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Głęboka 31, 20-612 Lublin, Poland; tomasz.oniszczuk@umlub.pl
3 Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research

Institute, 24-100 Puławy, Poland; jmoldoch@iung.pulawy.pl (J.M.); ikowalska@iung.pulawy.pl (I.K.)
4 Toxicology Clinic, Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Stefan
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Abstract: Neurodegenerative disorders such as Alzheimer’s disease (AD) are distinguished by the
irreversible degeneration of central nervous system function and structure. AD is characterized
by several different neuropathologies—among others, it interferes with neuropsychiatrical controls
and cognitive functions. This disease is the number one neurodegenerative disorder; however, its
treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD
prevention and treatment, the application of plant-based natural products is especially popular due
to lesser side effects associated with their taking. Moreover, their neuroprotective activities target
different pathological mechanisms. The current review presents the anti-AD properties of several
natural plant substances. The paper throws light on products under in vitro and in vivo trials and
compiles information on their mechanism of actions. Knowledge of the properties of such plant
compounds and their combinations will surely lead to discovering new potent medicines for the
treatment of AD with lesser side effects than the currently available pharmacological proceedings.

Keywords: Alzheimer’s disease; neurodegeneration; dementia; polyphenols; terpenes; secondary
plant metabolites

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia globally. According
to the World Alzheimer Report 2019, over 50 million patients suffer from AD. Long-lasting
studies have revealed the multi-factorial character of the diseases that contribute to the
complexity of the disorder [1].

Among the most intensively studied pro-neurodegenerative factors are the follow-
ing: oxidative stress, amyloid-β accumulation leading to senile plaques, low level of
neurotransmitters in the brain (i.e., acetyl- and butyrylcholine), high level of metal ions
in the organism, and too high activity of monoamine oxidase (MAO) and neuroinflam-
mation [2–4]. An effective substance should therefore be active against several possible
pro-degeneration factors.

Similarly to other disorders, in the case of neurodegeneration, quick diagnosis of disease
is crucial for effective treatment. Hence, an additional complication results from the non-
specific character of the first AD symptoms. In the first stage of AD development, symptoms
are similar to typical chronic tiredness, along with memory disturbances. Unfortunately,
this stage is presented as crucial for treatment success. The middle stage and later symptoms
are more characteristic for neurodegeneration. In this case, significant memory and learning
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disturbances are apparent, along with insomnia and problems with interpersonal contacts,
which lead to complete dependency on third parties [1].

In the search for treatment for AD, besides synthetic drugs, recently, substances of
natural origin have been very popular. It is known that plants are inexhaustible source of
active compounds that are used as drugs in numerous disorders. Among the secondary
plant metabolites, polyphenols and terpenes are the most popular due to their rich biological
activities such as antioxidant, sedative, anti-inflammatory, antibacterial, enzyme inhibitory
effects [5].

The presented review is focused on natural compounds that reveal positive activity
(in vitro, in silico, in vivo) against various Alzheimer’s disease factors, along with their
mechanisms of action.

2. Activity Targeting Cholinergic Neurotransmission

The cholinergic system is associated with a number of cognitive functions, e.g., learn-
ing and memory. Cholinergic neurons are major source of innervation in the cortex and
hippocampus. They release choline O-acetyltransferase (ChAT), which takes part in the
production of acetylcholine (ACh) by catalyzing the transfer of acetyl group from the coen-
zyme acetyl-CoA to choline [2]. Acetylcholinesterase (AChE) and butyrylcholinesterase
(BuChE), expressed at lower levels than AChE), hydrolyze ACh back to choline [6]. The
cholinergic hypothesis proposes that the decline of cholinergic neurotransmission and loss
of these neurons in AD patients cause cognitive deficits [2]. Researchers found that besides
the decrease in the mRNA expression level of ChAT in the AD brain, its activity is also
reduced, which is asynchronous with synaptic loss [7].

