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Abstract: Developing effective treatments for neurodegenerative diseases such as amyotrophic lateral
sclerosis (ALS) requires understanding of the underlying pathomechanisms that contribute to the
motor neuron loss that defines the disease. As it causes the largest fraction of familial ALS cases,
considerable effort has focused on hexanucleotide repeat expansions in the C9ORF72 gene, which
encode toxic repeat RNA and dipeptide repeat (DPR) proteins. Both the repeat RNA and DPRs
interact with and perturb multiple elements of the nuclear transport machinery, including shuttling
nuclear transport receptors, the Ran GTPase and the nucleoporin proteins (nups) that build the
nuclear pore complex (NPC). Here, we consider recent work that describes changes to the molecular
composition of the NPC in C9ORF72 model and patient neurons in the context of quality control
mechanisms that function at the nuclear envelope (NE). For example, changes to NPC structure
may be caused by the dysregulation of a conserved NE surveillance pathway mediated by the
endosomal sorting complexes required for the transport protein, CHMP7. Thus, these studies are
introducing NE and NPC quality control pathways as key elements in a pathological cascade that
leads to C9ORF72 ALS, opening entirely new experimental avenues and possibilities for targeted
therapeutic intervention.

Keywords: C9ORF72 ALS; NPC injury; CHMP7; ESCRT; nuclear transport; POM121; nuclear quality
control

1. Introduction to Amyotrophic Lateral Sclerosis: Background of Genotypic and
Pathological Features

Neurodegenerative diseases constitute a spectrum of pathologies that includes amy-
otrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson’s disease,
Alzheimer’s disease and Huntington’s disease, which affect millions of people world-
wide [1]. The most common motor neuron disease is ALS, also known as Lou Gherig’s
disease in honor of the famous New York Yankees baseball player who succumbed to it.
ALS is characterized by a loss of motor neurons in the brain and spinal cord, which leads
to progressive muscle weakness and atrophy, dysarthria, dysphagia and spasticity [2]. Al-
though there are only two FDA-approved drugs that can slow the progression of symptoms,
like all neurodegenerative diseases, there is no cure [3]. Thus, there remains a critical need
to understand the underlying pathomechanisms at the molecular level in order to inform
new therapeutic strategies.

Efforts to define such mechanisms benefit from genetic studies that, beginning with
SOD1 28 years ago, have identified several causative genetic variants in a multitude of
genes, including C9ORF72, TARDBP, FUS, ANG, MATR3, OPTN, TBK1, NEK1, C21ORF2,
CHCHD10, DCTN1, TUBA4A, PFN1, SQSTM1, VCP and UBQLN2 [4,5]. These genes were
identified because of their autosomal dominant pattern of inheritance within families.
These “familial” ALS (fALS), however, only constitute ~10% of total ALS cases; the vast
majority of ALS cases are sporadic (sALS), even if they sometimes share a known genetic
association with fALS [6]. For example, the most common genetic cause of ALS, responsible
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for 40% of fALS and 8% sALS, is a G4C2 hexanucleotide repeat expansion (HRE) in the first
intron of the C9ORF72 gene (hereafter referred to as C9-ALS) [7]. This repeat expansion
is also common in FTD, the second leading cause of dementia after Alzheimer’s disease,
which shares clinical and pathological features with ALS [8]. Thus, because of its central
importance to ALS/FTD, there has been considerable interest in defining the underlying
mechanisms regarding how the expression of the HREs impact cellular physiology [9].

