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Abstract: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are gaining ground as standard therapy
for heart failure with a class-I recommendation in the recently updated heart failure guidelines from
the European Society of Cardiology. Different gliflozins have shown impressive beneficial effects in
patients with and without diabetes mellitus type 2, especially in reducing the rates for hospitalization
for heart failure, yet little is known on their antiarrhythmic properties. Atrial and ventricular
arrhythmias were reported by clinical outcome trials with SGLT2 inhibitors as adverse events, and
SGLT2 inhibitors seemed to reduce the rate of arrhythmias compared to placebo treatment in those
trials. Mechanistical links are mainly unrevealed, since hardly any experiments investigated their
impact on arrhythmias. Prospective trials are currently ongoing, but no results have been published
so far. Arrhythmias are common in the heart failure population, therefore the understanding of
possible interactions with SGLT2 inhibitors is crucial. This review summarizes evidence from clinical
data as well as the sparse experimental data of SGLT2 inhibitors and their effects on arrhythmias.

Keywords: SGLT2 inhibitors; atrial fibrillation; arrhythmias; ventricular arrhythmias

1. Introduction

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are rapidly gaining ground in the
treatment of heart failure with reduced ejection fraction (HFrEF). With the first approval
for dapagliflozin in the European Union as an antidiabetic drug in the year 2012, multiple
clinical trials have been performed with other “gliflozins”. Their indication was already
expanded towards heart failure and they are recommended as add-on therapy to RAAS-
inhibitors and betablockers in patients with New York Heart Association (NYHA) grades
YHA II-IV (at least dyspnea at a level of exertion) in the current update of the American
Council of Cardiologists (ACC) consensus decision pathway [1]. More recently, SGLT2
inhibitors were implemented in the heart failure guidelines of the European Society of
Cardiology (ESC) for patients with HFrEF [2]. This recommendation is independent of the
presence of diabetes mellitus despite the history of this drug class as an anti-diabetic medi-
cation. Further, this reflects the ongoing reconceptualization of the molecular mechanisms
of SGLT2 inhibitors beyond their glucosuric effects [3]. This paradigm shift is due to the
impressive reduction of reported events of hospitalization for heart failure in the respective
outcome trials of empagliflozin [4], dapagliflozin [5], canagliflozin [6], sotagliflozin [7], and
ertugliflozin [8] in patients with diabetes. Newer data derived from dedicated heart failure
trials indicated unaltered benefits in patients with and without diabetes with reduced ejec-
tion fraction for dapagliflozin [9], with an ongoing trial in patients with preserved ejection
fraction [10]. The same is true for empagliflozin in patients with reduced [11] and preserved
ejection fraction [12]. Meta-analyses depict a significant reduction in mortality and an even
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greater reduction in the number of heart failure hospitalizations [13,14]. Recent trials also
suggest nephroprotective effects [15,16] that are reflected by the approval of dapagliflozin in
chronic kidney disease independent of diabetes status by the European Medicines Agency
in August 2021. The role of SGLT2 inhibitors in the setting of acute myocardial infarc-
tion [17] is currently investigated. Figure 1 gives an overview on already finished trials and
summarizes the results and ever-expanding indications for SGLT2 inhibitors.
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Figure 1. History, completed, and ongoing clinical trials of the SGLT2 inhibitors dapagliflozin (red and
dotted), empagliflozin (yellow and dashed), canagliflozin (blue and uninterrupted), and ertugliflozin
(green and dashed + dotted). The names of the drugs indicate their approvals from the European
Medicines Agency (EMA) or Food and Drug Administration (FDA). Underneath the names of the
clinical trials, the number of recruited patients is given.

