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Abstract: If a bacterium has motility, it will use the ability to survive and thrive. For many pathogenic
species, their motilities are a crucial virulence factor. The form of motility varies among the species.
Some use flagella for swimming in liquid, and others use the cell-surface machinery to move over
solid surfaces. Spirochetes are distinguished from other bacterial species by their helical or flat wave
morphology and periplasmic flagella (PFs). It is believed that the rotation of PFs beneath the outer
membrane causes transformation or rolling of the cell body, propelling the spirochetes. Interestingly,
some spirochetal species exhibit motility both in liquid and over surfaces, but it is not fully unveiled
how the spirochete pathogenicity involves such amphibious motility. This review focuses on the
causative agent of zoonosis leptospirosis and discusses the significance of their motility in liquid and
on surfaces, called crawling, as a virulence factor.
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1. Introduction

Many species of bacteria have motility operated with diverse mechanisms [1,2]. The
flagellum is one of the major motility organs that are used by Escherichia coli, Salmonella spp.,
Helicobacter pylori, Pseudomonas aeruginosa, and others [3]. Mycoplasma spp. and Myxococcus
xanthus move on surfaces, called gliding motility, and this is achieved via the molecular
architecture on the cell surface [4,5]. P. aeruginosa and unicellular cyanobacteria also show
motility on surfaces using extension and contraction of pili [6,7]. These bacteria rely on
motility for navigation to explore preferred environments for growing, and pathogenic
species utilize this ability for invading hosts [8,9].

Spirochetes are a group of Gram-negative bacteria and include pathogenic species,
such as Treponema pallidum (syphilis), Treponema denticola (periodontal disease), Brachyspira
hyodysenteriae (swine dysentery), Borrelia burgdorferi (Lyme disease), and Leptospira interro-
gans (leptospirosis). The spirochetes exhibit helical (e.g., Leptospira spp.) or flat-wave (e.g.,
Borrelia spp.) cell morphology and have multiple flagella within the periplasmic space.
The spirochete flagella are called periplasmic flagella (PFs). The PF-dependent motility
is known to be an essential virulence factor, but the mechanism of how spirochetes use
the motility in the pathogenic process has not been fully understood. This review will
focus on the two distinct modes of Leptospira motility and discuss their significance for
pathogenicity.

2. Leptospirosis

Pathogenic leptospires colonize the proximal renal tubules of animals recovering from
the disease, or reservoir hosts such as rodents. The bacteria are shed upon urination into
environments, infecting animals in contact with the contaminated soil or water through
injured skin. Diverse species of mammals have the potential to acquire Leptospira infection.
Pathogenic Leptospira are classified into more than 300 serovars based on the structure
of lipopolysaccharide (LPS), and the severity of the resultant symptom depends on the
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combination of Leptospira serovars and host species. In severe cases, the penetrating
leptospires reach specific organs, such as the lung, liver, and kidney, causing hemorrhage,
jaundice, and nephritis [10–12]. Animal experiments have shown that the loss-of-motility
due to the knock-out of the PF-related genes reduces the virulence of Leptospira, suggesting
that motility is an essential factor determining the pathogenicity [13,14].

3. Morphology and Motility of Leptospira
3.1. Cell Morphology

Leptospira spp. have two PFs (1 PF/cell end) within a thin (∼150 nm in diameter),
long (∼20 µm in length), and short-pitch helical cell body (∼700 nm in wavelength). The
extracted PFs from the cell body exhibit a coiled shape, thus giving the cell ends curvature.
The cell-end morphology depends on the gyration direction of the cell ends: Gyrating
counterclockwise (CCW, viewing the cellular tip as indicated by thick black arrows in the
cartoon of Figure 1) and clockwise (CW), the cell end form a “hook” shape and “spiral”
shape, respectively (Figure 1) [15].
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Figure 1. Morphology and motion forms of Leptospira interrogans. Dark-field micrographs (left) show
three motion modes observed in the same cell with distinct cell-end morphologies. The cell rotates
without net migration when exhibiting symmetric forms (Spiral–Spiral or Hook–Hook). Asymmetric
form (Spiral–Hook) propels the cell in the direction indicated by the white arrow. Longitudinal and
cross-sectional views of the asymmetric swimming mode are schematically depicted on the right.
Thick black arrows indicate that the directions of cell-end gyration are defined by viewing the cellular
tip from the cell exterior (see main text).