It is now known that G4C2 repeats are bidirectionally transcribed to form sense and
anti-sense repeat RNA that can then undergo repeat-associated non-ATG translation (RANT)
into five dipeptide repeat (DPR) proteins, namely poly(GA), poly(GP), poly(GR), poly(PA)
and poly(PR). Both repeat RNAs and DPRs are thought to drive neurotoxicity [10,11]. In
fact, the expression of repeat RNAs and DPRs can inhibit cell growth in model organisms
such as flies and yeast, hinting that they may impact shared molecular processes between
all cells. Indeed, a confluence of evidence over the past few years has strongly implicated
nuclear transport machinery as a key target of both repeat RNAs and DPRs (reviewed
extensively in [12–16]). Most recently, even the nuclear pore complex (NPC) itself appears
to be susceptible to damage caused by expression of HRE repeat RNA [7]. These and
other data are raising questions as to the underlying mechanisms that could lead to the
removal and degradation of NPC components (nucleoporins or nups) and whether nuclear
envelope (NE)-specific quality control mechanisms may be at play. Here, we examine the
latest research implicating ALS-specific pathomechanisms that intersect with the nuclear
transport machinery in the context of emerging quality control mechanisms that function
at the NE. These pathways could provide a roadmap forward to identifying the underlying
causes of these diseases.

2. Nuclear Transport and NE Quality Control in ALS
2.1. The Soluble Nuclear Transport Machinery Is Impacted in ALS

NPCs are 100 MD protein assemblies that form selective transport channels that span
the double membraned NE; there are hundreds to thousands of NPCs that gate the nucleus
in a typical mammalian cell, including neurons [17–19]. Each NPC is built from ~30 nups
that are assembled into subcomplexes that form modular units repeated in 8-fold, radi-
ally symmetric, concentric ring assemblies to construct a stable core scaffold architecture
(Figure 1). The cytoplasmic ring and nucleoplasmic ring are largely compositionally similar,
with notable differences that allow for the anchorage of cytoplasmic filaments/an mRNA
export platform on the cytoplasmic side of the NPC and a nuclear basket structure that
extends into the nucleus [20]. The scaffold also provides anchor points for intrinsically
disordered proteins, rich in FG amino acid residues found in repetitive motifs (the FG-nups)
that fill the central transport channel. There are thousands of FG-repeats in the central chan-
nel that are principally responsible for nucleocytoplasmic compartmentalization through
two core mechanisms: they establish a diffusion barrier that impedes the passage of macro-
molecules, while also providing binding sites for shuttling nuclear transport receptors
(NTR; also known as karyopherins/importins/exportins) that carry signal-bearing cargo
through the NPC. Directionality and energy for multiple rounds of transport are provided
by the Ran GTPase, which itself is predominantly localized to the nucleus at steady state,
bound to GTP [21,22].



Int. J. Mol. Sci. 2022, 23, 1329 3 of 12Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 12 
 

 

 

Figure 1. Schematic of NPC embedded in the nuclear envelope. Major architectural assemblies and 

relative position of individual nups are indicated. Nups, in red, are depleted in C9-ALS. ONM is 

outer nuclear membrane; INM is inner nuclear membrane. 

There is now an abundance of evidence demonstrating that essentially all elements 

of nuclear transport machinery, including NTRs, nups and Ran, are mislocalized in either 

nucleoplasmic or cytosolic aggregates in ALS [12,14,15,23,24]. The biogenesis of these ag-

gregates is not always understood. Some, for example, are stress granules, which can be 

formed by the DPRs themselves [25,26]. Others might reflect a protective response as the 

direct binding of NTRs to the DPRs can suppress their pathological interactions with 

RNA-binding proteins such as TDP-43. Such a mechanism might also be related to the 

ability of NTRs to promote the disaggregation of pathological FUS and TDP-43 aggregates 

[27]. This latter role speaks to a fundamental role of NTRs that can act as chaperones that 

shield binding interfaces that contribute to both productive and pathological phase sepa-

ration [28]. Indeed, the relationship between the phase-separation behavior of pathologi-

cal RNA binding proteins such as FUS and TDP-43 (which also bind to and impact the 

phase separation properties of nups as well [29]) and NTRs is just beginning to be unrav-

eled [28]. 

