
 

 

 

 
Int. J. Mol. Sci. 2022, 23, 1870. https://doi.org/10.3390/ijms23031870 www.mdpi.com/journal/ijms 

Article 

Functional Characterization of MdTAC1a Gene Related to 

Branch Angle in Apple (Malus x domestica Borkh.) 

Yongzhou Li, Xu Tan, Jing Guo, Enyue Hu, Qi Pan, Yuan Zhao, Yu Chu and Yuandi Zhu * 

Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, 

Haidian District, Beijing 100193, China; yongzhoulee@cau.edu.cn (Y.L.); SY20203172714@cau.edu.cn (X.T.); 

18702225153@163.com (J.G.); 18854806315@163.com (E.H.); panlor1204@163.com (Q.P.); 

zhaoyuan0605@cau.edu.cn (Y.Z.); chuyu818@163.com (Y.C.) 

* Correspondence: zhuyd@cau.edu.cn 

Abstract: The Tiller Angle Control 1 (TAC1) gene belongs to the IGT family, which mainly controls 

plant branch angle, thereby affecting plant form. Two members of MdTAC1 are identified in apple; the 

regulation of apple branch angle by MdTAC1 is still unclear. In this study, a subcellular localization 

analysis detected MdTAC1a in the nucleus and cell membrane, but MdTAC1b was detected in the cell 

membrane. Transgenic tobacco by overexpression of MdTAC1a or MdTAC1b showed enlarged leaf 

angles, the upregulation of several genes, such as GA 2-oxidase (GA2ox), and a sensitive response to 

light and gravity. According to a qRT-PCR analysis, MdTAC1a and MdTAC1b were strongly expressed 

in shoot tips and vegetative buds of weeping cultivars but were weakly expressed in columnar culti-

vars. In the MdTAC1a promoter, there were losses of 2 bp in spur cultivars and 6 bp in weeping cultivar 

compared with standard and columnar cultivars. An InDel marker specific to the MdTAC1a promoter 

was developed to distinguish apple cultivars and F1 progeny. We identified a protein, MdSRC2, that 

interacts with MdTAC1a, whose encoding gene which was highly expressed in trees with large branch 

angles. Our results indicate that differences in the MdTAC1a promoter are major contributors to 

branch-angle variation in apple, and the MdTAC1a interacts with MdSRC2 to affect this trait. 
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1. Introduction 

Apple (Malus x domestica Borkh.) is widely cultivated and ranks third with respect to 

global fruit production according to FAO statistics in 2019 (https://www.fao.org (accessed 

on 5 November 2020)). On the basis of fruiting type and branch architecture, apple trees 

are classified into four ideotypes—columnar, standard, spur, and weeping, with different 

branch angles [1]. Fruit tree architecture determines the compactness of the canopy struc-

ture, the amount of shadowing between branches, and the extent of ventilation and light 

transmission to the lower part of the tree. Branching can affect tree shape, in turn influ-

encing fruit yield and quality [2–5]. In apple production, branch angles are manually wid-

ened to promote early flowering and fruiting. Investigation of branch angle-related genes 

should therefore contribute to apple tree breeding and genetic improvement [1]. 

Genes determined to shape plant branch angle include Tiller Angle Control 1 (TAC1), 

LAZY1 (LA1), Loose Plant Architecture 1 (LPA1), and Prostrate Growth 1 (PROG1) [6]. 

Branch angle is also affected by growth hormones, especially auxins (e.g., indole acetic 

acid [IAA]) [6,7], cytokinins [8,9], and strigolactones [10]. The polar transport of auxin 

inhibits the growth of lateral buds but causes apical buds to grow vigorously. Cytokinins 

are produced in roots, and their upward transportation promotes lateral bud differentia-

tion and growth, which work in synergy with auxins, thereby affecting branch develop-

ment. Strigolactones are a recently discovered class of hormones commonly found in 

plants. Strigolactones can interact with auxins and cytokinins to reduce the extent of plant 
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branching and play an important role in branch development [10]. Many environmental 

signals, including light, gravity, and thigmotropism, can influence plant architecture as 

well [11,12]. TAC1 is a gene first isolated in rice by map-based cloning and is a positive 

regulator of the tillering angle in rice [13]. Previous research has revealed that TAC1 orig-

inated from LA1, which negatively regulates the tillering angle in plants. TAC1 and LA1 

belong to two branches of the IGT gene family, which has been found in all plant genomes 

and contains a conserved EAR (LxLxL) motif at the C terminus [13]. 

TAC1 plays an important role in regulating branch angle in many plant species [13–

15]. For example, OsTAC1 participates in the regulation of rice (Oryza sativa) tiller angle 

and influences the endogenous auxin content [16]. In maize (Zea mays), the expression 

level of ZmTAC1 is positively correlated with leaf angle, and this gene plays an important 

regulatory role in leaf development [15]. At each stage of wheat (Triticum aestivum) tiller-

ing, the expression of TaTAC1 is positively correlated with tiller angle, and this gene may 

positively regulate tiller angle by participating in the regulation of auxin polar transport 

[17]. PpeTAC1 promotes the horizontal growth of branches in peach (Prunus persica) trees 

[14,18], and PzTAC contributes to the regulation of branch angle in poplar (Populus × zhai-

guanheibaiyang) [19]. 

