[4-(3-Benzyl-5-phenyl-3H-
[1,2,3]triazolo[4,5-d]-pyrimidin-7-

ylamino)-phenyl]-3-(4-
trifluoromethylphenyl)-

urea

Allosteric modulator
Modulated the binding of

antagonist and agonist at the A2AR
orthosteric site [93].
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HMA;
5-(N,N-hexamethylene)amiloride Allosteric modulator

Increased the dissociation rate of the
antagonist ZM-241,385 at rat A2ARs

[71].
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Sodium Ion Allosteric modulator Positively modulated A2ARs [71]. Na+ Unknown
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amino)carbonyl]oxy}-2H-1-

benzopyran-2-one}
Allosteric modulator

Enhanced agonist radioligand
binding to rat striatal A2ARs

without functional enhancement
[18,91].
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Fg754 Allosteric modulator
Increased the dissociation rate of the

agonist CGS21680 at A2ARs
expressing HEK-293 cells [72].
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6.1. Allosteric A2AR Modulation Related to Inflammation

Adenosine is present in high concentrations in inflamed areas due to cell activation
and breakdown [98–100]. The intracellular concentration of cAMP has a regulatory role
in immune and inflammatory cells [101] and specifically, A2ARs are responsible for the
anti-inflammatory effects of adenosine [102,103]. The anti-inflammatory effects of A2AR
agonists are well known. Their therapeutic benefit, however, is not a given due to the
potential adverse effects of A2AR agonists following systemic administration [7].

AEA061, which has an undisclosed structure, promotes the anti-inflammatory effects
of adenosine by allosterically enhancing the activity of endogenous adenosine at A2ARs [96].
AEA061, which has no activity at a rat or human A2ARs in the absence of adenosine, inhibits
the production of cytokines such as interleukin-1α, macrophage inflammatory protein-
1α, 1β, and 2, keratinocyte chemokine, RANTES (regulated upon activation, normal T
cell expressed and presumably secreted), and tumor necrosis factor-α in monocytes and
splenocytes in a mouse model of lipopolysaccharide-induced inflammation. Therefore,
positive allosteric modulators of A2ARs may represent a potential therapeutic approach to
inflammation.

Inosine and inosine analog 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) selec-
tively and dose-dependently activate human A2ARs. NBMPR and inosine inhibit the pro-
duction of pro-inflammatory cytokines and chemokines in splenic monocytes of wild-type
mice, but not A2AR knockout mice. The positive allosteric A2AR modulator AEA061 en-
hances inosine-mediated A2AR activation, inosine-mediated inhibition of pro-inflammatory
cytokines, and chemokine production by splenic monocytes [97].

6.2. Allosteric A2AR Modulation Related to Sleep and Neurologic Disorders

A2ARs are also expressed in the CNS, with the highest levels in the ventral and dorsal
striatum [104]. A2ARs are present in the pre/postsynaptic compartment of neurons and
microglia, oligodendrocytes, astrocytes, and capillary endothelial cells [12,105–110]. A
growing number of reports illustrate that A2ARs play a critical role in emotional and cogni-
tive processes, motivation, and voluntary movements [111]. Moreover, A2AR-expressing
neurons in the NAc regulate sleep [8,47,112]. Therefore, A2AR stimulation should be consid-
ered a potential treatment approach for insomnia. Insomnia is a sleep disorder that affects
millions of people worldwide and frequently co-occurs with a wide range of psychiatric
disorders [113–115] Although A2AR agonists have strong sleep-inducing effects [116–119],
they also have adverse cardiovascular effects and thus cannot be used clinically to treat
sleep disorders. Moreover, the development of adenosine analogs to treat CNS disor-
ders, including insomnia, is hampered by the poor transport of these drugs across the
blood–brain barrier. In mice, a small blood–brain barrier-permeable monocarboxylate
(3,4-difluoro-2-((2-fluoro-4-iodophenyl)amino) benzoic acid, denoted as A2AR PAM-1, was
recently found to induce sleep by enhancing A2AR signaling in the brain (Figure 3) but, sur-
prisingly, did not exhibit the typical unwanted cardiovascular and body temperature effects
of A2AR agonists [94,95]. More specifically, A2AR PAM-1 dose-dependently enhanced A2AR
signaling in A2AR-expressing Chinese hamster ovary (CHO) cells but not in CHO cells
lacking A2AR expression or in the absence of adenosine (Figure 3). The A2AR PAM-1 did
not alter the activity of the A2AR agonist CGS 21680 [120]. Intracerebroventricular infusion
and intraperitoneal injection of A2AR PAM-1 induced prolonged slow-wave sleep, but not
rapid-eye-movement sleep, in wild-type mice, but not A2AR knockout mice. Further testing
revealed that A2AR PAM-1, unlike A2AR agonists, had no effects on blood pressure, cardiac
function, or body temperature, suggesting that adenosine or A2AR expression levels in
the cardiovascular system are insufficient to elicit an A2AR PAM-1 response under normal
physiologic conditions. Therefore, molecules that allosterically enhance A2AR signaling
may be developed to help people with insomnia fall asleep more easily. Moreover, A1Rs
play a crucial role in the resolution of sleep need by modulating slow-wave activity, a
slow, oscillatory neocortical activity that intensifies in correlation with wake duration and
declines during sleep [121]. Slow-wave activity is widely used as a marker of mammalian
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sleep homeostasis and is necessary for sleep function. Therefore, dual allosteric A1R/A2AR
modulators may be useful for improving not only the maintenance of sleep but also its
function.
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nists in PD models led to clinical trials of the A2AR antagonist istradefylline, which con-
firmed its clinically significant motor benefit in advanced PD patients and resulted in the 
approval of istradefylline for the treatment of PD patients in Japan and the US. The com-
plexity of adenosine signaling contributed at least partially to the debilitating side effects 

