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Abstract: Oxidative stress is an important pathomechanism found in numerous ocular degenerative
diseases. To provide a better understanding of the mechanism and treatment of oxidant/antioxidant
imbalance-induced ocular diseases, this article summarizes and provides updates on the relevant
research. We review the oxidative damage (e.g., lipid peroxidation, DNA lesions, autophagy, and
apoptosis) that occurs in different areas of the eye (e.g., cornea, anterior chamber, lens, retina, and
optic nerve). We then introduce the antioxidant mechanisms present in the eye, as well as the ocular
diseases that occur as a result of antioxidant imbalances (e.g., keratoconus, cataracts, age-related
macular degeneration, and glaucoma), the relevant antioxidant biomarkers, and the potential of
predictive diagnostics. Finally, we discuss natural antioxidant therapies for oxidative stress-related
ocular diseases.

Keywords: oxidative stress; ocular diseases; antioxidant biomarkers; antioxidant therapy

1. Introduction

Since the theory of aging being caused by free radicals was published in 1956 [1],
various studies have gradually confirmed the dysregulation of oxidative stress as a critical
precipitating or exacerbating factor in many pathological processes and the development
of diseases. These oxidative stress-related diseases include cancer, cardiovascular diseases,
neurodegenerative diseases, diabetes, ocular degenerative diseases, rheumatic immune
diseases, and inflammatory diseases [2]. As the main photosensitive organ, the eye directly
receives the energy found in sunlight, which travels through the cornea, anterior chamber,
lens, and vitreous body to the retina. In addition to causing DNA damage [3], ultraviolet
(UV) light can also cause photo-oxidative stress through the production of reactive oxidative
species (ROS) [4]. ROS lead to cell damage and aging, resulting in corneal degeneration, lens
opacification (cataracts), and the occurrence of eye diseases, including various retinal and
optic nerve degenerative diseases, such as glaucoma and age-related macular degeneration
(AMD) [5–7]. In recent years, with the depletion of the stratospheric ozone layer [8] and
the popularity of light-emitting diode (LED) electronic products [9,10], the long-term
photo-oxidative stress brought on by the environment to the eyes is bound to increase the
prevalence of these degenerative ocular diseases.

2. Molecular Aspects of Oxidative Stress-Induced Cell Damage

Oxidative stress in the body comes from the free radicals provided by ROS, reactive
nitrogen species, and reactive carbonyl species produced by metabolic or environmental
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factors; among these free radicals, ROS play the most important role [11]. ROS can compete
for the paired electrons of intracellular molecules, leading to lipid peroxidation, protein
modification, and chromosomal and mitochondrial DNA (mtDNA) lesions, thereby al-
tering information transmission and gene expression and ultimately causing autophagy,
apoptosis, and necrosis and triggering dysfunction in tissues and organs [5,12]. Recent
studies have shown that ROS can attack polyunsaturated fatty acids on cell membranes,
forming covalent bonds between peroxidized lipids and receptors on the membrane and
thus leading to the destruction of the integrity of cell membranes [13]. Peroxidized cell
membrane phospholipids can be recognized by scavenger receptors or toll-like receptors
and thus induce programmed cell death [14]. Oxidized phospholipids can also activate
proinflammatory molecules and thus cause inflammation [15]. The protein modifications
induced by ROS can affect the function of structural proteins, the activity of enzymatic
proteins, and signal transduction pathways (e.g., redox-sensitive pathways) [16]. ROS
can react with nitrogenous bases and sugar-phosphate backbones in DNA, resulting in
chromosomal and mtDNA lesions [17]. DNA damage can affect protein-coding regions
and noncoding regulatory regions of genes (including untranslated regions and noncod-
ing RNA regions), thereby affecting protein expression and regulation [18,19]. The DNA
damage caused by oxidative stress can also induce cell apoptosis through nuclear factor
kappa B (NF-κB) pathway activation [20,21]. Additionally, mtDNA damage can affect the
respiratory chain, thereby reducing the ability of mitochondria to regulate ROS production.
ROS can also affect epigenetic modifications and cause cell aging [22].

Oxidative stress induces autophagy [23]. Lipidated microtubule-associated protein
light chain 3 (LC3-II; an autophagosome membrane-bound protein) assists in autophago-
some formation, and sequestosome 1 (p62/SQSTM1) binds to LC3-II to assist in autophago-
some and lysosome fusion and the formation of autolysosomes to remove abnormal pro-
teins and organelles; this process is called autophagic flux [24]. Severe oxidative stress
damage can block autophagic flux, leading to the inability of autophagosomes to bind
to lysosomes, resulting in p62 accumulation [25,26]. p62 accumulation induces apopto-
sis through the activation of caspase-8 [27]. Severe oxidative stress injury can cause cell
swelling and mitochondrial swelling, leading to cell membrane rupture and necrosis [28]
(graphical abstract and Figure 1).

To fight against oxidative stress injury, the body has developed antioxidant defense
systems composed of antioxidants that inhibit or delay oxidation, thus slowing or elim-
inating the effects of oxidative stress through prevention, blocking, and repair [11]. The
major antioxidant defense system in the human body can be divided into two classes of
components: enzymatic and nonenzymatic. Predominantly, antioxidants in the enzymatic
system function intracellularly; these enzymes include superoxide dismutase (SOD), cata-
lase (CAT), glutathione peroxidase (GPx), thioredoxin (TRX), peroxiredoxin (PRX), and
glutathione S-transferase (GST) [29]. SOD converts superoxide anions (O2−) into H2O2 and
oxygen through a disproportionation reaction, and CAT and GPx further catalyze the con-
version of H2O2 into water and O2 [30]. The TRX/PRX system acts against oxidative stress
through its disulfide reductase activity regulating protein dithiol/disulfide balance [31].
The GST reduces lipid hydroperoxides through its Se-independent glutathione-peroxidase
activity [32] (Figure 2). In addition to enzymatic antioxidants, nonenzymatic antioxidants
are also vital components. Nonenzymatic antioxidants include both proteins and low-
molecular-weight compounds, such as metal-binding proteins (MBPs), ascorbic acid (AA),
α-tocopherol (vitamin E), uric acid, and glutathione (GSH). Unlike enzymatic antioxidants,
nonenzymatic antioxidants are present not only in cells but also in extracellular fluids,
such as plasma, tissue fluid, and cerebrospinal fluid (CSF), where they provide the most
significant antioxidant defense mechanism [33,34]. For example, AA is the most impor-
tant antioxidant in human CSF, and it also plays a pivotal role in defending against the
oxidative damage caused by UV light entering the eyes [35]. An increased generation of
oxidants (caused by chemical burn, intraocular inflammation or surgery, etc.) or decreased
antioxidant capacity (caused by malnutrition or aging, etc.) leads to oxidant/antioxidant
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imbalances in vivo [36–39]. Oxidative stress generated by oxidant/antioxidant imbalances
results in cell damage and dysfunction.