In a previous investigation, we separately cloned the TAC1a/b genes of apple (Gen-

Bank accession No. MG837476/MG837477). There was no difference in the cDNA se-

quences, but variation in the promoters of two genes were detected among the analyzed 

ideotypes [20]. This preliminary work involved few apple cultivars, and a correlation with 

branch angle could not be determined. In the present study, we performed subcellular 

localization experiments and used full-length MdTAC1a/b cDNA sequences to construct 

overexpression vectors of MdTAC1a/b driven by a strong promoter, CaMV35S, in genet-

ically transformed tobacco (Nicotiana benthamiana). This approach allowed us to observe 

changes in the leaf angle of the transgenic lines and verify the gene functions of 

MdTAC1a/b. We then developed new molecular marker based on differences in the 2000-

bp long MdTAC1a promoters among apple cultivars and a hybrid F1 population. Finally, 

we used yeast two-hybrid technology to study the MdTAC1a-interacting protein. Our 

findings, including the function of MdTAC1a/b genes, lay a foundation for analysis of the 

molecular mechanism of MdTAC1a regulation of branch angle in apple, thereby contrib-

uting to apple genetic improvement. 

2. Results 

2.1. Subcellular Localization Analysis of MdTAC1a and MdTAC1b 

To better understand the molecular function of the MdTAC1, we constructed 

MdTAC1a-GFP and MdTAC1b-GFP fusion gene-expression vectors to examine their sub-

cellular locations. The MdTAC1a-GFP and MdTAC1b-GFP plasmids were transferred into 

Agrobacterium to infect tobacco leaves. The MdTAC1a was detected in the cell nucleus and 

cell membrane, whereas the MdTAC1b was localized to the cell membrane (Figure 1). 
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Figure 1. Subcellular localization of MdTAC1a and MdTAC1b in tobacco leaves. 35S::GFP repre-

sented the pCambia1300 with GFP vector and the pCambia1300 empty vector was detected in the 

nucleus and membrane. MdTAC1a was detected on the nucleus and membrane, and MdTAC1b was 

detected on the membrane. 

2.2. Phenotypic and Key Gene Analysis of Transgenic MdTAC1a/b in Tobacco 

To investigate the physiological function of MdTAC1, we separately transferred 

MdTAC1a/b into tobacco. In a real-time PCR assay, the expressions of MdTAC1a/b were 

detected in MdTAC1a/b-overexpressing (OE) plants but not in wild-type (WT) plants (Fig-

ure 2). The order of relative expression of three selected MdTAC1a-OE transgenic tobacco 

plants was L1 > L2 > L3, and the relative expression level of MdTAC1a in L1 was almost 

80 times that of the wild type (Figure 2). The relative expression levels of three selected 

MdTAC1b-OE transgenic tobaccos followed the order L1 > L3 > L2 (Figure 2). In addition, 

the leaf angle of MdTAC1a/b-OE transgenic tobacco plants was significantly larger than 

that of the wild type (Figures 2 and S1). 
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Figure 2. Phenotypes, leaf angles, and relative expression levels of MdTAC1a and MdTAC1b in trans-

genic tobacco plants. (A,D) Phenotypes of MdTAC1a-OE and MdTAC1b-OE transgenic plants. (B,E) 

The relative expression levels of MdTAC1a in MdTAC1a-OE and MdTAC1b in MdTAC1b-OE transgenic 

plants. (C,F) Leaf angles of MdTAC1a-OE and MdTAC1b-OE transgenic plants. WT: the wild type; L1–

L3: the transgenic lines. The significance of difference was analyzed with two-tailed t-test (** p < 0.01). 

To compare differences in hormone-expression levels between genetically modified 

and wild-type tobaccos, we used qRT-PCR to analyze ten genes involved in the synthesis 

and signal transduction of four types of plant hormones and two genes in the light-re-

sponsive pathway after flowering. The relative expression levels of ten of these genes were 

found to be significantly different between wild-type and transgenic tobaccos (Figure 3). 

In particular, genes encoding auxin response factors 2 and 3 (ARF2 and ARF3), phototro-

pins PHOT1 and PHOT2, GA2 oxidase (GA2ox), carotenoid cleavage dioxygenase 7 

(CCD7), and IAA5 were upregulated in genetically modified tobacco compared with the 

wild type, whereas pin-formed 1 (PIN1), pin-formed 2 (PIN2), GA20 oxidase (GA20ox), 

and isopentenyl transferase (IPT) genes were upregulated in wild-type plants relative to 

transgenic tobacco. After wild-type and transgenic tobacco plants began to bend in the 

horizontal treatment, we selected the bending point and measured the relative expression 

of IAA5. We found that IAA5 expression was significantly higher in transgenic tobaccos 

than in the wild type. 
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Figure 3. Expression profiles of 12 key genes involved in synthesis and signaling pathways in the 

WT and transgenic plants eight weeks after transgenic. Error bars represented the standard error of 

the mean for three biological replicates. The results showed the gene relative expressions in the 

MdTAC1a and MdTAC1b transgenic lines were significantly more than that of the wild type in to-

bacco. The significance of difference was analyzed with two-tailed t-test (* 0.01 < p < 0.05, ** p < 0.01). 