3.2. Swimming

Asymmetric configuration of the cell body propels the cell unidirectionally, and the
anterior and posterior cell-body ends exhibit the spiral and hook shapes, respectively. The
cell-end morphology frequently switches with the reversal of gyration, allowing the cell to
change swimming direction. Leptospira often shows symmetric morphology (i.e., Spiral–
Spiral or Hook–Hook), then rotating without net migration (Figure 1) [15,16]. Though
the PF rotation has not been observed directly, its counter-torque is thought to turn the
entire protoplasmic cylinder (PC). The combination of PC rotation (∼100 Hz) and the
spiral-end gyration (∼50 Hz) produces thrust for swimming [17]. Motility assays showed
that the migration distance by one revolution of PC is ∼30% of the wavelength of the
PC in a water-based solution, indicating that the swimming of Leptospira is a slippery
motion [18]. However, in gel-like viscoelastic fluids (e.g., methylcellulose solution), the
motion efficiency of Leptospira is improved up to 100% [15], resulting in an increment of the
swimming velocity [19]. Interestingly, the addition of viscous agent to medium increases
the frequency of swimming reversal, as discussed later [16,20].
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3.3. Crawling

In 1975, Cox and Twigg showed a trail of the leptospiral movement on a smooth
surface and called it “crawling” [21]. Charon et al. reported that unidentified outer
membrane components have mobility along the cell body by observing the movement
of microbeads attached to the cell surface via an anti-whole cell antibody [22]. Recently,
Tahara et al. revealed that crawling is: (i) PF-dependent motility; (ii) conducted by only
PC rotation without the direct contribution of the spiral end; (iii) mediated by adhesive
mobile components residing in the outer membrane, such as lipopolysaccharide; and (iv)
utterly slip-less motion [18]. Potential as a virulence factor of the Leptospira crawling will
be discussed below.

4. Swimming in a Highly Viscous Milieu
4.1. Dependence on a Type of Polymer

The effect of viscosity on bacterial swimming has been investigated in many species [23],
but we should note the type of polymers added to the media. For example, Ficoll, a highly
branched polymer, makes a homogeneous viscous solution. In contrast, methylcellulose
forms an elastic network in solution, and the bacterial movement in such a gel-like heteroge-
neous fluid depends on the size of the polymer network and bacteria [24,25]. Experiments
and theoretical studies have shown that bacterial swimming in a gel-like fluid is acceler-
ated monotonically or up to a certain point of the added polymer concentration, whereas
the swimming speed decreases in Ficoll solutions [17,19,23,25–28]. The heterogeneous,
viscoelastic milieu is ubiquitous in the host body (e.g., mucus layers covering tissues and
extracellular matrix), implying the significance of swimming in such unique environments
for pathogenicity.

4.2. Back-and-Forth Motion

In polymer solutions, Leptospira shows the speed variation in swimming [17,19,29] and
increases the transition frequency between swimming (Spiral–Hook) and rotation (Spiral–
Spiral and Hook–Hook) modes [16]. The enhancement of the motion-mode switching is
observed in Ficoll, methylcellulose, and mucin solutions [16]. In addition, we revealed that
the swimming direction reverses more frequently in high viscosity (Figure 2a) [16,20]. En-
hancing “back and forth” movement suggests the limitation of the net migration, crowding
bacteria within the mucus layer, and facilitating colonization over the tissues (Figure 2b).

4.3. Trial and Error?

The previous section describes the back-and-forth motion in viscous media, but the
behavior is also observed at the liquid and gel interface (Figure 3) [20]. The mechanism
sensing viscosity remains unknown, but the fact indicates that penetration of not the
entire but partial cell body to a gel-like milieu allows Leptospira to change the swimming
pattern. The experimental setup of the liquid–gel interface resembles wound skin exposed
to environments contaminated by Leptospira. A time record of the Leptospira movement in
the liquid–gel interface showed that the bacteria repeatedly attacked the interface while
reversing the swimming direction and finally invading the gel phase (Figure 3). Swimming
reversal induced in the liquid–gel interface could be interpreted as “trial-and-error” to
search for an easier route for invasion.