For many years, research on AChE inhibitors has been a major avenue for drug
development for AD. In fact, three out of the four anti-AD drugs approved by the Food and
Drug Administration are AChE inhibitors. Unfortunately, the results of the clinical studies
demonstrate that their therapeutic effects are not as effective as expected. The brain of AD
patients contains very high concentrations of BuChE [8]. Therefore, other anti-AD strategies
targeting cholinergic neurons include BuChE inhibition and promotion of ChAT expression,
as well as protection of cholinergic neurons by stimulating the expression of nerve growth
factor (NGF), brain-derived neurotrophic factor (BDNF), and their receptors [6].

Both AChE and BuChE are associated with aggregation of Aβ plaques. AChE is
able to increase Aβ peptide fibril aggregation to form Aβ–AChE complexes. In general,
AChE activity is decreased in the AD brain, but its concentration could be enhanced while
binding to Aβ plaques. However, the association between AChE and BuChE with other
AD hallmarks remains largely unexplored [9].

An in vitro study on aqueous extracts from 80 traditional Chinese medicinal plants
(from families drawn from Berberidaceae, Ranunculaceae, and Rutaceae) showed that
extracts rich in isoquinoline alkaloids effectively inhibit AChE activity [10]. Moreover,
extracts of Berberis bealei, Coptis chinensis, and Phellodendron chinense, which are characterized
by a high content of isoquinoline alkaloids, were found to substantially constrain AChE.
Furthermore, combinations of three of the alkaloids palmatine, berberine, and coptisine
demonstrate a synergistic enhancement of ACh restriction. It is likely that the way of AChE
inhibition by crude extracts of Coptis chinensis, Berberis bealei, and Phellodendron chinense
is due to of this synergism of alkaloids. It should be emphasized that none of the active
extracts are cytotoxic at the concentrations that limit AChE [11].

It was also observed many years ago that ‘Compound Danshen Tablet’, a traditional
Chinese medicine, can improve spatial cognition. However, the in vivo neuroprotective
mechanism of the Compound Danshen Tablet in models of spatial memory impairment
in mice was not evaluated until 2014. The results of the research conducted by Teng
et al. [12] have found that this medicine increased ChAT expression in the brain, induced
BDNF production, and activated the protein kinase C (PKC) receptor to improve spatial
recognition in an AD rat model.
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Besides Compound Danshen Tablet, various other preparations and extracts used in
Chinese medicine have demonstrated therapeutic effects on AD through their effects on the
expression of NGF, BDNF, and their related receptors in vivo. The very popular Bushen-
Yizhi formula was noted, for example, to be able to regulate NGF signal transduction
and the anti-apoptotic cholinergic pathway to improve memory impairment in an AD rat
model [13]. Moreover, bioactive components of ginger 6-shogaol have increased the levels
of NGF and improved scopolamine-induced memory impairment in animal models of
dementia [14]. In addition, Xanthoceras sorbifolium extracts, rich in transhinone II, were
seen to save dendritic spines through the BDNF signal transduction pathway and improve
cognition in an AD rat model. Moreover, tanshinone IIA was found to be helpful in
promoting depolarization-induced BDNF synthesis [15], and Polygonum multiflorum
Thunberg complex was recognized to increase BDNF level and synapse number in the
hippocampus of an AD mice model [16]. Finally, extracts from Huperzia serrata (studies on
AD mice) were found to inhibit AChE activity and ameliorate the cognitive impairment [17].

Beyond the aforementioned substances, extracts from Crocus sativus in in vitro study
showed moderate inhibitory activity against AChE, while crocetin, dimethylcrocetin, and
safranal extracted from C. sativus have all been found to possess moderate AChE inhibitory
activities (IC50 values below or around 100 µM). Accordingly, results of kinetic analysis
exhibited mixed-type inhibition. This was verified by in silico docking studies. Here,
safranal was found to interact only with the binding site of the AChE, but crocetin and
dimethylcrocetin bound simultaneously to the catalytic and peripheral anionic sites. The
presented findings confirm previous results about the beneficial action of saffron against AD
and may be of value for the development of novel therapeutic agents based on carotenoid-
based dual binding inhibitors [18].

Other plant metabolites and extracts with anti-AD potential are listed in Table 1.