Data were represented as average values with SD. 

2.3. Phototropism and Gravitropism of MdTAC1-OE Plants 

To investigate the role of MdTAC1a and MdTAC1b in shoot gravitropism and light 

response, we subjected WT and transgenic plants to 90° inverted gravity processing under 

light and dark conditions to observe the degree of stem bending. WT and OE plants under 

light exposure were arranged horizontally for 0, 1, 5, 12, and 24 h for image collection 

(Figure 4A), and the angle of the stem was measured from the image. The WT plants began 

to bend upward after 1 h, with significant upward bending observed from 1 to 3 h. After 

1 h of treatment, a significant difference in bending angle was observed between OE and 

WT plants (Figure 4C). In the OE plants, no bending was observed in the first 6 h. After 6 

h, the OE plants began to bend gradually, and the rate of bending of MdTAC1a-OE plants 

was greater than that of MdTAC1b-OE (Figure 4C). 
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Figure 4. Gravitropic and light responses in wild-type (WT), MdTAC1a-OE, and MdTAC1b-OE to-

baccos. (A,B) Tobacco responded to gravity for 24 h under light and 48 h for darkness. (C,D) The 

angle in the stem was bent at the position of the red arrow in (A,B). Bars indicated the means ± SDs 

(n = 3). (C) The statistics of the degree of bending of plant stems placed horizontally under light at 

0, 1, 5, 12, and 24 h. (D) The statistics of the degree of bending of plant stems placed horizontally at 

0, 1, 8, 12, 24, and 48 h in the dark. The rate of stem bending was faster in WT than in MdTAC1a-OE 

and MdTAC1b-OE plants, regardless of light or dark treatments. (E) The relative expression level of 

IAA5 in the stem at the position of the red arrow in (A,B). (F) Dynamic changes in relative expression 

levels of MdTAC1a and MdTAC1b in OE plants during stem-bending period under light and dark 

condition. The results showed the gene relative expression in the MdTAC1a and MdTAC1b trans-

genic lines was significantly more than that of the wild type in tobacco. The significance of difference 

was analyzed with two-tailed t-test (* 0.01 < p < 0.05, ** p < 0.01). Data were represented as average 

values with SD. 

After 0, 1, 8, 12, 24, and 48 h of horizontal placement in darkness, plants were imaged, 

and the stem angle was measured. The time required for WT and OE plants to bend up-

ward in the dark was later than that of corresponding plants exposed to light, indicating 
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the transgenic plant response was more sensitive to light and gravity (Figure 4B). During 

the first 3 h in the dark, no stem bending was observed in WT or OE plants. WT plants 

began to bend slightly upward after 3 h, whereas MdTAC1a-OE and MdTAC1b-OE plants 

began bending slightly upward after 8 h (Figure 4B). The bending rate of WT plants was 

significantly higher than that of the slowest plants, namely, MdTAC1b-OE plants. In addi-

tion, the bending rate of MdTAC1a-OE was higher than MdTAC1b-OE plants under light, 

whereas the bending rate of MdTAC1b-OE plants was significantly higher than that of 

MdTAC1a-OE in the dark (Figure 4D). In addition, the stems were sampled at 0, 1, 5, 12, 

and 24 h lightening condition and 0, 1, 8, 12, 24, and 48 h dark condition for expression 

analysis, and the qRT-PCR results showed that the expression levels of MdTAC1a and 

MdTAC1b increased significantly under lightening and no significant changes were ob-

served under darkness (Figure 4F). We also measured the expression of IAA5 in the stem 

bends of WT plants and OE plants at 24 h in the light and 48 h in the dark, and it was clear 

that the expression of NbIAA5 was higher than that in WT under light or dark treatment 

(Figure 4E). We hypothesize that light-response and cis-acting modulator-of-photoreac-

tivity elements in MdTAC1a and MdTAC1b play a significant role in stem bending in light 

and gravity (Figure S2). 

2.4. qRT-PCR Analysis of MdTAC1a/b Expressions in Different Apple Cultivars 

Eleven apple cultivars were analyzed for the expressions of MdTAC1a and MdTAC1b. 

The branch angle size showed an increasing trend in the order of columnar, standard, 

spur, and weeping apple cultivars (Supplementary Table S1, Figure 5A). The qRT-PCR 

revealed that the expression levels of MdTAC1a and MdTAC1b were similar in vegetative 

buds and shoot tips. The highest expression levels were detected in weeping-type culti-

vars, followed by standard cultivars, whereas the lowest levels were observed in colum-

nar ones. In addition, the relative expression level of MdTAC1b in vegetative buds and 

shoot tips was higher than that of MdTAC1a in these tissues (Figure 5B,C). 

 

Figure 5. Statistics of branching angles of four tree typesand the expression of MdTAC1a and 

MdTAC1b in four apple cultivars. (A) Statistics of branching angles of four tree types (B,C) 

The relative expression patterns of MdTAC1a/b in vegetative organs of apple cultivars. 