2.2. NPC Injury in C9-ALS 

Although the presence of nuclear and cytosolic aggregates containing nuclear 

transport components has been well documented, whether the NPCs themselves were al-

tered in C9-ALS is just coming into focus. In fact, such an idea may not have been priori-

tized as it is well established that the scaffold of the NPC is extremely long- lived in neu-

rons, suggesting that, once assembled, it is difficult to dislodge a nup from the NPC 

[18,30,31]. Recent work is challenging this idea. Using an induced pluripotent stem-cell-

derived neuron (iPSN) model of C9-ALS, Coyne et al. (2020) purified nuclei and examined 

the localization of 23 nups using immunofluorescence structured illumination micros-

copy, which can, in principle, resolve individual NPCs [32,33]. Remarkably, 8 of the 23 

nups were found at lower levels in nuclear and NE pools (Figure 1). These nup losses were 

caused by the expression of the HRE RNA, as they were not observed in C9ORF72 null 

iPSNs, nor in the context of DPRs. Moreover, both sense (SOs) and antisense oligos (ASOs) 

that target the RNAs prevented the nup loss [7]. Curiously, these nup depletions spanned 

Figure 1. Schematic of NPC embedded in the nuclear envelope. Major architectural assemblies and
relative position of individual nups are indicated. Nups, in red, are depleted in C9-ALS. ONM is
outer nuclear membrane; INM is inner nuclear membrane.

There is now an abundance of evidence demonstrating that essentially all elements
of nuclear transport machinery, including NTRs, nups and Ran, are mislocalized in either
nucleoplasmic or cytosolic aggregates in ALS [12,14,15,23,24]. The biogenesis of these
aggregates is not always understood. Some, for example, are stress granules, which can be
formed by the DPRs themselves [25,26]. Others might reflect a protective response as the
direct binding of NTRs to the DPRs can suppress their pathological interactions with RNA-
binding proteins such as TDP-43. Such a mechanism might also be related to the ability
of NTRs to promote the disaggregation of pathological FUS and TDP-43 aggregates [27].
This latter role speaks to a fundamental role of NTRs that can act as chaperones that shield
binding interfaces that contribute to both productive and pathological phase separation [28].
Indeed, the relationship between the phase-separation behavior of pathological RNA
binding proteins such as FUS and TDP-43 (which also bind to and impact the phase
separation properties of nups as well [29]) and NTRs is just beginning to be unraveled [28].

2.2. NPC Injury in C9-ALS

Although the presence of nuclear and cytosolic aggregates containing nuclear transport
components has been well documented, whether the NPCs themselves were altered in
C9-ALS is just coming into focus. In fact, such an idea may not have been prioritized
as it is well established that the scaffold of the NPC is extremely long- lived in neurons,
suggesting that, once assembled, it is difficult to dislodge a nup from the NPC [18,30,31].
Recent work is challenging this idea. Using an induced pluripotent stem-cell-derived
neuron (iPSN) model of C9-ALS, Coyne et al. (2020) purified nuclei and examined the
localization of 23 nups using immunofluorescence structured illumination microscopy,
which can, in principle, resolve individual NPCs [32,33]. Remarkably, 8 of the 23 nups
were found at lower levels in nuclear and NE pools (Figure 1). These nup losses were
caused by the expression of the HRE RNA, as they were not observed in C9ORF72 null
iPSNs, nor in the context of DPRs. Moreover, both sense (SOs) and antisense oligos (ASOs)
that target the RNAs prevented the nup loss [7]. Curiously, these nup depletions spanned
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all major architectural units of the NPC, including the nuclear basket (NUP50 and TPR),
the central transport channel (NUP98), the cytoplasmic/nucleoplasmic rings (NUP107
and NUP133) and all three of the pore membrane proteins (GP210/NUP210, NDC1 and
POM121) (Figure 1).