Multiple reasons are discussed as targets for an interaction between SGLT2 inhibitors
and myocardium that involve beneficial metabolic effects, such as the upregulation of
ketone body, free fatty acid, and branched-chain amino acid utilization [18–20], the up-
regulation of various pathways that counteract detrimental cellular pathways induced
by myocardial damage [21–25], anti-inflammatory effects [26], modification of the cellu-
lar calcium homeostasis [27], and the modulation of sympathetic influences on the heart.
Moreover, an analysis of the available data from the clinical trials in 2016 [28] revealed
antihypertensive effects most likely via diuretic/natriuretic activity, and a weight reduction
after SGLT2 inhibitor treatment as well. This pattern is confirmed by a recent meta-analysis
comparing SGLT2 inhibitors and DPP4 inhibitors [29]. This is of importance since elevated
blood pressure is a known risk factor for the development of congestive heart failure [30].

2. Arrhythmias and Anti-Arrhythmic Drugs

A major problem of heart failure is the close association to arrhythmias [31]. Under-
lying mechanisms in the failing heart involve electrolyte disturbances that lead to early
and delayed afterdepolarizations because of calcium overload of the myocyte and a prolon-
gation of the action potential duration, electrical automaticity, unidirectional blocks, and
re-entry. An always aggravating dysfunction in the neurohumoral balance and chronic
stretch of the dilated ventricle favor the occurrence of arrhythmias [32]. A common ter-
minal event of heart failure is sudden cardiac death (SCD) due to an arrhythmogenic
event. Excitation–contraction coupling and its synchronized conduction within the heart is
essential to prevent arrhythmias.
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Many substance groups have been proven in the treatment and prevention of ven-
tricular and supraventricular arrhythmias. Their mechanism of action directly targets the
conduction system of the heart. The best ones to show a significant benefit were class-I
(sodium-channel-blockers), class-II (beta-blockers), class-III (potassium-channel-blockers),
and class-IV (calcium-channel-blockers) anti-arrhythmic drugs, and they are commonly
used in daily routines in the prevention and treatment of supraventricular and ventricular
arrhythmias as well as in heart failure, according to the ESC Guidelines.

Sodium channels are located in different types of tissues and play a central role in
the regulation of membrane potentials. They are highly expressed on cardiomyocytes and
induce the initial depolarization of action potentials. Based on this effect, sodium-channel-
blockers suppress the fast sodium inward current and stabilize the membrane potential by
preventing the formation of action potentials. Therefore, these agents are recommended
in the acute and chronic setting of atrial fibrillation [33] and ventricular tachycardia [34].
In the early 1990s, class-I antiarrhythmic drugs were administrated to patients after a
myocardial infarction during the Cardiac Arrhythmia Suppression Trials (CAST). Hopes
of avoiding SCD events by preventive use of class-I antiarrhythmic drugs were soon
crushed, as these drugs showed an excess in mortality due to shock and arrhythmias after
myocardial infarction [35,36]. Similar results were observed in patients with established
cardiac diseases and complex arrhythmias [37]. Therefore, class-I antiarrhythmic drugs are
not recommended for the treatment of arrhythmias in the presence of acute and chronic
heart failure [2], and the therapy in this setting is limited to other drugs as preventive or
therapeutic measures.

The sympathetic nervous system and its receptors play a central role in the regulations
of the heart rhythm by activating neuro-humoral mechanisms in response to stress, fear
and physical exercise. β-adrenergic receptors on the cardiomyocytes complex may activate
complex intracellular signal cascades that regulate the heart rate by directly binding to the
hyperpolarization-activated cyclic nucleotide-gated cation (HCN-pacemaker) channels on
nodal cells, resulting in a shortening of the conducting time. Furthermore, β-adrenergic
receptors augment the cardiac output by increasing the amount of intracellular Ca2+ as
well as concomitantly decreasing the myofilament Ca2+ sensitivity [38,39]. The potential
pro-arrhythmic effects of β-adrenergic action is elevated with disturbed ion concentrations
in the blood, nerve remodeling [40], hypertrophy, and fibrosis [41]. Based on these molec-
ular findings, β1-selective beta-blockers are the treatment of choice in the prevention of
supraventricular and ventricular tachycardia by suppressing sympathetically-mediated
triggers, functional re-entrant substrates, and slowing of the sinuatrial and atrioventricular
nodal rates, according to the recent guidelines. Additionally, β1-selective beta-blockers
form the baseline therapy in patients with chronic HFrEF next to angiotensine converting
enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARB), as well as SGTL2-
inhibitors and mineral receptor antagonists (MRA) due to their anti-remodeling effect.