2.5. Development of an InDel Marker and Cosegregation in a Population 

To explore the variation in the promoters of MdTAC1a/b genes in the 11 apple tree 

cultivars, we sequenced the coding region and 2.0-kb region upstream of ATG (position 

0) of all 11 cultivars. InDel in the MdTAC1a promoter sequence were detected among the 

four types of cultivars (Figure 6A). A deletion of six nucleotides, from 270 to 275 (GA-

GAGA), was detected in ‘Granny Smith’, a weeping-type cultivar, while a two-nucleotide 

deletion (GA) at positions 271 to 270 was identified in the three spur-type cultivars, 

which belong to the GAG motif. SNPs were observed in MdTAC1b in the four cultivar 

types (Figure 6B). For instance, the deletion of a single C at position 158 was observed in 

columnar-type apple cultivars. As another example, the A nucleotide present at positions 

848, 804, and 552 in standard-type cultivars was a G in all other cultivars. The A at 
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position 724 was replaced by a G in columnar-type cultivars, and the G at position 599 

was replaced by an A in apple trees with weeping branches. Columnar- and spur-type cul-

tivars possessed a T and a C at positions 566 and 294, respectively, whereas a C and a G 

were present at these corresponding positions in all other cultivars. The nucleotide present 

at position 47 was a C in standard-type cultivars and a T in the remaining cultivars. 

 

Figure 6. The Differences of MdTAC1a and MdTAC1b promoters among four apple culti-

vars. (A) The sequence of InDel in promoter regions of MdTAC1a in four-type cultivars. The initia-

tion codon (ATG) A was defined as 0. The red box was a representation of the InDel area (B). The 

sequence SNPs in promoter regions of MdTAC1b in four-type cultivars. 

As demonstrated by these examples, MdTAC1a/b obviously differed among the apple 

tree ideotypes. We therefore designed a molecular-marker pair to generate a 370-bp long 

amplification product based on the InDel in the MdTAC1a promoter (Supplementary Ta-

ble S3). To test the applicability of this molecular marker to other apple trees, we selected 

21 cultivars with different branch angles from the resource nursery. The width of the base-

branch angle ranged from 50 cm to 120 cm in the cultivated cultivars and F1 generation. 

Among the 21 cultivars, the branch angle of 4 was ≤45°, that of 7 was 45–65°, and 10 culti-

vars had a branch angle ≥ 65° (Figure 7). Among the 21 cultivars, PCR amplification 

yielded the complete 370 bp in 14 cultivars, whereas a 6 bp deletion was found in 7 culti-

vars (Figure 7). This genotypic ratio was different from the phenotypic statistics, with the 

phenotype and genotype coinciding in only 85.71% of cultivars. 

 

Figure 7. Genotyping of TAC1a in apple cultivars by an InDel markerThe upper imageshowedthe 

branch angle size of 21 apple cultivars, and the lower electrophoresis pattern showed the separation 

of TAC1a marker in the 21 cultivars, 1-21 represented sequentially ‘Zhongqiuwang’, ‘Red star’, 

‘Envy’, ‘Brilliant’, ‘Red jade’, ‘Huashuo’, ‘Venus golden’, ‘Huangyuxiang’, ‘Qincui’, ‘Tuoji’, ‘Dew’, 
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‘Xiwang’, ‘Jinzhouhong’, ‘Daphne red’, ‘Jinxianghong’, ‘Huirui’, ‘Max’, ‘Huajia’, ‘Yanfu NO.6′, 

‘Yanfu NO.10′, ‘Yanfu NO.8′. 

In addition, 62 F1 hybrid offsprings were selected from a cross between the two cul-

tivars, ‘Jinlei No. 1’ and ‘Granny Smith’ to verify the InDel Maker (Figure 8A). Trait seg-

regation in the F1 population was observed: 30 plants had a branch angle ≤ 45°, whereas 

the remaining 32 plants had a branch angle > 45° (Figure 8B). As to genotype, 28 and 34 

trees had the same genotype as the parents, ‘Jinlei No. 1’ and ‘Granny Smith’, respectively 

(Figure 8C), which corresponded to segregation rates of 45.16% and 54.84%. In the F1 gen-

eration, the phenotype–genotype coincidence rate was 96.77%. The primer pair developed 

in this study can therefore be applied (Figure 8C). 

 

Figure 8. Genotyping of TAC1a in apple parental and F1 individuals by an InDel marker. (A) Apple 

parental and F1 individuals. (B) was the branch angle statistics of the parents and F1. (C) was the 

separation of TAC1a marker in the parental and F1 progeny. M represented DNA ladder 

marker;Line 1 to 29 and line 32 to 64 represented F1 generation; 30 represented parental Granny 

Smith; 31 represented parental Jinlei No. 1 The parent and F1 were separated at 400 bp of the red 

box in Figure (C). 