Table 1. Plant products with anti-AD potential possess activity targeting cholinergic neurotransmission.

Plant Extract Model and Assay Target Results Ref.

Salvia triloba L.
aerial parts

macerated in 70%
methanol

AD rats, male
(administration

of AlCl3)

AChE, CRP,
NF-κB, MCP-1

↓AChE activities in brain
and serum,
↓CRP, ↓NF-κB,
↓MCP-1, ↑ACh

[19]

Salvia triloba
samples

extracted with
75% ethanol at r.t.

in vitro enzymatic assay
(AChE), Swiss albino

mice, male
scopolamine-induced

amnesia

AChE

AChE inhibition, IC50:
0.71 mg/mL,

memory-enhancing effect:
57.1 and 71.4% at 200 and
400 mg/kg, respectively

[20]

Melissa officinalis
samples

extracted with
75% ethanol at r.t.

in vitro enzymatic assay
(AChE), Swiss albino

mice, male
scopolamine-induced

amnesia

AChE
↓AChE activities in brain,
memory-enhancing effect:

no significance
[20]

Teucrium polium
samples

extracted with
75% ethanol at r.t.

in vitro enzymatic assay
(AChE), Swiss albino

mice, male
scopolamine-induced

amnesia

AChE,

AChE inhibition, IC50:
0.55 mg/mL,

memory-enhancing effect:
55.4 and 61.6% at 200 and
400 mg/kg, respectively

[20]

Piper nigrum seeds extracted with
70% methanol at r.t.

SD rats, male
(administration of

AlCl3)

AChE, CRP,
NF-κB, MCP-1

↓AChE activities in brain
and serum,
↓CRP, ↓NF-κB,
↓MCP-1, ↑ACh

[19]

Foeniculum vulgare fruit extracted with
90% methanol at r.t.

Swiss mice,
scopolamine- and

aging-induced amnesia
AChE

amnesia behavioral
improvement,

↓AChE activities↓ in brain
[21]
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Table 1. Cont.

Plant Extract Model and Assay Target Results Ref.

Ocimum sanctum water extract,
refluxed at 75–80 ◦C

Wistar rats; male;
maximal electroshock-,

atropine-, and
cyclosporine-induced

dementia

AChE cognitive behavioral
performance improvement [22]

Ocimum sanctum
Linn

leaf extracted with
95% ethanol extract

using Soxhlet

Wistar rats; male;
maximal electroshock-,

atropine-, and
cyclosporine-induced

dementia

AChE

cognitive behavioral
performance improvement
↓AChE activities↓ in cortex,

cerebellum, medulla
oblongata, and midbrain

region: 21%, 21%, 25%, and
30% at 500 mg/kg

[22]

Lavandula
angustifolia Mill.

essential oils
obtained from steam

distillation

C57BL/6J mice, male,
scopolamine-induced

amnesia; H2O2-induced
PC12 (1.5–50 µg/mL

LO for 24 h)

AChE, ROS,
MMP

cognitive behavioral
performance improvement,
↓AChE activities, ↓MDA,
↑SOD activities↑,
↑GPX activities,

PC12 cells model: ↓LDH,
↓NO, ↓ROS, ↑MMP

[23]

Olive oil (fruit oil
of Olea europaea)

olive oil
(rich in oleic acid)

ICR mice, male,
intracerebroventricular
injection of Aβ into the

mice brain

MDA, NO,
COX-2 ↓MDA, ↓NO, ↓COX-2 [24]

Corn oil (Zea mays) corn oil (rich in
linoleic acid)

ICR mice, male,
intracerebroventricular
injection of Aβ into the

mouse brain

AChE, MDA,
NO, iNOS,

COX-2

↓AChE, ↓MDA, ↓NO,
↓COX-2, ↓iNOS [24]

Perilla oil (Perilla
frutescens)

perilla oil (rich in
α-linolenic acid)

ICR mice; male,
intracerebroventricular
injection of Aβ into the

mouse brain

AChE, MDA,
NO, iNOS,

COX-2, BDNF

↓AChE, ↓MDA, ↓NO,
↓COX-2, ↓iNOS↓, ↑BDNF [24]