4.4. Interaction between PFs

Leptospira switches swimming direction within <1 s [20]. Such a quick reversal suggests
the coordination between two PFs mediated by unidentified signal transduction, but there
is no definitive evidence so far. The most general signaling for the reversal of flagellar
rotation involves the Che system: Sensing environmental stimuli via receptors induces
phosphorylation (P) of the regulator protein CheY, and the binding of CheY-P to the flagellar
motor reverses rotation. Noting that the diffusion constant (D) of CheY-P is ∼10 µm2/s [30],
the theoretical estimation using the formula t = x2/2D, where t is the time for traveling



Int. J. Mol. Sci. 2022, 23, 1859 4 of 9

the distance x with D, predicts the time gap of ∼50 ms between the reversals of two
flagellar motors in the same E. coli cell ( x ∼1 µm). In contrast, since the distance between
PFs of Leptospira is ∼20 µm, the reversal upon CheY-P binding at one PF delays ∼20 s
from the other PF, indicating that the observed rapid reversal cannot be achieved only
by the Che system. PFs of Bo. burgdorferi is so long that they overlap at the center of
the cell body [31]. A theoretical study predicted that direct interaction between PFs is
indispensable for propelling the Bo. burgdorferi smoothly [32]. In contrast, since PFs of
Leptospira are too short for contact with each other directly, the cell body might mediate the
interaction between PFs [17,33]. There remains the possibility that Leptospira switches the PF
rotation and transforms the cell end (Spiral or Hook shape) at random, and the asymmetric
swimming mode (Spiral–Hook) appears accidentally. However, the simple scenario will
not explain the viscosity dependence of the swimming reversal [16,20]. Higher-resolution
analysis focusing on the reversal timing of two PFs (cell-end gyration) may give a clue to
unveil this long-term mystery.
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Figure 2. Enhancement of swimming reversal in high viscosity: (a) Schematic explanations of
transition between swimming (S) and rotation (R) modes. For simplicity, the rotation mode indicates
only Hook–Hook morphology. Time courses of cell positions show the effect of reversal on net
displacement (black bars). (b) Accumulation of bacteria in high viscosity due to limitation of net
migration. See [16] for more details.
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Figure 3. Swimming reversal enhanced in the liquid–gel border. The schematic (right bottom)
explains a hypothetical scenario that the “trial-and-error”-like behavior allows the bacteria to find a
path for easier invasion. This figure was made based on [20] with modifications.

5. Swimming Force

There are many parameters to characterize bacterial motility. For example, swimming
speed (v) and the rotation speed of flagella (f ) have been measured in various bacterial
species. The theoretical estimation of drag coefficients for translation (γT) and rotation (γR)
allows us to calculate swimming force (F = γTv) and torque generated by the flagellar
motor (N = γR2π f ). Direct measurement of force and torque is not as easy as speed, but
some physical techniques, such as optical tweezers [34] and the electrorotation method [35],
have achieved the experiment. Since adequate power seemed to be needed for Leptospira
to invade the host body through the dermis, we measured the swimming force using
optical tweezers. A focused laser can trap a micro-object at the focusing point, thereby
manipulating the trapped object by moving the laser position. Moreover, when trapping
mobile objects such as microorganisms, the optical tweezers impose the restoring force on
the trapped object in a displacement-dependent manner. Therefore, the optical tweezers
can be used as a spring scale (Figure 4). Trapping a microbead attached to the surface of the
Leptospira cell revealed that the spirochete generates ∼17 pN by swimming [20], which is
about 30 times the swimming force of E. coli [34]. Leptospira might be a powerful swimmer.
The PFs of Leptospira are fueled by proton motive force [36], just like with the E. coli motor,
and perhaps there is not be much difference in the amount between the species. Feasible
explanations of the powerful swimming of Leptospira are as follows. First, cryo-electron
microscopy revealed that the rotor ring of the Leptospira flagellar motor is larger than that
of the E. coli motor, therefore generating higher torque [37]. Secondarily, drag coefficients
for the Leptospira cell body are greater than the E. coli one due to its very long cell body [20].
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Figure 4. Measurement of swimming speed using optical tweezers. A microbead (1 µm in diameter)
attached to a swimming bacterium is trapped by a laser. Swimming force (Fswim) is determined from
the bead displacement (∆x), drag force exerted on the bacterium (Fdrag), and trap force (Ftrap) [20].