Consistent with the relevance of these reductions in nup levels to the disease, similar
phenotypes were observed in postmortem C9ORF72 patient motor cortex and spinal cord
tissue samples [7]. Perhaps most remarkably, the reduction in nups was not restricted
to the familial C9-ALS, but also extended to iPSNs derived from patients with sALS as
well [34]. The latter is strongly suggestive that the reduction in specific nups from the
NPC may be a foundational pathognomonic feature of ALS more generally. This selective
loss of nups was accompanied by a mislocalization of the Ran GTPase, which resulted in
dysfunctional active transport of reporter proteins—a common theme in several ALS/FTD
studies [13–16,23,24,35]. This led to a decreased stress-induced neuronal cell viability, along
with the aberrant, cytoplasmic accumulation of TDP-43; the latter phenotype being an
established pathogenic marker in ALS/FTD. Thus, there is a cascade of events that lead
to NPC injury and downstream consequences in the context of C9ORF72 HRE expression
(Figure 2).
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Figure 2. Model of the NPC injury cascade observed in C9-ALS IPSNs with key unknown questions
(Q). NPC injury is thought to proceed in a stepwise process (left to right) beginning with an insult
that leads to CHMP7 nuclear import or inhibition of its nuclear export by XPO1 (Q1). This aberrant
accumulation of CHMP7 leads to the loss of the linchpin POM121 through a mechanism that remains
ill defined (Q2), which in turn results in the loss of additional nups (Q3). The overall nup loss burden
(depicted as graying of the NPC) is suggested to impact nuclear transport and disrupt Ran and
TDP-43 localization.
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2.3. How Are Nups Selectively Removed from the NPC?

To answer this question, it is worth considering that the observed loss of nups across
multiple subcomplexes is unusual as it runs counter to what is typical, at least for the
experimental depletion of nups. In these cases, it is most common for a nup to be co-
depleted with its binding partners. Indeed, a drug-inducible, degron-mediated depletion
strategy of specific nups revealed that, not only can they be removed from NPCs, but the
degradation of a single component of a given subcomplex resulted in the co-depletion of
its binding partners. This led to the degradation of whole ring complexes while leaving
the other ring complexes intact [36–38]. That the observed reduction in a subset of nups
does not result in the co-depletion of their subcomplex partners in the C9-ALS scenario
is interesting, and one can consider several possibilities to explain this result. The most
obvious is that the experimental, degron-mediated degradation of nups is not an effective
proxy for C9-ALS-mediated nup loss and unique, yet to be discovered mechanisms are
involved. For example, it is possible that the removal of just a few copies of a given nup
from the NPC does not lead to a chain reaction that triggers the complete disassembly of
an entire ring assembly. Such an idea is in line with scanning-EM data of C9-ALS NPCs [7],
which suggest no gross morphological changes to the NPC structure (with the caveat
that this approach does not have sufficient resolution to observe subtle changes in NPC
structure). A better understanding of morphological and structural alterations of the NPC
would certainly benefit from future studies involving in situ cryo-focused-ion-beam milling
and electron tomography of ALS nuclei.

An alternative possibility to explain the unique pattern of nup depletion in C9-ALS
neurons is that there are, in fact, physical connections between these eight nups (Figure 1)
that are yet to be defined. Such an idea is supported by genetic evidence where the re-
introduction of overexpressed POM121, and only POM121, is sufficient to restore all eight
nups into the NPC in the C9-ALS iPSNs [7]. These data clearly implicate POM121 as a
linchpin and might predict physical interactions between POM121 and the eight nups that
span multiple subcomplexes (Figure 2, Q3). Consistent with this, POM121 has been shown
to physically interact mutually exclusively with nups in both the outer-ring (NUP107–160)
and inner-ring (NUP93–205) subcomplexes [39,40]. However, a comprehensive understand-
ing of the POM121 interactome is still needed as, being a membrane protein, it is refractory
to biochemical purification and reconstitution experiments that have been possible for
most other nups. Such an effort is essential, however, to fully understand why the loss
of POM121 is part of the C9-ALS pathomechanism. These efforts must also focus on the
human protein, as nup losses are not recapitulated in mouse models where the POM121 is
considerably diverged at the DNA sequence level [7].