Potassium channels are expressed like sodium channels in various tissues. Potassium
channels induce mainly a fast potassium outward current resulting in hyperpolarization
and termination of the action potential. Potassium-channel-blockers such as amiodarone
prolong the action potential via an inhibited potassium outflow. As more potassium stays
inside the cardiomyocyte for a longer period, amiodarone exerts a negative bathmothropic
effect by stabilizing the membrane potential and preventing the formation of ectopic ar-
rhythmias. This mechanism is used in the treatment of supraventricular and ventricular
arrhythmias. However, amiodarone may exert significant side effects through its accumu-
lation in different organ systems such as the lung, eyes, liver, skin, and nervous system.
Furthermore, the drug consists of iodine that may interact with the thyroid gland. Therefore,
the recommendation for an amiodarone therapy is limited to situations where other antiar-
rhythmic drugs are contraindicated. However, routine use of amiodarone in patients with
congestive heart failure and ventricular arrhythmias did not result in a significant reduction
of mortality [42–44], and is inferior compared to an implanted cardioverter-defibrillator
only strategy [45].
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Non-dihydropyridine calcium channel blockers exert their effect by directly targeting
the L-type calcium channel. A lower calcium influx leads to a negative chronotropic, a
negative inotropic, and a negative dromotropic effect. These drugs are also recommended
for the treatment of supraventricular tachycardia on a similar level as beta-blockers. How-
ever, due to early alarming data of increased mortality in the setting of HFrEF [46,47],
neutral effects compared to placebo [48,49], and no available data on significant reduction
of mortality in HFrEF, these drugs play a pivotal role in the combined management of
arrhythmia and heart failure.

All mentioned antiarrhythmic drugs are under investigation and have been in clinical
use for decades, while SGLT2 inhibitors are a relatively new player in this field. To under-
stand potential antiarrhythmic effects of SGLT2 inhibitors, one must look beyond a direct
interaction with the electrical conduction system of the heart. However, antiarrhythmic
properties have not been prospectively investigated for SGLT2 inhibitors so far. In general,
little is known on antiarrhythmic properties of SGLT2 inhibitors.

3. Heart Failure and Diabetes: Ventricular Arrhythmias

Contractility of the heart is a very energy demanding process, and the heart is therefore
enabled to use various energetic substrates as a so-called “metabolic omnivore”. However,
throughout the development and in various pathologies, preferences of substrate utilization
are changed or regulated [50]. Healthy adult hearts use fatty acids and carbohydrates as
their predominant fuel, but cardiac disease such as hypertrophy and heart failure often
lead to a more prominent use of glycolytic energy production [51]. In the presence of
diabetes on the other hand, the myocardium relies more on the metabolism of fatty acids,
which is not as efficient as a mixed metabolism consistent with the utilization of both fatty
acids and glucose. Following the increased consumption of fatty acids, their metabolites
such as diacylglycerol tend to accumulate in the myocardium [52]. This leads to increased
interstitial and perivascular fibrosis, a histological finding that defined the term “diabetic
cardiomyopathy” in the early 1970s [53]. Therefore, it is not surprising that the incidence
rates for heart failure are about twice as high in patients with than without diabetes [54].
On the other hand, the prevalence of diabetes is high in heart failure as well [55]. As
shown in Figure 2, heart failure and diabetes mellitus interact bi-directionally mainly via
inflammatory signaling [56,57] and insulin resistance [58,59], and both diseases are risk
factors for arrhythmias on the ventricular and on the atrial level. A disturbed metabolic
pattern alone is discussed to promote arrhythmias and SCD [60,61] and may be a point
of action for SGLT2 inhibitors, that demonstrated to stabilize an impaired state of energy
consumption of the heart [18]. In addition to some data in animal (mainly rodent) models,
very little data are generated from human tissue due to the limited availability. Therefore,
using human-induced pluripotent stem cells was an innovative approach [62]. High
glucose treatment induces a cellular hypertrophy, reduced contractility, and changes of
the expression levels of the ryanodine receptor and the sodium-calcium exchanger (NCX).
Empagliflozin ameliorates high glucose-induced cardiac dysfunction on all mentioned
levels. This intriguing data, however, must be interpreted with caution as the authors
also describe a robust expression of SGLT2 in their cells which is markedly upregulated in
their disease model. However, expression of SGLT2 has neither been detected in human
atrial [63] nor ventricular [64] myocardium.