Figure 1. The effects of reactive oxidative species in the eye. The anterior segment includes the
cornea, iris, and lens. The posterior segment includes the vitreous humor, retina, choroid, and optic
nerve. * Mitochondrial ETCs: Mitochondrial electron transport chains.

Figure 2. Enzymatic antioxidant defense systems. CAT: catalase; SOD: superoxide dismutase; GPx:
glutathione peroxidase; PRX: peroxiredoxin; TRX: thioredoxin; RED: reduced; OX: oxidized; MDA:
malondialdehyde; GST: glutathione S-transferase.
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3. Pathogenesis of Oxidative Stress-Related Eye Diseases

Oxidative stress is an important pathogenic factor of eye degenerative diseases [5].
Oxidative stress can damage tissues, leading to changes in tissue structure and func-
tion, increased vascular permeability, microvascular abnormalities, and neovasculariza-
tion [16,40–42]. In turn, these changes can cause cornea, conjunctiva, and optic nerve lesion
formation; lens crystallin denaturation; intraocular pressure (IOP) increase; and retina
degeneration [43,44] (Figure 3).

Figure 3. Oxidative stress-related ocular diseases. * FECD—Fuchs endothelial corneal dystrophy.

3.1. Ocular Surface (Cornea and Conjunctiva)

The cornea and the ocular surface epithelium are exposed to the atmosphere and high
concentrations of oxygen (the partial pressure of oxygen is approximately 20%). Therefore,
a strong antioxidation mechanism is required to resist oxidative stress. Oxidative damage
is associated with the pathogenesis of pterygium, dry eye, keratoconus (KC), and Fuchs
endothelial corneal dystrophy (FECD) [5].

Pterygium is a type of cellulite that occurs on the ocular surface. This abnormal tissue
proliferation grows from the conjunctiva to the center of the cornea and eventually affects
vision. Severe pterygium can interfere with the stability of the tear film and cause dry eye
syndrome. 8-hydroxy-20-deoxyguanosine (8-OHdG), an oxidative stress-induced DNA
damage marker, is found in pterygium tissue [45]. DNA damage is involved in pterygium
inflammation, epidermal hyperplasia, angiogenesis, and lymphangiogenesis [46]. The K-ras
oncogene mutation in pterygium may be associated with abnormal tissue proliferation [47].
Malone dialdehyde, a lipid peroxidation marker, is also found in pterygium, resulting in a
decrease in the activity of antioxidant enzymes [48]. Oxidative stress can cause Hsp90 over-
expression in pterygium epithelium [49]. Hsp90 induces vascular endothelial growth factor
(VEGF) expression, and the Hsp90/VEGF pathway is involved in retinal angiogenesis [50],
which is probably also related to pathological pterygium angiogenesis [51,52].
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Dry eye is caused by the abnormal maintenance of the tear film and is affected by
tear secretion and blinking frequency. Tears secreted by the lacrimal glands (LGs) and
meibomian glands (MGs) form a film that covers the ocular surface. In addition to lubri-
cating and cleaning, the tear film contains lysozymes and immunoglobulins that can be
used for antibacterial and immune responses. The tear film is also rich in antioxidants
(e.g., AA, lactoferrin, uric acid, and cysteine). Therefore, tear film dysfunction can lead
to infection and inflammation on the ocular surface and cause an increase in oxidative
pressure, leading to epidermal and glandular cell oxidative damage, which in turn leads to
nonautoimmune dry eye syndrome [53]. In a murine model, aging changed the LG struc-
ture and tear secretion, resulting in an increase in oxidative stress markers [54]. The number
of 8-OHdG-positive cells in LGs and MGs increases with aging, indicating that oxidative
damage is one of the factors that causes gland degeneration seen in aging [55]. ROS have
been shown to trigger dry eye through the activation of cytosolic NLRP3 inflammasomes,
suggesting that the inflammatory response plays an important role in cell damage caused
by ROS [56].

KC is a degenerative corneal disease. The abnormal metabolism of corneal stromal
collagen secreted by keratocytes (corneal stromal cells) can lead to a decrease in stromal
intensity and affect vision due to the abnormal refraction of the cornea caused by IOP. The
oxidative stress-induced DNA damage marker 8-OHdG is increased in KC corneas [57].
ROS can increase the activity of degradative enzymes (matrix metalloproteinases MMP-1
and MMP-2) and reduce the expression of the tissue inhibitors of matrix metalloproteinases
(TIMPs) and the secretion of collagen I. These changes reduce the stroma intensity and
are related to the occurrence of KC [58,59]. Keratocytes in KC have been shown to exhibit
mtDNA damage and mitochondrial dysfunction [60], which is potentially related to their
inability to withstand oxidative stress [61]. KC apoptosis induced by oxidative stress is
associated with stromal degeneration, thinning, and KC [62,63]. TIMPs are involved in the
inhibition of apoptosis. Therefore, the downregulation of TIMPs in KC is also related to
keratocyte apoptosis [5]. Autophagy may be another process involved in KC [64]. Oxidative
stress induces autophagosome formation [24], and dysregulated autophagy occurs in the
corneal epidermis of KC patients [65].

FECD is a degenerative disease that occurs in the corneal endothelial cells (CECs). The
corneal endothelium is composed of a monolayer of hexagonal-shaped cells. Human CECs
do not have the ability to regenerate. Therefore, when the cells are lost, adjacent healthy
CECs can only fill gaps through migration and enlargement, resulting in decreased endothe-
lial cell density (ECD), which in turn leads to a decrease in the water pump function of the
corneal endothelium. Several studies have confirmed that the decrease in ECD is related to
aging and can also be accelerated by oxidative stress [66–68]. Oxidative stress is believed to
damage CECs through lipid peroxidation and nitric oxide (NO) production, influencing
gene expression and regulating apoptosis through the NF-κB pathway [66,69]. With aging,
the ECD in FECD patients declines faster than that in the average person. The pathogenesis
of FECD is considered to be multifactorial, and both genetic and environmental factors
have been confirmed to be related to the development of this disease [70]. Oxidative stress
is an important environmental cause of FECD, and FECD patients have significantly higher
corneal endothelial 8-OHdG levels [68]. mtDNA damage caused by oxidative stress leads
to a decrease in the number of mitochondria in the corneal endothelium and a decrease in
cytochrome oxidase activity, resulting in mitochondrial dysfunction [60]. In FECD patients,
compared with healthy individuals, the mtDNA copy number in the corneal endothelium
is significantly lower, showing a decrease of 80% [71]. Mitochondrial dysfunction causes
CECs to be susceptible to oxidative stress and induces apoptosis. The transcription factor
nuclear factor erythroid 2 like 2 (Nrf2), an oxidative stress regulator, is involved in the
regulation of lipid peroxidation and is associated with the occurrence of p53/caspase3-
dependent apoptosis in CECs [72,73]. The expression of Nrf2 in FECD CECs is significantly
lower. Sulforaphane (an agonist of Nrf2) treatment can reduce the loss of FECD CECs by
reducing apoptosis [74]. Oxidative stress triggers an autophagic flux blockade in CECs,
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resulting in p62 accumulation; the accumulation of p62 induces CEC apoptosis through the
activation of caspase 8 [26,27]. Peroxiredoxin 1 (PRDX1) is a redox sensor that is involved
in the regulation of lipid peroxidation. The significantly lower expression of PRDX1 in
FECD patients is associated with nonapoptotic CEC death (ferroptosis) [73].