6. Association of Crawling with Pathogenicity
6.1. Crawling on Cultured Kidney Cells

The swimming motility would be somehow associated with the pathogenicity of Lep-
tospira, but the bacterial adhesion to, and movement over tissue surfaces could be related to
manifestation more directly. Recently, we assessed the leptospiral dynamics on the cultured
kidney cells derived from various mammalian species (Figure 5a) [38]. Comparison of the
bacterial adhesion to kidney-cell sheets between pathogenic and non-pathogenic strains
showed higher adhesivity of the pathogenic strains. There was no difference in crawling
speed among the measured strains, but pathogens’ crawling showed wider spreading over
the kidney cells (Figure 5b). An in vitro infection assay using renal proximal tubule epithe-
lial cells (RPTECs) showed that the adhesion and crawling populations of the pathogenic
species L. interrogans on RPTECs increased with time (∼24 h after infection). In contrast,
those of non-pathogenic species Leptospira biflexa were smaller than L. interrogans without
changing during the experiment [39]. The adhesivity and crawling could allow Leptospira
to interact with the tissue surfaces, increasing the probability of reaching an intracellular
tight junction, a transmigration route for Leptospira, and assisting disassembly of junction
complexes (Figure 5c).
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Figure 5. Crawling of Leptospira on the cultured kidney cells [38]: (a) Epi-fluorescence image of the L.
interrogans serovar Icterohaemorrhagiae on the rat kidney cell line (NRK-52E). (b) A trajectory of a
crawling L. interrogans; time courses in the order of red, orange, yellow, green, blue, and indigo. (c) A
hypothesis of crawling-dependent pathogenicity. This figure was made using some data reported
in [38] with some modifications.

6.2. Leptospira Ligands Involved in Crawling

Anti-LPS antibody affects crawling on a glass surface, suggesting a potential role of
LPS as an adhesin in surface motility [18]. Leptospira have abundant cell-surface proteins,
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and some of them are known to bind to components included in the extracellular matrix,
such as fibronectin and laminin [11,40]. For example, Lig (leptospiral immunoglobulin-
like protein) has a binding affinity to fibronectin, laminin, and collagen [41,42]; LenA
(leptospiral endostatin-like protein A) binds to the complement negative regulator Factor
H and laminin [43–45]. Future studies will address the responsibility of these candidate
proteins for the Leptospira dynamics on the host cells.

6.3. Host Preference

The severity of leptospirosis depends on the combination of the host species and
the Leptospira serovars, but the link between the host–pathogen pairing and the outcome
is ambiguous. Though it would be the consequence of a complicated host–pathogen
interaction, such as an immunological attack and evasion [46], which might lead us to
understand the mechanism from the Leptospira dynamics on the host tissues. The adhesivity
and crawling-dependent spread investigated on kidney cells of various mammalian hosts
show a positive correlation, and the typical maintenance host rat shows a lower score
against pathogenic strains (i.e., low adhesivity and limited spread) [38]. In contrast, the
pairs have a trend causing severe symptoms (e.g., L. interrogans serovar Manilae vs. human
and Icterohaemorrhagiae vs. dogs), and show a higher score [38]. The tendency plausibly
suggests the significance of the pathogens’ motility on the host tissues for leptospirosis
(Figure 5c).

7. Conclusions

This review article summarized the current knowledge on Leptospira motility while
focusing on its association with pathogenicity. It emphasized the significance of motility as
a virulence factor; however, most proposals on motility-dependent pathogenicity remain a
matter of speculation. If future works prove the role of motility more definitively, motility
could be a novel target for medication and prevention of infection. For example, adhesive
outer-membrane components, which could be involved in crawling [38], might be new
antimicrobial targets. Recent results have highlighted the significance of motility over
solid surfaces. T. denticola also shows crawling motility using some outer-membrane
components such as the surface proteinase dentilisin, facilitating the surface spreading
of the spirochete [47]. A study of Bo. burgdorferi reported multiple forms of motility on
gelatin, which are perhaps different from crawling, and discussed their relevance to the
spirochete dissemination on the host tissue [48]. Direct interaction with host cells would be
crucial for the pathogenic process. Therefore, not limited to spirochetes, further intensive
investigation of the pathogens’ dynamics on the host cells is expected.
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