Coffee boiled water
extraction in vitro enzymatic assay AChE AChE inhibition, IC50:

0.41 ± 0.004 mg/mL [25]

Shaddock
(Citrus maxima) citrus fruit juices

Fe2+-induced
malondialdehyde

production in rat brain
homogenate in vitro

AChE
AChE inhibitory rate of

60.39% at 66.68 mL/L and
of ≈ 28% at 16.67 mL/L

[26]

Grapefruit
(Citrus paradisii) citrus fruit juices

Fe2+-induced
malondialdehyde

production in rat brain
homogenate in vitro

AChE

AChE inhibitory rate
of ≈ 52% at 66.68 mL/L;

AChE inhibitory rate
of ≈ 29% at 16.67 mL/L

[26]

Lemon
(Citrus limoni) citrus fruit juices

Fe2+-induced
malondialdehyde

production in rat brain
homogenate in vitro

AChE
AChE inhibitory rate

of ≈ 48% at 66.68 mL/L and
of ≈ 22% at 16.67 mL/L

[26]

Orange
(Citrus sinensis) citrus fruit juices

Fe2+-induced
malondialdehyde

production in rat brain
homogenate in vitro

AChE
AChE inhibitory rate

of ≈ 50% at 66.68 mL/L and
of ≈ 30.89% at 16.67 mL/L

[26]

Tangerine
(Citrus reticulata) citrus fruit juices

Fe2+-induced
malondialdehyde

production in rat brain
homogenate in vitro

AChE
AChE inhibitory rate

of ≈ 57% at 66.68 mL/L and
of ≈ 20% at 16.67 mL/L

[26]
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Table 1. Cont.

Plant Extract Model and Assay Target Results Ref.

Extra-virgin olive
oil (Olea europaea) extra-virgin olive oil TgSwDI model

Aβ, tau, ApoE,
PPARγ, and

LXRs

cognitive behavioral
performance improvement,

↓Aβ, ↓tau,
↓phosphorylation of tau,
↑ApoE, ↑PPARγ, ↑LXRs
↑Aβ clearance pathways

[27]

Green tea
(Camellia sinensis)

water extract of
green tea in vitro enzymatic assay AChE, BuChE,

and BACE-1
AChE inhibition, IC50:

7.2 µg/mL [28]

White tea (Camellia
sinensis, WTE)

water extract of
white tea in vitro enzymatic assay AChE AChE inhibition, IC50:

8.06 µg/mL [28]

Green tea (Camellia
sinensis, GTE-PG)

water extract of
green tea processed
through simulated

gastrointestinal
digestion to obtain

post-gastric
digested extract

in vitro enzymatic assay AChE AChE inhibition, IC50:
17.84 µg/mL [28]

Green tea (Camellia
sinensis, GTE-CA)

water extract of
green tea processed
through simulated

gastrointestinal
digestion to obtain

colon-available
digested extract

in vitro enzymatic assay AChE AChE inhibition, IC50:
9.59 µg/mL [28]

White tea (Camellia
sinensis, WTE-PG)

water extract of
white tea processed
through simulated

gastrointestinal
digestion to obtain

post-gastric
digested extract

in vitro enzymatic assay AChE AChE inhibition, IC50:
16.1 µg/mL [28]

White tea (Camellia
sinensis, WTE-CA)

water extract of
white tea processed
through simulated

gastrointestinal
digestion to obtain

colon-available
digested extract

in vitro enzymatic assay AChE AChE inhibition, IC50:
4.22 µg/mL [28]

Black tea
(Camellia sinensis)

water extract of
black tea in vitro enzymatic assay AChE and

BuChE

AChE inhibition, IC50:
0.06 ± 0.005 mg/mL;

BuChE inhibition, IC50:
0.05 ± 0.007 mg/mL

[25]