3.2. Anterior Chamber

The anterior chamber contains aqueous humor, which is secreted by the ciliary body
and flows through the trabecular meshwork (TM). High IOP caused by aqueous outflow
disorders can cause glaucoma. Glaucoma is an optic neuropathy that causes blindness
due to the death of retinal ganglion cells (RGCs). An abnormal increase in IOP is the main
cause of RGC apoptosis [75]; however, the TM is also susceptible to oxidative damage [76].
Oxidative stress stimulates the activation of the NF-κB pathway in TM cells, inducing
apoptosis [77,78]. The oxidative stress-induced mitochondrial injury of TM cells can also
lead to changes in apoptosis and TM structure, resulting in increased IOP and disease
progression to chronic glaucoma [5,79].

3.3. Lens

A cataract is a condition in which the lens becomes cloudy for various reasons and
affects vision. Cataracts can be classified as senile or age-related cataracts, juvenile cataracts,
or congenital cataracts based on the age of onset. Senile cataracts are the leading cause of
vision loss worldwide and the second leading cause of visual impairment [80].

Cataracts form when the crystallin protein inside the lens gradually aggregates after
an injury or misfolds to form an insoluble turbid protein that scatters light [81]. Confor-
mational changes in lens proteins are mainly caused by mechanisms, such as oxidative
stress, osmotic pressure changes, and phase separation between protein and water [7].
Among these mechanisms, oxidative stress is an important pathogenic mechanism, and the
decrease in antioxidant capacity in the lens has been associated with the occurrence of senile
cataracts [82]. Either an increase in oxidative pressure in the lens or a decrease in the ability
to remove ROS leads to lens opacification [83]. Lipid peroxidation caused by free radicals
is the initial mechanism leading to the occurrence of cataracts. Peroxidized lipids can
affect the permeability of cell membranes and further change the internal composition and
configuration of cells, resulting in the loss of protein function and eventually leading to the
occurrence of cataracts [84,85]. Lens epithelial cells maintain the stability and transparency
of the environment inside the lens. ROS induce lens epithelial cell apoptosis, producing a
large amount of additional ROS, which can cause the degeneration and loss of function of
the lens [86]. ROS induce Na,K-ATPase defects on the membrane of lens epithelial cells, a
process that can lead to the accumulation of sodium and water in the cells, thereby causing
lens opacification [87,88].

3.4. Retina and Optic Nerve

To generate and transmit visual evoked potential signals, the retina needs to maintain
a high metabolic rate; thus, a large amount of ROS is generated in mitochondria. As
such, retinal tissue cells bear higher oxidative pressure than other tissues. Retinal pigment
epithelium (RPE) cells maintain the normal function of the retina. In RPE cells, oxidative
stress can induce parainflammation [89,90], autophagic cell death [91], and apoptosis [5,92].
Oxidative stress-induced RPE and choriocapillaris damage are associated with AMD [93].
Due to the constant oxidative stress experienced by mitochondria, in the pathological
process of AMD, the mtDNA damage caused by oxidative stress is more important than
nuclear DNA damage [94]. RGCs are also rich in mitochondria, and mtDNA damage caused
by oxidative stress affects the efficiency of the respiratory chain, reduces the production of
ATP and the accumulation of ROS, and eventually causes the death of RGCs and the optic
nerve [95].

Oxidative pressure increases IOP in the anterior chamber, and the increase in IOP
is the main cause of glaucoma, as mentioned in Section 3.2. In addition to harming the
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TM, the subsequent inflammation and the production of greater amounts of ROS can also
cause oxidative damage to the retina and optic nerve and cause glial dysfunction [5]. ROS
can trigger autophagy and apoptosis in RGCs and eventually cause optic nerve atrophy
and blindness [96,97]. In a glaucoma rat model, through the mitogen-activated protein
kinase (MAPK) signaling pathway, ROS generated by the increased IOP induced RGC
cell apoptosis through the Bax/caspase-9 pathway [98]. The increase in IOP resulted in
the accumulation of LC3II (an autophagosome marker) in the rat RGC layer [99]. Chronic
high IOP can cause autophagic flux blockage and p62 accumulation in RGCs, leading to
apoptosis [100,101]. Thus, RGC degeneration in glaucoma patients may be related to the
unbalanced regulation of autophagic flux, which leads to apoptosis [102].

3.5. Others (Oxidative Stress-Related Surgical Complications)

In addition to environmental factors and the dysregulation of antioxidant mechanisms,
intraocular surgery itself can also produce oxidative pressure and cause postoperative com-
plications. Intraocular surgery includes cataract surgery [103], beta radiation therapy [104],
and laser posterior capsulotomy [105]. It has been reported that intraocular surgery causes
a significant decrease in ECD, which is possibly related to the oxidative stress that surgery
causes [37–39]. Decreased ECD is a significant cause of the loss of function in transplanted
corneas, and ECD can predict the success of corneal transplantations [106–108]. Patients
with a low ECD are contraindicated for the abovementioned surgeries, which can lead to a
drastic reduction in corneal cells. Studies have shown that a transplanted cornea with an
ECD < 2100 cell/mm2 is a risk factor for permanent corneal edema (ECD < 1000 cell/mm2)
within one year after transplantation [109]. Therefore, in clinical practice, donor corneas
with an EDC < 2100 cell/mm2 are not considered suitable for transplantation. Even after a
successful corneal transplantation, early- or late-stage endothelial cell loss after surgery
must be addressed [110] and endothelial cell loss may accelerate [111].