2.6. Interaction of MdTAC1a with MdSRC2 

The promoter of MdTAC1a has InDel in different cultivars and MdTAC1a localized in 

both the cell membrane and the nucleus; MdTAC1a was selected for yeast two-hybrid in 

this experiment. Using the MdTAC1a as bait, we screened the cDNA interaction library of 

apple by the yeast two-hybrid method. After identifying the candidate gene, SOYBEAN 

GENE REGULATED BY COLD 2 (MdSRC2), we analyzed the cis-acting elements and do-

mains in its CDS (Figure S3) [21]. A yeast two-hybrid analysis was used to determine 

whether MdTAC1a interacts with MdSRC2. The combinations of pGBKT7(BD)-53 + 

pGADT7(AD)-T and pGBKT7-Lam + pGADT7-T were used as positive and negative con-

trols, respectively. All yeast colonies harboring different combinations of plasmids grew 
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well on synthetic-shedding medium lacking leucine and tryptophan. Yeast colonies trans-

formed with the plasmid combination, pGBKT7-MdTAC1a + pGADT7-MdSRC2, grew 

well on synthetic-shedding medium (SD-AHLT) in the absence of adenine, histidine, leu-

cine, and tryptophan. The addition of X-α-gal gave results similar to the positive control 

(Figure 9A). Yeast cells transformed with the plasmid combination, pGBKT7-MdTAC1a-

C+pGADT7, were not able to grow on SD-AHLT plates, similar to the negative control, 

which indicated that the C-terminus of MdTAC1a had no self-activity in yeast cells (Figure 

9A). Taken together, these results indicate that the C-terminus of MdTAC1a binds to 

MdSRC2 in yeast. 

Co-immunoprecipitation (Co-IP) experiments were then performed to provide fur-

ther evidence for the interaction between MdTAC1a and MdSRC2 in vivo (Figure 9B). A 

bimolecular fluorescence complementation (BiFC) analysis was performed to further con-

firm the interaction between MdTAC1a and MdSRC2 in plant cells. pSPYNE and pSPYCE 

vectors, respectively, containing YFPN and YFPC, were used to construct MdTAC1a-cYFP 

and MdSRC2-nYFP, and vice versa. The fusion protein was transformed into A. tumefa-

ciens and injected into tobacco leaves, and the fluorescence signal was observed under a 

scanning confocal microscope. When MdTAC1a-cYFP and MdSRC2-nYFP were transi-

ently co-expressed, green fluorescence was observed in the nucleus, revealing the interac-

tion of MdTAC1a and MdSRC2 in plants. No green fluorescence was detected when YFPN 

and YFPC were co-expressed in tobacco leaves (Figure 9C). Taken together, these results 

support the existence of an interaction between MdTAC1a and MdSRC2. In addition, the 

relative expression levels of the gene MdSRC2 were detected in the parental and F1 popu-

lation, The expression level of gene MdSRC2 was significantly higher in trees with large 

branching angles(>45°) than in trees with small branching angles (≤45°) (Figure 10). 

 

Figure 9. MdTAC1a interacted with MdSRC2. (A) Yeast two-hybrid analysis showing the interac-

tion between MdTAC1a and MdSRC2. pGBKT7-Lam + pGADT7-T were used as negative controls. 

pGBKT7-53 + pGADT7-T were used as positive controls. (B) Co-IP analysis in tobacco showed the 

interaction between MdTAC1a and MdSRC2. Empty vectors were used as negative controls. (C) 
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BiFC analysis in tobacco epidermal cells showed the interaction between MdTAC1a and MdSRC2. 

Empty vectors were used as negative controls. 

 

Figure 10. Expression of MdSRC2 in parental cultivars and F1 progeny. 

3. Discussion 

3.1. Physiological Functions of MdTAC1 and MdTAC1-OE in Tobacco 

In this study, we performed MdTAC1a and MdTAC1b subcellular localization exper-

iments. Despite the 92.82% sequence similarity of nucleotide sequence between MdTAC1a 

and MdTAC1b, their subcellular localization was different. According to previous studies, 

TaTAC1 is located in the cell membrane in wheat (Triticum aestivum) [18], but SpsTAC2 is 

found in the nucleus in Salix [22]. These differences in the subcellular locations indicate 

that genes in the same family have different functions in different species. 

We also used the Agrobacterium-mediated method to transform tobacco. MdTAC1a/b-

OE-positive tobacco seedlings had significantly increased leaf angles. Overexpression of 

TAC1 causing increased leaf angle is seen in herbaceous plants [15]; the OsTAC1-overex-

pressing transgenic rice line has been reported to exhibit a loose phenotype with a larger 

tiller angle [13]. Overexpression of AtTAC1 in Arabidopsis can partially restore the pheno-

type of rice Attac1 mutants [14]. In woody plants, PpeTAC1-overexpression in plum can 

induce horizontal growth of branches, and while silencing PpeTAC1 in plum, the trees will 

grow toward the columnar trait as mutants of PpeTAC1 showed in peach [18]. MdTAC1a 

shares a 84.84% similarity of deduced amino acid sequences with MdTAC1b, 72.61% with 

PpeTAC1, 12.18% with OsTAC1, 17.35% with ZmTAC1, and 8.12% with AtTAC1. High sim-

ilarity of sequences of these TAC1 genes in plants displays conserved biological function 

involving angle formation either in branches [14] and tillers [13] or leaves [15,23]. Unfor-

tunately, no branching was observed in the MdTAC1a/b-OE-positive tobacco. Wild type 

Tobacco itself did not have branches under the same growth conditions as transgenic to-

baccos (Figure S1). A possible reason was that MdTAC1a/b could not induce more branch-

ing but changed branch angles if lateral branches existed, like other plant TAC1 genes. It 

is speculated that decapitation of MdTAC1a/b-OE and non-transformant plants may ob-

tain plants with lateral branching to observe changes in branch angles. 