Green tea
(Camellia sinensis)

water extract of
green tea

Wistar rats; male;
injection with green tea
extract, saline, or AlCl3

into the left-brain
hemisphere cornu

ammonis region 1 of
the hippocampus

AChE

↑COX and AChE activities
with GTE injection,
↓AlCl3 neurotoxicity,

3-epigallocatechin gallate
and epicatechin in extract

improves cholinergic
synaptic functions

[29]

Black tea
(Camellia sinensis) brewed at 85 ◦C

Wistar rats, male, AlCl3
(100 mg/kg, i.p. 60 days)

induced AD

AChE, APP, β
and γ

secretases, Aβ

memory-enhancing effect
↓TBARS, ↑GSH, ↑SOD,
↑catalase, ↑GPx

[30]
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3. BACE-1 Inhibitory Activity

One of the most studied neurodegenerative factors is amyloid-β accumulation. This
plays a key role in the aggregation of neurotic senile plaques. In young healthy organisms,
the Aβ peptides are released outside of cells, removed, and excreted. With age, the
process is disturbed, and the ability of the organism to get rid of amyloid compounds is
reduced. This leads to accumulation of the forms in the brain. Many years of research have
allowed for detailed analysis of the creation of Aβ structures, as well as their influence on
brain functioning.

It is known that amyloid-β is created in two stages. In the first, the amyloid precursor
protein (APP) cleaves the enzyme BACE-1 (β-secretase), known also as Asp2. This stage
leads to the generation of soluble versions of protein (sAPPβ) and a 99 amino acid fragment
(C99), which, in turn, is treated with a second enzyme γ-secreatse to produce peptides
composed of 38–43 amino acids (termed epsilon, ε; zeta, ζ; and gamma, γ) and AICD
(APP intracellular domain) [31]. Among these, the greatest threat is Aβ40 and Aβ42, both
being main products and simultaneously playing crucial roles in senile plaque creation. It
is worth stating that Aβ42 is the most toxic form and has high predispositions towards
aggregating. This is particularly evident in a familial form of AD [32,33].

The importance of BACE-1 activity results from its ability to determine total amyloid-β
production and to induce overproduction of toxic Aβ42. In the luminal surface, it is a
membrane anchored aspartyl protease responsible for APP cleaving [33]. From a structural
point of view, the enzyme is characterized by a large and elongated active site (1000 Å and
20 Å, respectively), along with a large catalytic domain with centrally located catalytic
aspartates Asp32 and Asp228 [34]. Molecular simulations revealed that the key interacting
residue is Arg307 at the edge of the catalytic cleft [35]. Additionally, molecular simulations
revealed four residues creating group-specification in the ligand binding side, namely,
Pro70, Ile110, Ile126, and Asn233 [36]. It is known that the catalytic activity of β-secretase
involves aspartic proteases hydrolyzing peptide bonds.

In accordance with Shimizu et al. [37], BACE-1 activity is directly affected by the
behaviors of water (Wat) molecules, and the molecules participate in the creation of the
following hydrogen-bonding network: Wat–Ser35–Asp32–Wat–Asp228. An equally impor-
tant amino acid residue is Leu30, which is responsible for stabilizing the bound inhibitor
conformation [37].

Several inhibitors that were tested in phase II or phase III clinical trials were the result
of multiple years of research on the enzyme. Among them are the following: lanabecestat,
verubecestat, elenbecestat, atabecestat, and umibecestat [31]. Selected doses of the sub-
stances led to reduction of Aβ in the cerebrospinal fluid by 90%. Of note, in the clinical
trials, a high level of BACE inhibition to achieve Aβ lowering was the goal, and the effects
of lower doses of active substances were not investigated [38].

Information obtained from the studies indicates that the optimal therapeutic window
might be before the onset of appreciable Aβ plaque deposition; hence, the solution can be
used in preventive therapy [39]. It is known that the effectiveness of preventive therapy
depends on the length of drug administration, and thus side effects of the solution must
be minimalized. In the case of BACE-1 inhibitors, adverse effects were observed both in
non-clinical studies and clinical trials. The following negative changes were observed:
off-target effects: retinal toxicity in an animal model and hepatotoxicity in humans [38,40],
and mechanism-based effects: cognitive decline, anxiety, weight loss, sleep disturbances,
and suicidal ideation [41–43].