During cataract surgery, phacoemulsification is performed to help remove the degen-
erated lens. ROS generated by the high-intensity ultrasound oscillations in water during
phacoemulsification have been shown to damage the corneal endothelium [37,112]. Due
to the high aerobic metabolic activity of human CECs, excess oxidative stress easily dam-
ages the DNA and further induces p53 phosphorylation, as well as caspase3-dependent
apoptosis [72]. Furthermore, a cell model study found that phacoemulsification triggered
apoptosis in bovine CECs. Phacoemulsification-induced caspase3-positive cells could be re-
duced by the addition of ascorbic acid (antioxidant), indicating oxidative stress involvement
in phacoemulsification-triggered apoptosis [113]. The loss of CECs after phacoemulsifica-
tion can cause corneal edema [114]. Ultrasound emulsification usually causes a CEC loss of
2.5% [115]. However, patients with an insufficient endothelial cell density (iECD) have a
more severe cell loss rate of 5.1–12.1%, and they are more prone to pseudophakic bullous
keratopathy [116,117].

4. Antioxidant Imbalance, Biomarkers, and the Potential of Predictive Diagnostics in
Oxidative Stress-Related Ocular Diseases

Enzymatic and nonenzymatic antioxidants comprise the defensive systems against
oxidative stress in ocular tissues. The most important enzymatic antioxidants include
copper/zinc (Cu/Zn)–SOD (SOD1), manganese (Mn)–SOD (SOD2), CAT, GPx, glutathione
reductase, and aldehyde dehydrogenase (ALDH). As nonenzymatic antioxidants, AA
(vitamin C), α-tocopherol (vitamin E), GSH, uric acid, tyrosine, and cysteine are regarded as
the main ocular antioxidative small molecules [5,118,119]. An imbalance between oxidative
stress and antioxidants defense contributes to the pathogenesis of various ocular diseases
(Figure 3). Therefore, antioxidants can serve as biomarkers for predictive diagnostics and
also as potential therapeutic targets for treating oxidative stress-related diseases [120].
Here, we present representative oxidative stress-related ocular diseases, including KC
(cornea), senile cataract (lens), AMD (retina), and glaucoma (anterior chamber and optic
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nerve), to elaborate the antioxidant mechanisms, biomarkers, and the potential of predictive
diagnostics (Table 1).

Table 1. Endogenous antioxidant biomarkers in oxidative stress-related ocular diseases.

Disease Sample Source

Total Antioxidant
Capacity/References

(↓): Decreased
(–): Not Significantly

Different

Antioxidant Biomarkers *

References

Enzymatic Nonenzymatic

Keratoconus

Cornea (↓) [121]

SOD
Catalase
Quinone
ALDH
HO-2

Glutathione [63,122–126]

Tear film (↓) [127] SOD
GPx

Uric acid
Glutathione

Tyrosine
Lactoferrin

[128–133]

Serum (–) [134–136]
SOD

Catalase
GPx

Glutathione
Thiol

Copper
Zinc

Selenium

[137–144]

Senile cataract

Lens (↓) [145]
SOD
GPx
GR

Ascorbic acid
Glutathione

Ergothioneine
α-tocopherol

[145–151]

Aqueous humor (↓) [152] –

Ascorbic acid
Uric acid

Glutathione
Ergothioneine

[150,153,154]

Serum (↓) [147,155] SOD
Catalase

Ascorbic acid
Glutathione
Tocopherol
β-carotene

[145,155–157]

Age-related
macular

degeneration

Retina (–)

SOD
Catalase
PRDX3

GPx

Lutein
Zeaxanthin [158–160]

Serum (↓) [161]
SOD

Catalase
GPx

Zeaxanthin
Lutein
Thiol

[162–169]

Glaucoma

Aqueous humor (↓) [170]
(–) [171]

SOD
GPx

Catalase
GST

Zinc [170–174]

Serum (↓) [170,171,173,175] SOD
Uric acid

Ascorbic acid
Melatonin

[170,173–183]

* Note: This table only includes antioxidants that have been shown to be significantly different in individuals with
and without the indicated disease. ALDH, aldehyde dehydrogenase; GPx, glutathione peroxidase; GR, glutathione
reductase; GST, glutathione transferase; Quinone, NADPH dehydrogenase; SOD, superoxide dismutase; HO-2,
heme oxygenase 2; PRDX3, peroxiredoxin-3.
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4.1. Keratoconus (KC)

KC is a disease of progressive ectasia of the cornea involving multiple factors [184].
One of the proposed etiologies of KC involves the oxidative stress that the cornea undergoes
from constant UV light exposure [118]. Studies have shown dysregulated oxidative stress
and antioxidant markers in various samples from patients with KC [185].

4.1.1. Cornea

The total antioxidant capacity (TAC) in the corneas of KC patients is significantly
decreased in comparison with the corneas of healthy controls [121]. Corneas from pa-
tients with KC exhibited a 2.2-fold increase in CAT mRNA levels and a 1.8-fold increase
in CAT enzymatic activity in response to the hydrogen peroxide production stimulated
by elevated levels of cathepsins V/L2, -B, and -G [122]. The extracellular SOD activity
in the central cornea has been found to be halved in KC patients [123]. Expression of
NADPH dehydrogenase, ALDH, and heme oxygenase 2 (HO-2) was decreased in the
corneal epithelial specimens taken from KC patients [124,125]. The HO-2 enzyme has
antioxidative, anti-inflammatory, and anti-apoptotic properties that can defend cells against
trauma and apoptotic signals. HO-2 is heavily synthesized in healthy corneal epithe-
lium [126]. In past studies, KC corneas showed an upregulation of ALDH3A1 in the
stroma [124] and increased CAT activity in the stromal fibroblasts [63]. One of the pro-
posed pathophysiological mechanisms to explain the decrease in SOD activity in KC is a
7 bp deletion, c.169+50delTAAACAG, located in intron 2 of the SOD1 gene, which may
result in non-functional SOD. However, the use of this mutation as a marker for KC may
not be warranted, as the presence of this mutation in KC patients seems rare and varies
from study to study [186]. Multiple antioxidant genes regulated by NRF2, including SOD1,
GSTM3, and HMOX1, are decreased in patients with KC when compared to those of healthy
controls [187]. As for nonenzymatic antioxidants, decreased GSH [121], a reduced glu-
tathione/oxidized glutathione ratio (GSH/GSSG) [188], and stromal serotransferrin [124]
have been found in KC corneas when compared with those of healthy corneas.