Regardless of the nups that interact with POM121, there remains a critical miss-
ing molecular link between the repeat RNAs and the triggering of the nup loss cascade
(Figure 2, Q1). Further, the ultimate mechanism of POM121 degradation remains un-
known (Figure 2, Q2). We consider the latter problem first, which informs the former.
The clearance of a membrane protein such as POM121 almost certainly utilizes either an
ER-associated degradation (ERAD) or autophagy mechanism [41–43]. However, in general,
neurodegenerative diseases are most often associated with defects in these proteostasis
pathways, which leads to the stabilization (not the degradation) of proteins [24,44,45].
In fact, many of the genetic mutations associated with ALS include mutations in genes
involved in autophagy (C9ORF72, FIG4, OPTN and TBK1), or proteasomal degradation
(UBQLN2), or both (SQSTM and VCP) [4,5], and the upregulation of autophagy using the
mTOR inhibitor rapamycin is being used as a therapeutic intervention for ALS [46]. As
the C9-ALS-mediated nup loss appears to be an aberrant degradation event, this suggests
a unique mechanism that might better reflect the dysregulation, or gain of function, of a
proteostasis pathway. For further insight into what these pathways might be, we turn to
work in non-neuronal model systems, which is revealing that there may be NE-specific
factors that contribute to the ERAD and autophagy of NE components such as NPCs and
integral inner nuclear membrane (INM) proteins.
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2.4. NE-Specific Quality Control Mechanisms

In the case of INM-associated degradation (INMAD), there are dedicated E3 ubiquitin
ligases that have been discovered in budding yeast that are specific for ubiquitylating
integral INM proteins [47–50]. Whether these ligases are conserved in humans remains
to be determined, although there is evidence suggesting that some integral INM pro-
teins are targeted by ERAD mechanisms that release unfolded membrane proteins into
the nucleus in human cells, suggesting that INM-specific ERAD machineries are about
to be discovered [51]. Further, there are proteasomes attached to the INM in algae [52],
yeast [53–56] and mammalian cells [57]. Yeast systems have also been instrumental in iden-
tifying nuclear autophagy pathways that require outer nuclear membrane cargo adaptors
that remodel the nuclear membranes and capture INM proteins [58,59] within intralumenal
vesicles [58]. The latter mechanism provides a satisfying solution for how INM can be
captured by cytosolic autophagy machinery without a loss of nuclear integrity. Likewise,
mechanisms of NPC-phagy have been uncovered that also require elaborate membrane
remodeling to remove entire NPCs [60–62]. Again, whether such mechanisms have any
role in the context of ALS remains ill defined, but compelling data implicate that whole
NPC removal mechanisms, albeit outside of core autophagy factors, are likely to function
in mammalian cells as well [63].

2.5. CHMP7 as a Key Player in NPC Injury in ALS

If there is a common molecular thread between NPC removal mechanisms in yeast and
in human cells, it is the involvement of endosomal sorting complexes required for transport
(ESCRT). ESCRT proteins, in particular a class of ESCRT proteins called ESCRT-III, form
spiraling polymers that remodel many organelle membranes away from the cytosol (or
nucleoplasm) and drive membrane scission [64]. The ESCRT pathway has been implicated
in the removal and sealing-off of defective NPCs in budding yeast [60,65–67] and in the
turnover of NPCs in mammalian systems as well [63]. It was these connections that
prompted an investigation into whether ESCRT proteins, specifically an NE-specific ESCRT
called CHMP7, might play a role in nup degradation in C9-ALS [34]. Such an investigation
was further bolstered by evidence that several mutations in a core ESCRT-III component
gene, CHMP2B, have been discovered in ALS/FTD patient tissue samples [68–73]. Further,
transcriptomic profiling of motor neurons in mice models of spinal and bulbar muscular
atrophy (SBMA—another degenerative motor neuron disease) identified that the CHMP7
transcript was downregulated, potentially implicating CHMP7 function in the disease
pathogenesis [74].