When therapy based on BACE inhibitors is considered, a milestone is appropriate
dosage. In accordance with available study results, there is a therapeutic window for the
enzyme inhibitor concentration, namely, 3 nM concentration of BACE inhibitor caused 40%
inhibition of APP processing, whereas concentration > 300 nM led to significant inhibition
of BACE-dependent neuronal growth cone collapse [38,44].

In this subsection, attention will be focused on natural compounds derived from plants
that were studied in vitro, in silico, and in vivo towards their BACE-1 inhibitory activity
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(Table 2). Taking into account an inexhaustible source of natural active compounds, it
is highly probable to find substances that are highly active inhibitors that come without
adverse side effects.

Table 2. Selected natural compounds which activity towards BACE-1 inhibition was confirmed in
in vitro, in silico, or in vivo studies.

In Vitro and In Silico Studies towards BACE-1 Inhibition

Compound Type of
Study/Methodology Mechanism of Action Studies Results/Comment References

Two serratene-type
triterpenoids: lycernuic

acid A with a
ρ-hydroxycinnamate

group as an ester
substituent and

21β-hydroxyserrat-14-
en-3,16-dione extracted

from Lycopodiella
cernua L.

1. BACE1 fluorescence
resonance energy
transfer (FRET)
assay kit

2. Molecular docking
simulation in ChE
inhibition-Autodock
VINA

Interactions with several
pocket domains of the
AChE, which were 5 Å

from the inhibitors in the
original complex.

IC50 = 0.23 µM and 0.98
µM, respectively. The
compounds revealed

higher inhibitory activity
than quercetin,

a positive control.
[31,45]

Embelin (3-undecyl-1,4-
benzoquinone) from

Embelia ribes

1. The BACE-1
fluorescence
resonance energy
transfer (FRET)
assay kit

2. Molecular modelling
using Maestro v9.0
and Impact
program v5.5

Molecular docking
revealed entering of

embelin into the active site
gorge and interacting with

Tyr71 (via hydrogen
bonding).

IC50 = 2.11 µM. Lower
activity than donepezil, a

positive control.

[31,46]

Five arylbenzofurans:
sanggenofuran A,
mulberrofuran D,
mulberrofuran H,

morusalfuran B, and
mulberrofuran D2 from

the root bark of
Morus alba

1. BACE1 fluorescence
resonance energy
transfer (FRET)
assay kit

2. Molecular docking
analysis carried out
in AutoDock 4.2. but
only for one
compound,
mulberrofuran D2

Molecular docking
revealed the following

interactions for
mulberrofuran: D2 bound
to the active allosteric site

of BACE-1 through
hydrogen bonds with

Asn37, Ser36, and Tyr198,
as well as hydrophobic
interactions with Val69,
Tyr71, Trp76, Phe108,

Tyr198, and Ile126

Sanggenofuran A revealed
lower activity

(IC50 = 5.64 µM) than
mulberrofuran D

(IC50 = 3.74 µM), and both
compounds were less
active than quercetin
(IC50= 3.38 µM). The

remaining compounds
revealed higher activity in
comparison to quercetin:

mulberrofuran D2,
mulberrofuran H, and

morusalfuran B, for which
IC50 was equal to: 0.73 µM,

1.04 µM, and 2.03 µM,
respectively.

[31,47]

Fifteen ptesorin
derivatives from

Pteridium aquilinum

1. BACE1 FRET assay
2. Docking studies

carried out using
AutoDock
4.2.6 software

(2R)-Pteroside D was able
to bind (hydrogen bonds)
with Asn37, Trp76, and

Ile126; (2R,3R)-pteroside C
was able to create

hydrogen bonds with
Ser36, Asn37, Asp228, and

Thr231, as well as
hydrophobic interactions
with Ala39, Trp76, Val69,

Ile118, and Arg129;

The most active
compounds were the

following: (2R)-pteroside
D, (2S,3R)-pteroside C,

(2R,3R)-pteroside C, and
(3S)-pteroside D

(IC50 = 2.55, 9.17, 3.77, and
27.4 µM, respectively).