Diabetes is an independent risk factor for SCD as well [65]. Data of the large ARIC
Study with a follow-up period of 12 years revealed a 2.6-fold increase in patients with
manifest diabetes [66]. Heart failure and diabetes interact bi-directionally mainly via
inflammation and insulin resistance [67]. SGLT2 inhibitors combine beneficial effects in the
conditions of heart failure with robust antidiabetic properties. Therefore, antiarrhythmic
effects can be suspected and have already been demonstrated in animal models. In a rat
model, empagliflozin treatment significantly ameliorates sotalol-induced prolongation of
the QTc interval [68]. In an ex vivo model of global ischemia-reperfusion, empagliflozin
reduced ventricular arrhythmia vulnerability in rabbit hearts via SGLT2-independent
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mechanisms [69]. In line with these findings, an in vivo experimental series in male
Sprague Dawley rats showed that empagliflozin pretreatment could completely avoid the
occurrence of lethal ventricular arrhythmias after ligation of the left main coronary artery
for five minutes followed by a reperfusion of 20 min. In the control group, 69% of all
rats died due to ventricular tachycardia. An inhibitor of the ERK1/2 pathway abolished
the effect of empagliflozin, making this the pathway a potential downstream target [70].
A reduced burden of ventricular arrhythmias following ischemia-reperfusion could also be
observed in rats treated with dapagliflozin [24]. Dapagliflozin was also demonstrated to
suppress prolonged ventricular repolarization in rats with metabolic syndrome induced
by a high carbohydrate diet [71]. Of note, these animals were all non-diabetic. At least
empagliflozin seems to target the epicardial fat tissue as well. Adipocytes located in the
epicardial region are able to secrete adipokines that exert effects on the expression levels of
ion channels in cardiomyocytes. In mice with metabolic syndrome, adipokines induced a
decrease in the expression level of potassium channels and an increase in the expression
levels of calcium channels. Empagliflozin pretreatment could attenuate this effect in mice
with metabolic syndrome, potentially reducing the risk of arrhythmias due to a disturbed
ion homeostasis [72]. For the other SGLT2 inhibitors canagliflozin and ertugliflozin, as well
as for the combined SGLT1/SGLT2 inhibitor sotagliflozin, no data regarding antiarrhythmic
effects have been published so far.
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4. SGLT2 Inhibitors and Ventricular Arrhythmias: Evidence from Clinical Trials