4.1.2. Tear Film

The TAC of the tear film of KC patients is decreased by 40% compared to that of healthy
tear film. Enzymatic antioxidant biomarkers in the tears of KC patients include lower SOD
activity and higher GPx activity [127]. It has been suggested that the decreased SOD activity
could lead to intense lipid peroxidation, while GPx enzyme activity could increase as a
compensatory response to the lipid peroxidation [128]. Among the antioxidants in human
tears, AA and uric acid account for up to 50% of the total antioxidant activity [129,130].
Other nonenzymatic small molecule antioxidants in the tear film include GSH, L-cysteine,
and L-tyrosine [130]. Among these, increases in tyrosine and uric acid along with decreases
in GSH [131] and lactoferrin [132,133] could be used as indicators of KC. Whereas, there
was no significant difference in the levels of AA or cysteine between the tear fluids of KC
patients and those of age-matched healthy controls [131].

4.1.3. Serum

The TAC of serum from KC patients has not been statistically different from that of
normal controls [134–136], although significant decreases in serum SOD and GPx, as well as
increased CAT activity, have been detected in KC patients [137,138]. The inadequate enzy-
matic antioxidant defense mechanisms in KC patients can be attributed to CAT (rs7943316,
A/T) and GPX-1 (rs1050450, C/T) single nucleotide polymorphisms. Patients with the TT
genotype of CAT rs7943316 and the T allele of GPX-1 rs1050450 have lower antioxidant
enzyme activities and are at higher risk of developing KC [139–141]. The decline in serum
GSH levels and the imbalance in the systemic thiol-disulfide homeostasis observed in KC
patients suggest the presence of oxidative stress and impaired nonenzymatic antioxidant
defense [137,142]. Several trace elements, including Cu, Zn, and selenium (Se), are sug-
gested to have antioxidant activity in the body. The lower serum levels of Zn, Cu, and
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Se observed in the KC group compared to those of the control group indicate that lower
antioxidative activity may be involved in the etiopathogenesis of KC [143,144].

4.2. Senile Cataract

Senile cataracts, the progressive opacification of the crystalline lens, result from com-
plicated gene-environment interactions during aging. The cumulative oxidative damage
induced by long-term exposure to UV radiation in sunlight, together with the aging an-
tioxidant defense system in ocular tissue, are significant contributory factors in cataract
formation [5].

4.2.1. Lens

The crystallins in lens fibers do not regenerate. Accordingly, the human lens is well-
equipped with a highly active antioxidant defense system against UV-induced oxidative
damage. Interestingly, the oxidative stress in the human lens is mainly managed through
scavenging by nonenzymatic antioxidants, especially AA and GSH, rather than by enzy-
matic antioxidants [5,44,82]. The TAC has been significantly lower in lenses with cataracts
as compared to that of the lenses of healthy controls [145]. Moreover, lenses with corti-
conuclear cataracts have lower TAC than those with subcapsular cataracts [82]. Human
cataractous lenses have shown deficiencies in the enzymatic activity of SOD, GPx, and
GR, but not of CAT [146]. The reduced enzymatic activity of antioxidants may result from
genetic variations in the antioxidant coding genes. To be precise, the G/G genotype of the
SOD1-251A/G polymorphism may lead to a higher risk of senile cataracts. However, there
have been no significant differences in the variant homozygous frequencies of glutathione
peroxidase 1 (GPX1)-198C/T and CAT-21A/T polymorphisms between age-related cataract
patients and age-matched healthy controls [147]. In addition, the SOD, CAT, and GPx con-
tent in the lenses of senile cataracts have decreased significantly with increasing lenticular
nucleus hardness grading [148]. As for the difference in the enzymatic antioxidant level
between subtypes of cataracts, patients with cortical cataracts have lower levels of lens
SOD than patients with nuclear cataracts [149]. The levels of GSH, AA, and ergothioneine
in cataractous lenses are lower than those in post-mortem lenses without cataracts [150].
Whether the concentration of α-tocopherol is higher [151] or lower [145] in cataractous
lenses than in control lenses remains controversial. With the progression of senile cataracts,
from incipient to mature, the concentrations of AA and GSH are progressively reduced.
As for the comparison of nonenzymatic antioxidants among different types of incipient
cataracts, the concentration of GSH is higher in lenses with posterior subcapsular cataracts
than in lenses with nuclear subcapsular cataracts [82].

4.2.2. Aqueous Humor

The aqueous humor plays a crucial role in protecting the anterior epithelial lining of
the lens from oxidative stress. AA is the most abundant and important antioxidant in the
aqueous humor, as it is accountable for up to 73.2% of the aqueous humor TAC [119,189].
The TAC in aqueous humor detected in cases with mixed-type cataracts is statistically
and significantly lower than the TAC in aqueous humor in cases with cortical and nuclear
cataracts [152]. Enzymatic antioxidants in the aqueous humor, including SOD, CAT, and
GPx, decrease significantly as lenticular nucleus hardness grading increases [148]. Addi-
tionally, patients with cortical cataracts have higher CAT and SOD levels in the aqueous
humor than patients with nuclear cataracts [149]. The primary antioxidant component
in aqueous humor, namely AA, along with GSH and ergothioneine, is decreased in the
aqueous humor of cataract patients compared to that of healthy post-mortem controls [150].
By contrast, a significantly higher uric acid level is detected in the aqueous humor of
patients with posterior subcapsular cataracts [153]. In addition, the concentration of AA in
the aqueous humor of patients with senile cataracts decreases with age [154]. However,
there is no significant difference in AA in the aqueous humor among patients with nuclear,
cortical, posterior-subcapsular, or mixed lens opacity [190].
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4.2.3. Serum

There is a 30% decrease in serum TAC in cataract patients compared to that of healthy
controls [145,155]. Patients with cataracts have lower levels of serum CAT and SOD than
healthy controls. Examination of the serum CAT and SOD levels can be an important
quantitative indicator for the clinical diagnosis of senile cataracts [149]. Low serum levels
of tocopherol [145,155,156], AA [155], GSH [155], and β-carotene [157] are significantly
associated with an increased risk for senile cataracts.

4.3. Age-Related Macular Degeneration (AMD)

AMD is characterized by progressive degeneration of the macula and is a common
cause of blindness in older adult populations. The pathogenesis of AMD is complex, involv-
ing metabolic, functional, genetic, and environmental factors; however, as the name implies,
degeneration associated with aging is often seen in AMD patients. Major abnormalities of
AMD include loss of photoreceptors, degeneration of RPE cells, thickening of the Bruch’s
membrane, and thinning of the choroid [158]. Disruption of RPE–extracellular matrix
interactions induced by oxidative stress also contributes to the pathogenesis of AMD [159].
Two types of AMD are recognized. Dry-type AMD is characterized by RPE degradation
followed by photoreceptor loss in the macular area, which promotes extracellular deposits
between the RPE and Bruch’s membrane. This leads to a decreased ability of the RPE to
protect the retina. By contrast, wet-type AMD is associated with choroidal neovascular-
ization, which may cause RPE and retinal damage along with exudation, hemorrhages,
inflammation, and scar tissue formation in the retina [160].