CHMP7 is a principal component of an NE surveillance mechanism that monitors
the function of NPCs and the integrity of NE membranes [75]. The surveillance system
is established by preventing the nuclear accumulation of CHMP7. Indeed, although
CHMP7 can passively diffuse through NPCs to enter the nucleus, it is actively exported
by the NTR CRM1/XPO1. This export is necessary to prevent CHMP7’s untimely binding
and activation by an integral INM protein, LEM2 [67,76]. Thus, in the context of robust
nucleocytoplasmic compartmentalization, the surveillance system is found in a poised or
primed state, with CHMP7 and LEM2 physically segregated on either side of the NE. In
scenarios in which NPCs are defective or there are ruptures to the nuclear membranes, the
resulting loss of nucleocytoplasmic compartmentalization leads to the binding of CHMP7
to LEM2, which activates its polymerization [67,77] and membrane remodeling abilities that
help reseal the NE [75]. The first clue that this pathway might be compromised in C9-ALS
was the observation that CHMP7 is found localized in the nucleus of C9-ALS iPSNs [34]
(Figure 2, Q1); more recent evidence indicates that another ESCRT regulatory factor VPS4
is also in the nucleus [78]. Counterintuitively, however, this change in localization occurred
before, not after, any detectable nup loss, raising the possibility that CHMP7 was acting as
a dominant negative and the aberrant triggering of this surveillance pathway was an input
to nup degradation [34] (Figure 2).
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The idea that CHMP7 might act as a dominant negative already has precedent in
other model systems [66,67,76,79]. For example, by simply preventing its nuclear export
by chemically inhibiting XPO1/CRM1, CHMP7 inappropriately localizes to the nucleus,
where its binding and activation by LEM2 drives the formation of a fenestrated network of
proliferated INM in both yeast [67] and mammalian systems, which may even directly cause
DNA damage [76]. Therefore, to test if the aberrant nuclear accumulation of CHMP7 was
upstream, and perhaps causative of NPC injury, Coyne et al. overexpressed CHMP7 with
mutations in its nuclear export signal (NES) in otherwise normal neurons [34]. Strikingly,
the resulting nuclear accumulation of CHMP7 mimicked the pathogenic state as it led to
NPC injury and a specific reduction in the eight nups (Figures 1 and 2). In contrast to other
systems, however, there was no obvious accumulation of the CHMP7-NES mutant at the
INM. Furthermore, consistent with these data, a reduction in LEM2 levels did not lead to
NPC injury [34]. The latter results are suggestive of a potentially novel mode of CHMP7
activation, which is likely an early step in the NPC injury cascade (Figure 2). Indeed, using
ASOs against CHMP7 in IPSNs derived from both fALS and sALS patients mitigated all
aspects of NPC injury and its downstream impact on the Ran GTPase and nuclear transport.
Of additional significance, the CHMP7 ASOs also rescued TDP-43 mislocalization (Figure 2).
As TDP-43 mislocalization is observed in 97% of all ALS cases, in 50% of FTD cases and in
other neurodegenerative diseases [80], it will be important to understand how frequently
CHMP7 dysfunction is tied to TDP-43 mislocalization.

2.6. What Are the Mechanisms That Trigger CHMP7 Nuclear Accumulation and Ensuing
NPC Injury?

As the aberrant accumulation of CHMP7 in the nucleus is likely an early step in
C9-ALS pathogenesis, it is worth considering potential insults that could lead to this. One
likely possibility is that the C9ORF72 repeat RNAs prevent the nuclear export of CHMP7
by either directly or indirectly interfering with CHMP7’s interaction with XPO1/CRM1
(Figure 2, Q1). Such interference could be specific to a CHMP7–XPO1 interaction, or their
targeting of XPO1/CRM1 could result in the global inhibition of XPO1/CRM1-mediated
nuclear export, an analogy to how DPRs directly impede cargo loading of some NTRS [81].
Alternatively, repeat RNA might directly or indirectly potentiate the aberrant activation of
CHMP7 in the nucleus. Regardless of the ultimate mechanism, simultaneous efforts must
also be undertaken to understand how nuclear CHMP7 actually leads to nup degradation
(Figure 2, Q2).