A recent meta-analysis that analyzed all published clinical trials with SGLT2 inhibitors
until December 2020, including 68 trials with a total number of 63,166 patients of which
35,883 (56.8%) received an SGLT2 inhibitor, found a reduced rate of SCD events in their
intervention groups [73] with a relative risk reduction of 28%. Attention must be paid
to the fact that the term “SCD” consists of “sudden cardiac death”, “sudden death”, and
“cardiac arrest”. Results were only significant for the “sudden cardiac death” component.
There was no significant difference in the occurrence of ventricular arrhythmias between
the SGLT2 and the placebo group. As a limitation, not all trials reported these events and
the overall incidence rate was very low, with only 220 events of ventricular arrhythmias in
49,963 patients (=0.4%) and 187 events of “sudden cardiac death” in 45,483 patients (=0.4%).
Nevertheless, for other established heart failure drugs a reduced burden of ventricular
arrhythmias could be demonstrated. A recent study analyzed 151 patients with HFrEF
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and implanted cardioverter defibrillators (ICD) who were switched from ACE inhibitors
or ARB to valsartan/sacubitril. Within one year of observation the burden of ventricular
arrhythmias expressed by ICD interventions dropped significantly [74]. This effect for
sacubitril/valsartan could also be extrapolated from the original PARADIGM-HF trial [75].
Another established heart failure therapy that reduces ventricular arrhythmias are beta-
blockers [76]. The same is true for MRA, however, ACEi and ARB alone failed to reduce the
incidence of ventricular arrhythmias and SCD [77]. The EMBODY trial prospectively en-
rolled patients with diabetes after acute myocardial infarction and empagliflozin-treatment
improved parameters, reflecting sympathetic and parasympathetic nerve activities that
were measured mainly via Holter ECG monitoring [78]. Another trial investigated acute
effects of dapagliflozin in 19 patients with type 2 diabetes within a period of two weeks.
Here, a reduced ventricular ectopic burden suggests an early antiarrhythmic benefit in-
duced by dapagliflozin [79]. A post hoc analysis from the recently published dapagliflozin
in patients with HFrEF (DAPA-HF) trial provides the first strong evidence for a clinical
benefit in the setting of HFrEF. Of the participating 4744 patients, 335 patients (=6.6%)
experienced the composite of a serious ventricular arrhythmia, resuscitated cardiac arrest,
or sudden death. There were significantly lower events in the dapagliflozin than in the
placebo group (5.9% versus 7.4%) with a relative risk reduction of 21%. As a limitation, the
authors report a potential under-reporting of events, since ventricular arrhythmias have
not been a prespecified trial outcome [80]. Still, until today no larger clinical trial explored
the antiarrhythmic properties of SGLT2 inhibitors in a prospective manner. However, this
research question will be clarified within the next years since patients with heart failure are
often treated with an ICD or cardiac resynchronization therapy (CRT). An ICD can monitor
and treat episodes of ventricular tachyarrhythmia while a CRT can only monitor these
episodes. Therefore, the EMPA-ICD trial was launched in April 2019 and will investigate
the impact of empagliflozin on the burden of ventricular arrhythmias in patients with
diabetes and an implanted ICD or cardiac resynchronization therapy (CRT) device [81]
(trial number: jRCTs031180120—Japan). Another trial that has been initiated in June 2021
is the ERASE-trial (trial number: NCT04600921), a multi-center phase III study located in
Austria that investigates the effect of ertugliflozin on the burden of ventricular arrhythmias
in heart failure patients treated with an ICD or CRT irrespective of the diabetes status.

5. Heart Failure and Diabetes: Atrial Fibrillation

Similar to the interaction between heart failure and diabetes, both diseases predis-
pose to AF development through both electrical as well as structural remodeling of the
atria [82,83]. Indeed, atrial fibrillation is common in heart failure patients and predicts
worsened outcomes independent of NYHA class or left ventricular ejection fraction [84],
and the risk for new onset atrial fibrillation is increased by approximately 40% in patients
with diabetes mellitus [85]. As atrial fibrillation is a major risk factor for ischemic stroke and
responsible for approximately 20–30% of all ischemic strokes [33], the calculated 2.27-fold
increased risk for cerebral thromboembolism in patients with diabetes indicates a significant
clinical problem [86].