(2R)-Pteroside D,
(2R,3R)-pteroside C, and
(3S)-pteroside D revealed

[48]
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Table 2. Cont.

In Vitro and In Silico Studies towards BACE-1 Inhibition

Compound Type of
Study/Methodology Mechanism of Action Studies Results/Comment References

(3S)-pteroside D was able
to create hydrogen bonds
with Ser36, Asn37, Ile126,

and Asp228, as well as
hydrophobic interactions
with Val69, Tyr71, Trp76,

and Arg128.

higher inhibitory activity
than quercetin. The

compounds revealed the
ability to bind with crucial

amino acid residues,
creating BACE-1 binding

sites.

Three phlorotannins:
eckol, dieckol, and

8,8′-bieckol isolated
from Ecklonia cava

1. Fluorometric assays
with recombinant
human BACE1

2. Molecular docking
with the use of
Autodock Vina
software version 1.1.2

Dieckol revealed the ability
to interact with Trp76,

Thr232, and Lys321
through hydrogen bonds.

8,8′-Bieckol interacted with
the BACE-1 active site by

hydrogen bonding
interactions with Lys107,

Gly230, Thr231,
and Ser325.

Dieckol and 8,8′-bieckol
revealed higher inhibitory
activity than reseveratrol

(positive control) with
IC50 = 2.34 and 1.62 µM,

respectively.

[49]

Flavonoids and
non-flavonoids: caffeic
acid, hydroxytyrosol,

oleuropein,
verbascoside, quercetin,

rutin, and luteloin
isolated from Olea

europaea L.

1. BACE inhibitor
screening assay kit

The compound structure
analysis suggests that the
3,4-dihydroxy group and

double bond in olive
biophenols can interfere
with hydrogen bonds of
the NH2 group and NH
hydrogens in the core

structure of the BACE-1
enzyme. The higher

activity of flavonoid olive
biophenols in comparison

to non-flavonoid olive
biophenols results from

their chemistry-a 15-carbon
skeleton consisting of two
benzene rings linked via

the heterocyclic
pyrene ring-C.

Caffeic acid,
hydroxytyrosol,

oleuropein, verbascoside,
quercetin, rutin, and

luteloin revealed higher
inhibitory activity than

positive control
epigallocatechin gallate,
with the following IC50
values: 16.67, 0.035, 2.76,
0.0063, 0.55, 0.0038, and
0.52 µM, respectively.

[50]

Flavonoids: bavachin,
bavachinin,

bavachalcone, and
iso-bavalchacone

isolated from
Psoralea fructus

1. BACE-1 activity
assay performed
using assay kits

2. Docking studies
conducted using
Autodock Vina

Structure analysis of
studied compounds

revealed that the chalcone
backbone of bavachalcone
and isobavachalcone was

more flexible, which
allowed them to fit more

easily to the conformations
of Aβ42 and enabled more
hydrogen bonds than the

flavanone of bavachin and
bavachinin. Bavachalcone
and isobavachalcone may
stabilize Aβ42 monomers

through their strong
bindings, whereas

bavachinin might induce

BACE-1 inhibition:
14% (bavachin at

concentration 100 µM),
20% (bavachinin at

concentration 100 µM),
68% (bavalchacone at

concentration 100 µM), and
34% (iso-bavalchacone at
concentration of 100 µM).

[51]
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Table 2. Cont.

In Vitro and In Silico Studies towards BACE-1 Inhibition

Compound Type of
Study/Methodology Mechanism of Action Studies Results/Comment References

intricate conformational
changes of Aβ42 through

binding, which leads to the
off-pathway aggregation.

Linalool and
2,3,4,4-tetramethyl-5-

methylene-cyclopent-2-
enone isolated from

Lavandula luisieri

1. proBACE-1
enzymatic assay

Lack of
mechanisms analysis.

Inhibitory activity for
linalool was equal to 4.7,

whereas 2,3,4,4-
tetramethyl-5-methylene-

cyclopent-2-enone was
31.8% at a concentration of

45 µg/mL.