3.2. Relationship of Growth and Tropic Responses in Transgenic Tobacco 

Auxins can directly inhibit cytokinin biosynthesis by regulating the auxin resistant 

1-dependent auxin-signaling pathway, thereby inhibiting the growth of axillary buds in 

Arabidopsis and apple [24,25]. In addition to cytokinins, strigolactones are auxin regu-

lated and act as branching inhibitors. Inhibition of strigolactone biosynthesis or signal 
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transduction can increase plant branching [26]. Strigolactone biosynthesis is affected by 

carotenoid-cleaving dioxygenase (CCD) [24]. 

By comparing the OE plants with WT tobacco, it was found that the genes on the 

gibberellin pathway were significantly different. Gibberellin is a diterpenoid phytohor-

mone that plays an important role in plant growth [27]. The activity of gibberellin required 

the activation of gibberellin 20beta-dioxygenase (GA20ox), and gibberellin 3beta-dioxy-

genase (GA3ox). In addition, gibberellin 2beta-dioxygenase (GA2ox) was used to degrade 

the activity of gibberellins [28,29]. Gibberellin has been shown to promote negative grav-

itational growth of a weeping Japanese cherry (Prunus spachiana), i.e., inhibit angular en-

largement [30,31]. 

Under either light or dark conditions, moreover, the upward-bending stem response 

of horizontally arranged OE plants was significantly different from that of the wild type 

(Figure 5). According to a previous report, AtTAC1 responds to photosynthetic signals 

under dark or far-red light conditions by narrowing the branch angle [32]. Overexpression 

of MdTAC1a/b displayed a more sensitive-to-light response by bending the stem with a 

larger curve in transformants compared to the dark condition. In addition, IAA5 has been 

previously shown to be a good indicator of the gravity-induced auxin gradient in stems 

[33]. We speculate that MdTAC1a and MdTAC1b influence branch angle by acting on the 

transport of plant hormones. 

3.3. Variation in the MdTAC1a Promoter among Cultivars and F1 Generation Plants 

A promoter is the component of a gene that controls its expression, that is, the start 

time and degree of expression of transcription. A promoter does not control gene activity 

by itself, but instead functions in combination with transcription factors [34]. Prediction 

of specific sizes of different gene promoters is a difficult challenge. There are few reports 

on the relationship between promoter fragment size and function, but no reports on the 

relationship between promoters and branching angles. Multiple repeats of a promoter 

segment of MYB 10 causes transcription factor autoregulation in red apples [34]. In the 

present work, we found that an InDel marker developed by specific primers based on 

promoter sequences of TAC1a co-segregated with large branch angles (>65°), either in an-

alyzed apple cultivars, or in a F1 population. Promoters contain many cis-acting elements 

that may be useful for predicting the involvement of genes in processes, such as transcrip-

tion control, light response, and plant hormone synthesis [20]. There were many differ-

ences in the MdTAC1a and MdTAC1b promoters of different apple cultivars. Compared to 

MdTAC1a, variation in MdTAC1b promoters was complicated in four-type apple cultivars 

(Figure 6). As for MdTAC1a promoters in various apple cultivars, several base deletions 

were identified in spur- and weeping-type cultivars; among them, the GAG motif was 

missing from a cis-acting, light-responsive element. The differential distribution of auxin 

after light exposure is the cause of phototropic movement in plants [35]. In above-ground 

stems, a high concentration of auxin promotes somatic cell growth, whereas a lower con-

centration inhibits it. In plants exposed to light, the lower part of the hypocotyl is shaded 

and accumulates a larger amount of auxin, which causes cells on the shaded side to elon-

gate faster than those on the irradiated side, resulting in the phenomenon of stem bending 

[36,37]. In summary, the absence of a GAG motif in spur- and weeping-type cultivars 

probably influence these cultivars responding to light.  

3.4. The Effect of MdSRC2–MdTAC1a Interaction on Plant Branch Angle 

The interaction between MdTAC1a and MdSRC2 has been verified by in vivo and in 

vitro experiments. SRC2 is a C2-domain protein in which C2 binds its own EF-hand motif 

as an intramolecular interaction [21]. The C2 domain independently forms a folded do-

main of 80–160 residues with characteristic binding Ca2+ and phospholipids [38]. In Ara-

bidopsis, the cold-inducible protein AtSRC2 is a novel activator of the Ca2 +-dependent 

activation of AtRbohF(Respiratory burst oxidase homolog protein F) that enhances delib-

erate ROS(reactive oxygen species) production, which can increase the resistance of plants 
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[39]. Ca2+ acts as a second messenger that converts the physical signal into physiological 

and biochemical signals and participates in gravity-signal transduction [40]. Such as Ca2+ 

concentration in chrysanthemum stems [41] and calreticulin and calmodulin mRNAs asym-

metrically distributed in maize leaf [42]. In addition, the external application of calcium ion 

analogs or inhibitors can enhance or inhibit the gravitational response of plant hypocotyls 

[41,43–45]. In this experiment, both MdTAC1a and MdSRC2 were highly expressed in apple 

trees with large branch angle (Figure 11), showing the interaction of MdTAC1a and MdSRC2 

involved in development of branch angle. Overexpression of MdTAC1 could also increase 

plant gravitation, however, it remains to be confirmed whether the MdSRC2 regulates the 

Ca2+ concentration and distribution to response gravity in apples. 