Data derived from animal models demonstrate an interaction between SGLT2 in-
hibitors and atrial myocardium. Mice with induced diabetes were treated with em-
pagliflozin or placebo, and empagliflozin successfully ameliorated atrial structural and
electrical remodeling, expressed by reduced left atrial diameter, reduced interstitial fibrosis,
and reduced incidence of atrial fibrillation. Broad analysis of potentially involved proteins
depicted a PGC-1a/NRF-1/Tfam pathway causing these beneficial effects [87]. Similar
results were observed in rats with induced metabolic syndrome that were treated with the
combined SGLT1/SGLT2 inhibitor sotagliflozin. Treatment with sotagliflozin counteracted
left atrial enlargement in vivo and reduced spontaneous calcium release events in vitro [88];
the latter events are typically observed in conditions of atrial fibrillation [89]. Dapagliflozin
treatment has been demonstrated to reduce epicardial fat volume in human patients with
diabetes mellitus [90], and according to an analysis from the Framingham Heart Study,
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epicardial fat volume is directly associated with prevalent atrial fibrillation [91], potentially
via adipokines. Distinct clinical data analyzing P-wave indices as a surrogate for conduc-
tion velocity within the atria were recently provided in a small trial using dapagliflozin
in patients with diabetes [92]. Treatment for 6 months resulted in significantly decreased
P-wave dispersion, P-wave variation changes, and epicardial fat volume compared to the
control group. As higher values of these P-wave indices are considered to be risk factors for
atrial fibrillation, this might highlight a potential mechanistical link. Another point of action
currently discussed for SGLT2 inhibitors is their impact on mitochondrial dysfunction in
atrial remodeling independent of the presence of diabetes. Mitochondria-protective effects
of SGLT2 inhibitors could thus provide benefits in patients with and without diabetes to a
similar extent [93].

6. SGLT2 Inhibitors and Atrial Arrhythmias: Evidence from Clinical Trials

A recent analysis of the large FDA adverse event reporting system including >700,000 ad-
verse events revealed a lower incidence of atrial fibrillation in diabetic patients treated with
SGLT2 inhibitors if compared to other glucose-lowering drugs. This highly significant finding
was also consistent after excluding reports on used antiarrhythmic drugs, renal disease and/or
other cardiovascular disease, indicating a robust antiarrhythmic effect [94]. Another meta-
analysis including all clinical trials that investigated SGLT2 inhibitors until December 2020
also reports a significant reduction of the incidence of atrial arrhythmias with an overall preva-
lence of approximately 1% of the study population [73]. A pooled analysis of 31 randomized
clinical trials including more than 75,000 patients found that SGLT2 inhibitor use is associated
with a lower incidence and recurrence of atrial fibrillation as well as with a reduced rate of
cardiovascular outcomes [95]. Conversely, these findings could not be retraced in another
meta-analysis dealing with a similar yet older database based on reported trial data until
October 2019 [96]. A post hoc analysis from the DECLARE-TIMI 58 investigated the incidence
of the first episode as well as the total number of reported episodes of atrial arrhythmias
in 17,160 patients with type 2 diabetes treated with dapagliflozin or placebo. Dapagliflozin
decreased the incidence of atrial arrhythmias with a relative risk reduction of 19%. These
effects were independent of a prior known atrial arrhythmia. However, the absolute number
of 589 events (= 3.4% in relation to the total study population) over an observation period of
4 years seems pretty low, and the authors acknowledge this limitation [97]. Another trial based
on a Taiwanese multi-center healthcare provider reports a lower incidence rate of atrial fibril-
lation after SGLT2 inhibitor treatment compared to dipeptidyl peptidase 4 (DPP4) inhibitor
treatment in more than 25,000 patients. Although these are real-world data, the study design
was retrospective and must be interpreted with caution [98]. A major limitation of nearly
all clinical trials dealing with antidiabetic medications is the fact that they do not routinely
report atrial arrhythmias in their primary analysis. Even regular ECG follow up is usually
not routinely performed in trials focusing on antidiabetic drugs. This might have led to a
haziness in the reported numbers, as many episodes as well as the potential therapeutic effect
of these drugs might have been missed [99]. Within a selected population with diabetes and
cardiovascular risk factors or established cardiovascular diseases, one would expect a higher
prevalence of atrial fibrillation, since the prevalence of atrial fibrillation is approximately 2.3%
in people older than 40 years [100] and the population in the reported clinical trials is far older.
Definite conclusions cannot be drawn from available clinical data, and it remains unclear
if a potential beneficial SGLT2 inhibitor effect on atrial fibrillation might only be due to the
heart failure therapy or if it was the result of direct interaction with the myocardium [101].
Lower rates of atrial fibrillation might be attributed to reduced blood pressure or body weight,
as observed in patients with and without diabetes. Interestingly, none of the large SGLT2
inhibitor trials has demonstrated a reduction in the rate of stroke, which appears to be in
conflict with the reduction in atrial fibrillation hypothesis. An explanation might be the rather
short observation periods in these trials, that do not suffice to observe a potential reduction
in atrial fibrillation, which subsequently could translate into reduced stroke rates. Similar to
ventricular arrhythmias, no clinical trial has prospectively investigated the impact of SGLT2 in-
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hibitors on atrial fibrillation. At the very least, the ongoing ERASE trial will provide evidence
for ertugliflozin and its influence on the burden of atrial arrhythmias in people with heart
failure treated with an ICD or CRT. Trials for empagliflozin (EMPA-AF; NCT04583813) and
dapagliflozin (DAPA-AF; NCT04792190) will provide data in the setting of atrial fibrillation
within the next years.