4.3.1. Retina

Reduced activity of SOD2 and CAT have been found in the RPE and choroid of AMD
patients by indirect measurements of Cu and Zn activity [161]. Counterintuitively, a study
in 2020 found increased transcriptional levels of the antioxidant enzymes peroxiredoxin 3
(PRDX3), CAT, and GPX1 in RPE cells, with decreased complement factor H (CFH) activity,
which is commonly seen in the RPE cells of AMD patients [162]. The authors of the study
hypothesized that the upregulation of antioxidant enzyme transcription in AMD patients
may be due to the inability of the diseased CFH antioxidant pathway to clear oxidative
stress. Lutein and zeaxanthin, collectively called the macular pigments, are carotenoids
that accumulate in the human fovea. Macular pigments in the RPE absorb high-energy
radiation, thereby protecting photoreceptors from oxidative harm. Lower macular pigment
optical density (MPOD) in the retina has been shown to be associated with an increased risk
of AMD [163]. MPOD is currently being used to assess the efficacy of vitamin supplements
for the prevention of macular degeneration.

4.3.2. Serum

A study in 2009 demonstrated lower TAC levels in the serum of patients with exudative
AMD compared with those of age- and sex-matched controls [164]. The study reported
that the decrease in TAC and increased oxidative stress may result in oxidative damage to
lipids, proteins, and DNA. This injurious pathway may lead to some irreversible effects
in AMD patients. Multiple studies have shown that the serum samples of AMD patients
have decreased SOD, CAT, and GPx activities [165,166]. Antioxidants in serum samples
are not a specific pathogenic characteristic of AMD, reiterating the intrinsic decrease in
antioxidants as our lives progress. However, the presence of the system-wide deterioration
of antioxidants in AMD patients has prompted the hypothesis that variations in antioxidant
genes may be identifiable in AMD patients. Macular pigments are less concentrated in the
plasma than in the retina, and their association with AMD is also less clear. Of the macular
pigments, zeaxanthin appears to be more relevant to the assessment of AMD risk [167].
Decreases in plasma lutein and zeaxanthin seem to increase the risk of AMD [168]. Patients
with AMD had significantly lower plasma levels of thiol and native thiol/disulfide ratios
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(TDRs) compared to those of healthy controls. The plasma native TDR decreased in
accordance with the increasing severity of AMD [169].

4.4. Glaucoma

The pathophysiology of glaucoma is complex and heterogeneous. There are three main
subtypes of glaucoma: open-angle, closed-angle, and normal-tension. Aqueous humor
circulation is different in each subtype, which results in varying risk factors and clinical
presentations. Despite the complicated etiologies of the different types of glaucoma, disease
progression leads to a common pathological state of optic neurodegeneration. Apoptosis
of the RGCs is associated with oxidative stress [171]. Levels of oxidative stress are also
speculated to have deleterious effects on the TM that drains the aqueous humor from the
anterior chamber of the eye [172], which increases IOP and contributes to the development
of glaucoma, especially open-angle and closed-angle glaucoma.

4.4.1. Aqueous Humor

A meta-analysis study in 2009 showed the higher oxidative stress markers in the aque-
ous humor of glaucoma patients, indicating that oxidative stress contributes to glaucoma
pathogenesis [173]. However, the change in TAC in the aqueous humor of glaucoma pa-
tients is unclear [171]. For example, a study in 2013 showed that TAC in the aqueous humor
is decreased in glaucoma patients [170], while another study in 2021 showed an increased
outcome [174]. The 2013 study proposed that high oxidative stress was a result of lowered
TAC in glaucoma, while the 2021 study hypothesized that high TAC was a reaction to the
increased oxidative stress in glaucoma. The varying results and different interpretations
further demonstrate the complexity of glaucoma. The increase in oxidative stress can be
due to either an increase in IOP or a pathological decrease in antioxidants. Most likely,
both interpretations contribute to glaucoma and may be a reason for the contrasting results.
Here, we focus on the changes observed for specific antioxidants in the aqueous humor of
glaucoma patients. SOD, GPx, and CAT, three common antioxidative markers, were found
to be increased in the aqueous humor of glaucoma patients in meta-analyses conducted
in 2016 and 2019 [171,173]. It was hypothesized that the increase in antioxidants was a
result of the increase in oxidative stress and that antioxidant levels would decrease in
the long term. If the assumption is true, it will be unsurprising that other studies have
shown SOD1/2 and GST1 to be downregulated in the aqueous humor of open-angled
glaucoma patients [176]. One study also found Zn levels to be significantly lower in the
aqueous humor of glaucoma patients than those of paired controls [174]. In the same study,
magnesium was found to be elevated in open-angled glaucoma patients but not in patients
with other subtypes of glaucoma.

4.4.2. Serum

The TAC of the serum of glaucoma patients is decreased when compared to that of
healthy controls [170,171,173]. It is hypothesized that damaged TM increases oxidative
stress, which in turn recruits antioxidants. As the disease advances, antioxidant capacity
dwindles, and a decrease in TAC is observed [175]. It is uncertain whether enzymatic
antioxidants, including CAT, SOD, and GPx, increase or decrease in the serum of glaucoma
patients, according to the 2016 meta-analysis study [173]. However, the study concluded
that the total antioxidant status is lower, which is consistent with the 2013 study. The
concentration of serum uric acid is significantly lower in patients with primary angle-
closure glaucoma [177,178]. Lower vitamin C levels in the serum have been found in
glaucoma patients in multiple studies [179–181]. Interestingly, the serum levels of vitamins
A, B, and E have not been found to be as strongly associated with the risk of glaucoma
as the serum levels of vitamin C, even though a recent meta-analysis showed that the
oral supplementation of not only vitamin C, but also vitamins A and E, was beneficial for
decreasing glaucoma risk [182]. A study in 2018 found an increase in serum melatonin
levels in glaucoma patients [183]. This finding was associated with sleep disturbances and
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increased oxidative stress caused by glaucoma. The complexity of antioxidants and the
pathophysiology of glaucoma have been clearly demonstrated, especially when considering
antioxidant levels in the serum. There are no clear-cut increases or decreases in system-wide
antioxidants in glaucoma due to multi-system interactions.

4.5. The Potential of Predictive Diagnostics for Oxidative Stress-Related Eye Diseases

Endogenous antioxidants play important roles in the prevention of oxidative stress-
related diseases and are potential biomarkers for predictive diagnoses. For example, GST
has been thought to be one of the most important antioxidants in the lens [191]. In the
lenses of patients with senile cataracts, GST levels are significantly lower than those found
in healthy controls [150,192]. However, sampling GST from the lens can harm the patient,
making antioxidants in lens tissue an unsuitable biomarker for disease detection.