Figure 3. The A2AR positive allosteric modulator (PAM)-1 induces sleep without cardiovascular
effects. (A,B) A2AR PAM-1 enhanced the activity of adenosine on A2AR-expressing Chinese Hamster
Ovary (CHO) cells when cAMP was measured by a fluorescence energy transfer (FRET) immunoassay
(A), whereas A2AR PAM-1 did not enhance cAMP production without adenosine or in native CHO
cells without A2AR expression (B). (C) Intraperitoneal (IP) injection of A2AR PAM-1 increased slow-
wave sleep in wild-type mice, but not in A2AR-knockout (KO) mice. (D) A2AR PAM-1 did not affect
cardiovascular functions (e.g., blood pressure), unlike a classic A2AR agonist (CGS 21680) [94,95].
** p < 0.01.

A2ARs have roles in neurodegenerative, neurodevelopmental, and psychiatric diseases.
The potential therapeutic use of A2AR agonists and antagonists for specific conditions such
as Niemann Pick disease, schizophrenia, autism-spectrum disorders, depression, anxiety,
Alzheimer’s disease, attention-deficit hyperactivity disorder, PD, and fragile X syndrome is
comprehensively discussed in the literature [122]. Allosteric A2AR modulators may provide
alternative therapeutic options for neurologic disorders to circumvent the complexity of
central and peripheral adenosine signaling. For example, dopamine-replacement therapy
in PD is potentiated by blocking A2ARs due to the adenosine-dopamine antagonism in the
striatum [123]. Decade-long preclinical studies of A2AR antagonists in PD models led to
clinical trials of the A2AR antagonist istradefylline, which confirmed its clinically significant
motor benefit in advanced PD patients and resulted in the approval of istradefylline for
the treatment of PD patients in Japan and the US. The complexity of adenosine signaling
contributed at least partially to the debilitating side effects and suspension of the clinical
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phase III trial of the A2AR antagonist tozadenant for PD, which resulted in the death of
five patients due to inflammatory complications. Thus, there is also a critical need to
develop safer and more effective means of suppressing A2AR signaling; for example, by
negative allosteric modulation. Whereas the most potent PD medication is levodopa (L-3,4-
dihydroxyphenylalanine), clinicians try to limit levodopa doses to the extent possible to
avoid various adverse effects occurring with chronic use, such as dyskinesia and dopamine
dysregulation. A2AR PAM, when administered concomitantly with levodopa, may mitigate
some of these side effects, but strong evidence is currently lacking.

In addition, positive allosteric modulators of A2ARs may also alleviate various symp-
toms in neuropsychologic disorders. For example, psychotic symptoms such as delusions
are caused by impaired discrimination of environmental stimuli. Recent evidence shows
that D2Rs mediate discrimination learning in the NAc, but A2ARs expressed together
with D2Rs in the NAc are required for discrimination learning. While normal mice can
discriminate between reward-predictive and non-reward-predictive tones several days
after generalized reward conditioning (when any tone is reward-predictive), mice in which
A2ARs are blocked in the NAc do not show this ability [124]. In addition, hypofunction of
NMDA-type glutamate receptors is thought to be involved in schizophrenia, as NMDA
receptor antagonists such as phencyclidine and dizocilpine (MK-801) cause psychotic and
cognitive disorders in humans and animals [125]. Deleting A2ARs in NAc astrocytes leads
to motor and memory impairments relevant to schizophrenia, namely exacerbation of
the MK-801-induced psychomotor response and impaired working memory [126]. Thus,
the enhancement of A2AR signaling may be helpful to treat sleep disorders as well as
schizophrenia and other psychotic disorders by overcoming dopaminergic hyperactivity or
glutamatergic hypoactivity.

7. Concluding Remarks

Here, we discussed recent developments regarding allosteric A2AR modulation. Al-
though numerous allosteric modulators of A2ARs have been identified, the physiologic
functions of only a few of them have been established. The sleep-promoting effects and
inflammatory process-modulating roles of allosteric A2AR modulators open the doors for
the potential therapeutic use of these molecules for treating diseases. Allosteric modulators
exert their effects only where and when the orthosteric ligand is released, conferring a
potential therapeutic advantage over classical antagonists and agonist molecules. Thus,
allosteric A2AR modulation could provide patients with an effective and safe treatment for
various diseases.

Finally, A2ARs form heterodimer structures with other receptors such as D2Rs and
mGluR5 in the CNS. Receptor heterodimers may be an applicable target for developing A2AR
PAMs with high specificity for the heterodimer and thus limited adverse effects [38,127–131].
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