 

Figure 11. The model of MdTAC1a in regulating the branching angle of apple trees. In apple 

MdTAC1a interacts with MdSRC2 to affect intracellular Ca2+ concentration remains to be proven. 

4. Materials and Methods 

4.1. Plant Materials 

According to our observations and published apple (Malus x domestica Borkh.) tree 

statistics, we selected standard-type cultivars, ‘McIntosh’, ‘Summerland McIntosh’, and 

‘Fuji’; columnar-type cultivars, ‘Wijcik’, ‘Waltz’, ‘Maypole’, and ‘Bolero’; weeping-type 

cultivar, ‘Granny Smith’; and spur-type cultivars, ‘Fukushima Spur’, ‘Miyazaki Spur’, and 

‘Mutsu Spur’. We also included the following cultivars: ‘Zhongqiuwang’, ‘Red Star’, 

‘Envy’, ‘Brilliant’, ‘Red Jade’, ‘Huashuo’, ‘Venus Golden’, ‘Huangyuxiang’, ‘Qincui’, 

‘Tuoji’, ‘Dew’, ‘Max’, ‘Xiwang’, ‘Jinzhouhong’, ‘Daphne Red’, ‘Jinxianghong’, ‘Huajia’, 

‘Huirui’, ‘Yanfu No. 10’, ‘Yanfu No. 6’, and ‘Yanfu No. 8’. Furthermore, we developed an 

F1 segregation population from four-year-old seedlings of a cross between ‘Jin Lei No. 1’ 

(female parent, narrow-tree architecture) and ‘Granny Smith’ (male parent, broad-tree ar-

chitecture). The branching angle sizes of F1 progeny were measured and grouped in two 

subgroups: narrow branch angle (≤65°) and broad branch angle (>65°). 

All cultivars and F1 progeny were grown at the experimental station of China Agricul-

tural University, Beijing, China (latitude 40.138044° N; longitude 116.185320° E). In May 

2019, leaves were harvested from one-year-old woody shoots, immediately frozen in liquid 

nitrogen, and stored at 80 °C. All branch-angle statistics are on one-year-old branches, and 
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the height is 50–120 cm. In vitro cultured wild-type tobacco (N. benthamiana) plants were 

used for genetic transformation and subcellular localization experiments. Tobacco was 

grown at 22 °C with 16 h of light and 8 h of darkness. The leaves were used to detect changes 

in hormone expression levels of transgenic tobacco for 10 weeks after transgenesis. 

4.2. DNA and RNA Extraction 

Genomic DNA (gDNA) of apple was extracted by the cetyltrimethylammonium bro-

mide (CTAB) method as described by Doyle [46], and total RNA was extracted using a 

modification of this method [47]. RNA degradation and contamination was monitored on 

1% agarose gels. RNA purity and concentration were checked using a NanoPhotometer 

spectrophotometer (Implen, Westlake Village, CA, USA). 

4.3. Real-Time Quantitative PCR (qRT-PCR) Analysis 

cDNA of apple and tobacco were transcribed from 2 µg of total RNA in 20µL reaction 

mixtures using a TransScript Uni All-in-One First-Strand cDNA Synthesis SuperMix for 

qPCR (One-Step gDNA Removal) (TransGen, Beijing, China). qRT-PCR analyses were 

carried out using a PerfectStart Uni RT&qPCR kit (Perfect Real Time, TransGen) with the 

qRT-PCR primers shown in Supplementary Table S2 on an Applied Biosystems One-Step 

Plus instrument (Applied Biosystems, Foster City, CA, USA). The cycling conditions were 

as follows: 94 °C for 30 s, followed by 40 cycles of 95 °C for 5 s, 60 °C for 15 s, and 72 °C 

for 10 s. Gene transcript levels were normalized to that of MdActin. Each analysis was 

repeated three times. The 2−ΔΔCt method was used to calculate relative transcript levels of 

each gene [48]. Three replicates of samples from different plants under the same condi-

tions were collected for qRT-PCR analyses. 

4.4. Generation of MdTAC1a/b–GFP Fusion Constructs, Transformation of Tobacco, and 

Subcellular Localization of MdTAC1a/b Protein 

Comparisons of the coding sequences (CDSs) of MdTAC1a/b from the different plant 

materials revealed numerous SNPs. The full-length CDSs of MdTAC1a/b were amplified 

from these materials using specific primers (Supplementary Table S3). The CDSs of 

MdTAC1a/b were then inserted between BamHI and SalI restriction sites upstream of the 

GFP gene in the binary vector pCambia1300. Each resulting construct was introduced into 

Agrobacterium tumefaciens strain EHA105 using the freeze–thaw method [49,50]. The leaf 

disc method was used to transform wild-type tobacco, and the regenerated plants were 

screened according to their kanamycin resistance. Part of the fusion vector was also trans-

formed into Agrobacterium GV3101 competent cells, and the suspension containing the fu-

sion vector was instantaneously injected into the leaves of tobacco. After the transfor-

mation, the tobacco leaves were kept at 25 °C in the dark for 48 h. Following exposure to 

light for 24 h, the tobacco leaves were inspected under an FV1000 confocal microscope 

(Olympus, Tokyo, Japan). 