Blood is the most common specimen used for clinical diagnosis. The concentration of
serum uric acid is meaningfully different in patients with hypertensive retinopathy [193]
and in patients with primary angle-closure glaucoma [177,178]. The concentration of serum
zeaxanthin is significantly correlated with MPOD, which highlights the potential of serum
zeaxanthin to be used as a biomarker in the management of AMD [194]. Serum TAC, SOD,
and GPx are decreased in glaucoma patients [173,195,196]. These serum biomarkers can be
measured with enzyme-linked immunosorbent assay (ELISA) and used for diagnosis of
the disease.

Being in direct contact with the lens and the cornea, the TAC in the aqueous humor
can affect the health of the cornea, anterior chamber, TM, and lens [44,197]. Compared
to the blood–retina barrier, the blood–aqueous barrier has better separation properties,
causing a greater difference between the blood and aqueous humor than the difference
between the blood and the retina circulation. For instance, the concentration of protein in
the aqueous humor is approximately hundreds of times lower than that in the plasma, with
a predominance of proteins with lower molecular weights [198]. Due to these properties,
we propose that aqueous humor samples are better than blood samples for helping with
diagnosis. The TAC in the aqueous humor of patients with iECD (<2100 cell/mm2) is
significantly lower than in that of people with normal ECD [189]. Similarly, lower TAC
in the aqueous humor of patients with senile cataracts was observed in our ongoing
study (unpublished data). In addition, the TAC in the aqueous humor of patients with
glaucoma [170] and diabetic retinopathy [199–202] has also been found to be significantly
lower than that of the healthy population. Ferric reducing antioxidant power (FRAP) assays
are often used to assess TAC; however, for the FRAP assay, samples must be diluted to at
least 300 µL. This poses difficulties in the analysis of aqueous humor. Although the volume
of the human anterior chamber is about 0.3–0.5 mL, the volume of aqueous humor can
be safely collected during intraocular surgery is limited (approximately 0.1 mL), which is
much less than the volume of blood samples. Therefore, we developed a cupric ion-based
TAC (CuTAC) assay for analyzing minuscule sample amounts [189]. With this new assay,
samples only need to be diluted to 30 µL instead of the 300 µL used previously, providing
a more accurate measurement.

The concentration of AA in the aqueous humor is 20 times higher than that in the
plasma [198] (Table 2). AA is thought to be the most critical antioxidant inside the aqueous
humor [189]. The AA concentration is lower in the aqueous humor of individuals with
senile cataracts than in people without cataracts [150]. Similar to the TAC assay, AA
concentration in the aqueous humor can be analyzed with FRAP and CuTAC after the
sample is combined with ascorbate oxidases. Other protein antioxidants (e.g., SOD, CAT,
GPx) can be used as biomarkers [148,150,153], and these antioxidants can be evaluated
using ELISA, similar to what is done for serum samples.
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Table 2. The concentration of ascorbic acid (AA) in human ocular tissues.

Tissue AA Concentration Compared to Serum References

Cornea 1.39 ± 0.35 mM ~23 times [26]
Aqueous humor 1.30 ± 0.62 mM ~22 times [198]

Lens 2.89 mM ~48 times [203]
Vitreous humor 1.28 ± 0.37 mM ~21 times [204]

Serum 0.06 ± 0.03 mM [203]

5. Natural Antioxidant Therapy for Oxidative Stress-Related Eye Diseases

Natural antioxidant therapy has been widely reported for various ophthalmic diseases,
such as dry eye, cataracts, glaucoma, and AMD [205–208]. The National Eye Institute (NEI)
in the United States conducted a large-scale clinical trial (the Age-Related Eye Disease
Study; AREDS) in the late 1990s. The trial provided antioxidant vitamins to 3640 AMD
patients and 4629 cataract patients. The therapeutic effect of the products was tested. The
study found that antioxidant treatment had a significant effect on cataracts and effectively
slowed AMD progression [209]. The antioxidant vitamins contained vitamin C, vitamin
E, and beta-carotene. Two subsequent reports further investigated antioxidant vitamin
treatment for 23,099 AMD patients [210] and 76,756 AMD patients [211], respectively.
Although antioxidant vitamins did not prevent AMD, they slowed the progression to
advanced AMD and visual acuity loss [210].

Vitamin C (also known as L-ascorbic acid [AA] or ascorbate), due to its water-soluble
nature, is more convenient than fat-soluble vitamins for therapeutic applications. Vitamin
C is also less prone to side effects caused by excessive accumulation, for example, the risk of
beta-carotene causing lung cancer in smokers or the risk of vitamin E causing heart failure
in patients with cardiovascular disease or diabetes [210]. Therefore, vitamin C has been
studied and used for the treatment of various oxidative stress-related ocular diseases. AA
provides antioxidant effects in eye tissues by scavenging free radicals, filtering UV light,
and regulating other antioxidant molecules in the eye. As a strong antioxidant, AA can
provide electrons to neutralize free radicals in the presence of ROS and is oxidized into
ascorbyl radicals. Ascorbyl radicals are relatively stable free radicals, and two ascorbyl
radicals react rapidly to become a single AA molecule and one dehydroascorbic acid
molecule [212]. On average, the aqueous humor of diurnal animals contains higher levels
of AA than that of nocturnal animals [213]. Therefore, AA is considered to play a very
important role in the mechanism that protects diurnal animals from eye damage caused
by UV light. The UV light-filtering effect of AA in the eye is mainly achieved through
absorption, fluorescence quenching, and fluorescence-mediated transformation [214]. AA
can significantly reduce UV light in the UVB and UVC bands. Although the ability of
AA to absorb UV light in the UVA band is poor, it can significantly reduce the effect of
UVA light on the eyes by means of fluorescence quenching and fluorescence-mediated
transformation [214]. AA can also assist other antioxidant molecules. For example, AA can
assist in the reduction of α-tocopheroxyl radicals to activated α-tocopherol [215], which
can inhibit lipid peroxidation.