7. Molecular Research of SGLT2 Inhibitors Connected to Arrhythmias

Despite promising data of SGLT2 inhibitors as heart failure drugs with possible an-
tiarrhythmic properties, molecular mechanisms have not been identified yet. A classic cell
receptor-based signaling cascade within myocytes seems unlikely because results derived
from in vivo and in vitro experiments are too varying, even if the effects could be triggered
via other receptors than SGLT2. Given that SGLT2 inhibitors are all small molecules with
molecular masses of lower than 500 g/mol, these substances could easily be taken up and
metabolized or modified by cardiomyocytes and exert effects inside the cell. Interestingly,
no consistent effects could be identified, not even for a single substance. Therefore, big
data analysis using deep learning artificial intelligence seems to be a reasonable approach
to reveal the most likely targets. An algorithm that analyzed publicly available databases
showed that empagliflozin could reverse 59% of all known protein alterations in heart
failure with preserved ejection fraction (HFpEF) with a predominance of the effect via the
sodium hydrogen antiporter 1 (NHE1) receptor and the impact on oxidative stress mod-
ulation, myocardial stiffness, myocardial extracellular matrix remodeling, and systemic
inflammation [102]. None such analysis has been performed for another SGLT2 inhibitor
so far. However, the complexity of these effects, especially in the presence of myocardial
damage, has recently been summarized by the authors and involves upregulations of the
JAK/STAT3 [21,22], the ERK 1/2 [70], the cGCH1-BH4/NO [23], the B-cell lymphoma
2 gene [24], and the AMPK [18,25,26] pathways. A modification of adipokines from epi-
cardial fat may play a role as well [72]. Although these mechanisms of action for SGLT2
inhibitors were observed after more or less acute myocardial damage, an improvement
of the myocardial function will likely prevent the development of ventricular arrhyth-
mias [103] in the long term. On the atrial level, the current evidence available involves the
PGC-1a/NRF-1/Tfam pathway [87] and modifications of the sodium-calcium exchanger
(NCX) protein [88] after SGLT2 inhibitor treatment. With respect to all identified and
concealed downstream pathways, a multifactorial mechanism of action seems currently
the most obvious explanation for the overall beneficial outcomes of clinical trials and a
diversity of upregulated proteins after SGLT2 inhibitor treatment.

8. Conclusions

SGLT2 inhibitors are fully implemented as heart failure drugs due to their impressive
outcomes in clinical trials. Their strong and consistent effect on heart failure hospitalization
indicates improved cardiac function and is likely leading to lower numbers of ventricular
arrhythmias. On the atrial level, post hoc analysis of large clinical trials revealed relevantly
reduced incidence rates of atrial fibrillation. On the ventricular level, at least one post hoc
analysis demonstrated a significant reduction of ventricular arrhythmias. We can expect the
first evidence from ongoing clinical trials within the next years. Data derived from animal
and cellular models support the hypothesis that SGLT2 inhibitors exert anti-arrhythmogenic
effects. However, similar to the overwhelming beneficial effects with respect to heart failure,
no consistent pathway or mechanism has been identified for the antiarrhythmic properties.
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