4.5. InDel Marker Development and Genetic Correlation Analysis 

The 2000-bp region upstream sequences of the start codon ATG of MdTAC1a/b lo-

cated on chromosomes 7 and 1, respectively, of the apple genome [20] were downloaded 

from GenBank (https://www.ncbi.nlm.nih.gov/genome/?term=apple (accessed on 5 Sep-

tember 2019)) and used to design amplification primers (Supplementary Table S4). The 

MdTAC1a and MdTAC1b promoter sequences of the 11 apple cultivars were amplified us-

ing these primers and high-fidelity enzymes, and the amplified products were purified 

and ligated to a cloning vector for sequencing. The generated promoter sequences were 

compared among cultivars, and SSR primers were subsequently designed to amplify the 

400 bp near the promoter deletion region. SDS-PAGE was used in conjunction with these 
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primers to distinguish between tree types with different branch angles and the F1 genera-

tion. The relationship between tree phenotype and genotype was then used to calculate 

the probability of genetic linkage. 

4.6. Yeast Two-Hybrid Assay (Y2H), Bimolecular Fluorescence Complementation (BiFC) 

Analysis, and Co-Immunoprecipitation (Co-IP) 

For yeast two-hybrid screening, BD-MdTAC1a was amplified by PCR using four pri-

mers (Supplementary Table S5). After purification, the amplified PCR product was ligated 

with the empty pGBKT7 plasmid, which had been double digested with EcoRI and BamHI 

restriction enzymes. The correctly sequenced pGBKT7-MdTAC1a plasmid was used as a 

bait to screen the interaction library of apple in the pGADT7 vector. Transformation of the 

Y2H strain was performed with a matchmaker gold yeast two-hybrid kit (Takara,Tokyo, 

Japan), and putative positive clones were obtained and sequenced. Homologous genes in 

the generated sequences were identified by BLAST searching. 

PCR products generated using primers BiFC-MdTAC1a-C-F/BiFC-MdTAC1a-C-R 

and BiFC-MdSRC2-N-F/BiFC-MdSRC2-N-R (Supplementary Table S5) were connected to 

pSPYNE and pSPYCE vectors digested with XbaI and XhoI to generate MdTAC1a-

pSPYCE and MdSRC2-pSPYNE, respectively. For transient transformation, the ligated 

vectors were injected into five-week-old tobacco leaves via A. tumefaciens strain 

GV3101/p19. After the transformation, the tobacco leaves were kept at 25 °C in the dark 

for 48 h. Following exposure to light for 24 h, the tobacco leaves were inspected under an 

FV1000 confocal microscope (Olympus). 

For the Co-IP assay, the CDSs of MdTAC1a and MdSRC2 were amplified and individ-

ually inserted into the vector pCAMBIA1300-221 with HA and FLAG tags using the primer 

pairs listed in Supplementary Table S5. These plasmids were transformed into A. tumefaciens 

GV3101/p19 and co-infiltrated into tobacco as described above. After 72 h, total protein was 

extracted using a plant total protein extraction kit (Hua Xing Bo Chuang Bio, Beijing, China) 

and incubated with Anti-BIFC immunomagnetic beads (Bimake Bio, Beijing, China) at 4 °C 

overnight. The beads were washed three times with PBST, and the precipitated proteins 

were further analyzed by western blotting using anti-HA monoclonal antibody. 

4.7. Statistical Analysis 

All samples were analyzed in triplicate, with data expressed as means ± standard 

errors unless otherwise noted. Statistical significance was assessed by analysis of variance 

using SPSS 17 (SPSS, Chicago, IL, USA). Differences were considered significant at p < 0.05 

and extremely significant at p < 0.01. 

5. Conclusions 

In this study, we analyzed the biological functions of the genes MdTAC1a/b, includ-

ing their subcellular locations and heterologous overexpression. The results revealed 

changes in phenotype of transgenic plants, key genes related GA and photosynthesis sig-

nal, and a differential response to gravity under light and dark conditions in transgenic 

and WT plants. We also identified MdTAC1a/b genes in apple cultivars, examined their 

tissue-specific expression patterns, and verified variations in their promoter sequences 

among apple cultivars and F1 hybrid. Finally, we revealed the interaction between 

MdSRC2 and MdTAC1a proteins through a yeast two-hybrid assay and verified this in-

teraction in BIFC and Co-IP analyses. According to these results, MdTAC1a/b genes may 

play an important role in branch-angle development in apple. The molecular marker de-

veloped in this study should be useful for early selection of apple-branch angles in off-

springs and thus, contributes to manipulate tree architecture of apples.  

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/ijms23031870/s1. 
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