AA is a water-soluble vitamin, therefore the increase in serum concentration that can
be achieved by oral administration is limited, as the excess portion will quickly be excreted
through the urinary system. Therefore, for ocular anterior segment diseases (such as
corneal defects and iECD), the local administration of AA can effectively increase the local
concentration. AA has been used to treat corneal epithelial defects because of its antioxidant
properties [216]. In a rabbit model, AA eye drops were shown to help the healing of corneal
wounds [217]. AA can prevent lipid peroxidation and CEC apoptosis [66]. It has been
reported that the intracameral infusion of AA can improve phacoemulsification-induced
CEC loss [218]. We observed that the prophylactical application of topical AA can improve
phacoemulsification-induced oxidative stress and loss of human CECs [219]. Furthermore,
it also has been shown that oxidative stress-induced cell autophagy and apoptosis can be
reversed by AA pretreatment [26].
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For the application of oral AA supplements, the antioxidant capacity and the con-
centration of antioxidants in the plasma or aqueous humor are inverse indicators of
the risk of senile cataracts [220]. Supplementation of vitamin C can reduce the risk of
cataracts in a population with insufficient antioxidant capacity or low plasma AA concen-
tration [221,222]. However, some studies have indicated that vitamin C supplementation
cannot prevent cataracts, slow the progression of cataracts, or reduce the probability of
cataract surgery [223–225]. These divergent results may be due to the complex causes of
cataracts (including UV light, diabetes, metabolic syndrome, drug use, high myopia, and
genetics), thus altering the effect of vitamin C antioxidant therapy.

It is difficult to administer drugs specifically to the posterior segment of the eye
(currently, only intraocular injection can be used); therefore, oral AA supplementation is
still the main method for posterior segment diseases (such as AMD). AMD is closely related
to apoptosis caused by oxidative stress. Currently, except for wet AMD with pathological
angiogenesis, anti-VEGF treatment can improve hemorrhage and retinal edema, but there
is no effective treatment for the progressive apoptosis of retinal cells. Despite the results of
large-scale clinical trials (14,236 participants) that found that AA supplementation could
not prevent AMD [213], in vitro cell experiments have revealed that pretreatment with AA
can help human RPE cells resist oxidative stress [226]. AA can suppress VEGF expression
in RPE cells [227]. Therefore, AA treatment may help improve the lesion environment
in wet AMD and delay disease progression. Glaucoma can also cause posterior segment
damage. At present, the treatment of glaucoma mainly involves drugs, lasers, and surgery
to reduce IOP to increase optic nerve blood perfusion indirectly and control related risk
factors, such as ROS. However, there is not a consistent conclusion regarding the effect
of AA treatment on glaucoma [228]. ROS caused by elevated IOP are an important factor
leading to the apoptosis of RGCs. Therefore, by controlling IOP, AA treatment may help
delay the degradation of RGCs caused by ROS.

In addition to the antioxidative mechanism of AA, topical AA application significantly
increased the ECD of granulomatosis patients with polyangiitis after phacoemulsification
in our previous study [229]. It has been further confirmed that noncanonical AA-glucose
transporter 1 (GLUT1)–extracellular signal-regulated kinase (ERK) axis-stimulated CEC
proliferation may contribute to the corneal endothelium regeneration [230]. AA and
valproic acid treatment can activate the proliferative activity of human fetal RPE (fRPE)
cells through the regulation of SRY-box transcription factor 2 (SOX2), and activated fRPE
cells can repair the damaged retina [231]. Therefore, AA treatment may alleviate oxidative
stress-induced ocular tissues damage by promoting cell proliferation and improving tissue
regeneration. It has been reported that AA could prolong the replicative lifespan in CEC
and adipose tissue-derived human mesenchymal stem cells [232,233]. It has also been
shown that AA could maintain the long-term self-renewal in human skeletal mesenchymal
stromal cells as well as result in prolonged replicative lifespan and sustained expression of
stem cell phenotype in human breast adult epithelial stem cells [234,235]. Adult stem cells
have been demonstrated in corneal endothelium, which is derived from ectoderm [236].
Collectively, we speculate that treatment results of AA on corneal endothelial dysfunction
could be also related to enhanced adult stem cells, while this viewpoint merits further
investigation.

In addition to antioxidant vitamins, many other natural antioxidant compounds (e.g.,
lutein, zeaxanthin, and curcumin) have been used to treat oxidative stress-related eye
diseases [237–239]. Lutein, zeaxanthin, and β-carotene are carotenoids present in the retina.
The concentration of zeaxanthin is greater than that of lutein in the retinal structure, and
zeaxanthin is mainly concentrated in the fovea of the macula. Similar to how the large
amount of AA present in the cornea plays an important role in antioxidation, the high
concentration of these carotenoids in the retina also indicates that they make significant
contributions to antioxidation [240,241]. The addition of lutein and zeaxanthin to the diet
can effectively increase MPOD [242]. This may help improve the proinflammatory and
proangiogenic profiles of AMD patients [243].
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Eye drops containing lutein, zeaxanthin, and curcumin can improve the maintenance
of the tear film in dry eye syndrome and relieve inflammation [237,244]. Although curcumin
does not exist in the human body, it has been widely used as a treatment and in health care
since 1937 because of its various effects (e.g., antioxidative, anti-inflammatory, inhibition of
angiogenesis, and promotion of cell proliferation) [245–247]. Curcumin has poor solubility
and is difficult to add to eye drops. The bioavailability of curcumin has been improved
through the development of the curcumin derivative tetrahydrocurcumin (THC) [248]. The
solubility, stability, and release rate of curcumin can also be controlled through the use
and development of nanocarriers. Curcumin-loaded microparticles have been shown to
promote CEC proliferation and resistance to oxidative stress [249]. In a cellular model, the
secretion of proinflammatory cytokines from macrophages and abnormal angiogenesis
were both inhibited [249]. Curcumin has been shown to inhibit corneal neovascularization
via the inhibition of the Wnt/β-catenin pathway [250,251] and to heal the corneal epidermis
of diabetic rats [252]. Curcumin can reduce the TM cell damage caused by oxidative stress
by inhibiting inflammation-related gene expression, mitochondrial ROS production, and
apoptosis and can be used for the treatment of glaucoma [253]. Curcumin protects human
retinal epithelial cells against oxidative stress [254,255]. Oral curcumin-based nutritional
supplementation can effectively inhibit angiogenesis in neovascular AMD patients [256]. It
has been used to treat chronic anterior uveitis and juvenile idiopathic arthritis-associated
uveitis [257,258]. The oral administration of curcumin can relieve chronic diabetic macular
edema and improve visual acuity [259]. The above reports demonstrate the therapeutic
value of natural antioxidants in ophthalmic diseases [248,260].

6. Conclusions

Oxidative stress is an important pathomechanism of ocular degenerative diseases.
Oxidative stress in the body is regulated by antioxidant mechanisms. Antioxidant im-
balances can affect the cornea, lens, retina, and optic nerve and cause such diseases as
KC, cataracts, AMD, and glaucoma. Using antioxidant biomarkers, patients with a low
antioxidant capacity can be identified, and antioxidant supplementation can be used for
disease prevention, delay, or treatment.
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