It is most plausible that CHMP7 activity is tied in some way to the removal of POM121
from the NPC (Figure 2, Q2). Although one can imagine direct mechanisms, the lack of
any detectable NE accumulation of CHMP7 in the context of C9-ALS iPSNs disfavors
this possibility [34]. Thus, it may be more likely that aberrant CHMP7 activity in the
nucleus sequesters, or otherwise inhibits, factors that stabilize POM121 incorporation
into the NPC (Figure 2, Q2). NTRs may be the key players here as, in addition to its
FG-repeats that interact with NTRs, POM121 also has an NLS that binds specifically to the
NTR Karyopherin β1/Karyopherin α complex. This interaction is thought to be important
for POM121’s unique necessity to the interphase, as opposed to the post-mitotic, NPC
assembly mechanism [40,82,83]. Thus, perhaps repeat RNA targeting of Karyopherin
β1/Karyopherin α could result in less stable POM121 incorporation into NPCs. Such
putative destabilization might not be easily detectable by microscopy early in the NPC
injury cascade, but may, nonetheless, be sensed by endogenous cellular factors. For example,
recent evidence suggests that the LEM2 paralogue, MAN1, might directly assess the
compositional integrity of NPCs [84]. That budding yeast MAN1 also binds to CHMP7 [66]
suggests a potential link between an NPC integrity sensing mechanism and CHMP7 that
might be worth investigating.

Indeed, it is possible that NE protein(s) more generally serve as sensors of NE and
NPC function and couple this role with proteastasis pathways. For example, in Hutchinson–
Gilford Progeria Syndrome (HGPS), neuronal nuclei express a mutant lamin A protein
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called progerin. The aggregation of progerin causes clustering of the INM protein SUN2.
As SUN2 reaches into the NE lumen, this clustering leads to the sequestration of lumenal
chaperones and the triggering of the unfolded protein response [85]. It is possible that this
protective pathway is abrogated as part of an ALS mechanism. For example, the expression
of a C-terminal fragment of TDP-43 (TDP-CTF—a major component of cytoplasmic TDP-
43 aggregates in ALS/FTD patient brain tissue [86,87]) resulted in the mislocalization of
SUN2 [88]. Thus, collectively, these data support that the INM may be a fertile area to
investigate ALS mechanisms.

3. Conclusions

In closing, defects in the nuclear transport machinery including the loss of nups within
the NPC itself are central to both C9-ALS, and likely some sALS, pathogenesis. That
CHMP7 has emerged as a potential driver of nup loss (Figure 2) suggests looking for
the upstream events that trigger the pathogenic cascade should be a priority for future
work. Likewise, ultimately understanding how nup loss leads to neuron dysfunction
must also be considered. Historically, the deletion of a small subset of nups without
compromising overall NPC structure would not have been predicted to have a profound
impact on nuclear transport. This idea, however, rests on the conceptualization of the NPC
as a static entity that is refractory to small perturbations, which is now being challenged
by a plethora of recent NPC structures that capture NPCs in their native cellular state
in algae [89], yeasts [62,90,91] as well as mammalian cells [38,90,92,93]. These structures
present compelling evidence that the NPC scaffold is capable of dilating and constricting in
response to NE tension [38] and/or the overall energy state of a cell [90]. As such changes
would require massive rearrangements within the NPC scaffold, it is easy to imagine how
a loss of just a subset of nups could lead to a “jamming” of these kinds of dynamics. Thus,
an exciting future for exploring how NPC dysfunction could contribute to ALS pathology
would be to more directly explore the impact of nup loss on such NPC dynamics. This work
might also inform the function of the NPC dynamics themselves, as it is not yet understood
how these structural changes impact the diffusion barrier and active transport properties
of the FG-nup collective.
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