[52]

Ajmalicine and
reserpine

1. Molecular docking
with use of
AutoDock 4.2

2. BACE-1
inhibitory assay

Strong binding of the
compounds to the catalytic
site of BACE-1. Reserpine

interacted with Thr72,
Asp32, and Asp217 by five
hydrogen bonds, whereas

ajmalicine was able to
create hydrophobic

interactions with Asp32
and Asp228. Thanks to the
reserpine indole ring, the

compound acted as a
hydrogen bond donor

capable of creating double
hydrogen bonds with the

catalytic site of the enzyme,
whereas ajmalicine bound

more strongly to the
enzyme by hydrophobic

interactions.

AJM showed
the maximum inhibition of

BACE-1 activity to be
69% at 50 µM

concentration, whereas
RES imparted

47% inhibition at the
same concentration.

[53]

(S)-5,7,3′,5′-
Tetrahydroxy-

flavanone-7-O-(6”-
galloyl)-β-D-

glucopyranose (1);
flavanone: (S)-5,7,3′,5′-

tetrahydroxy-
flavanone-7-O-β-D-

glucopyranose (2), and
dihydrochalcones:
4,2′,6′-trihydroxy-

dihydrochalcone-4′-O-
(6”-galloyl)-β-D-

glucopyranose (3);
3,4,2′,6′-

tetrahydroxydihydr-
oflavone-
4′-O-β-D-

glucopyranose (4);
3,4,2′,6′-tetrahydroxy-
dihydrochalcone-4′-O-

(6”-galloyl)-β-D-
glucopyranose (5);

1. Fluorescent
resonance energy
transfer (FRET)
peptide cleavage
assay

Lack of mechanism
analysis.

In vitro studies revealed
the activity of the

compounds to inhibit
BACE-1; nevertheless, only

compounds 1, 2, 4, and 5
turned out to be a little

more active than the
positive control. None of

the substances achieved an
inhibition capacity of 50%
at 10 µM concentration.

[54]
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Table 2. Cont.

In Vitro and In Silico Studies towards BACE-1 Inhibition

Compound Type of
Study/Methodology Mechanism of Action Studies Results/Comment References

and phloretin 4′-O-[4′,
6′-O-(S)-HHDP]-β-D-
glucoside (6) isolated

from Balanophora
involucrata Hook.

The chemical
components of W.

fruticosa viz. botulin,
betulinic acid, ursolic

acid, ellagic acid,
quercetin, kaempferol,

oenothein C, and
cyanidn-3,5-
diglucoside.

1. Fluorescence
resonance energy
transfer (FRET) assay

2. Molecular docking
with the use of
Schrodinger’s
Glide Module

The high activity of ellagic
acid resulted from

hydrogen bonding with
Thr231, Asp228, Gly34, and
Trp76 amino acid residues.
Additionally, hydrophobic
interactions were observed
between aromatic rings of
the acid and Trp115 and

Tyr71 residues.

Among the compounds,
ellagic acid and quercetin

revealed the highest
activity (70% BACE-1

inhibition at 100 µM). The
most active was ellagic
acid (IC50 = 16.2 µM).

[55]

3,4-di-o-Caffeylquinic
acid, apigenin, and
7-o-methylwoonin

isolated from A.
paniculata

1. Molecular docking
with the use of the
Glide tool

2. BACE-1FRET
assay kit

The 3,4-di-o-caffeylquinic
acid was able to bind with

Trp71, Phe108, Gly34,
Arg128 (first pose) and

Ile126, Trp76, and Tyr198
(second pose) by hydrogen

bonds. Hydrophobic
interactions were

also observed.

BACE-1 inhibition assay
indicates that

3,4-di-o-caffeylquinic acid
is the most promising

inhibitor (activity slightly
higher than quercetin),
whereas the activity of

7-o-methylwogonin was
similar to quercetin and the

activity of apigenin was
slightly weaker than

quercetin. In accordance
with molecular docking,

3,4-di-o-caffeylquinic acid
showed the highest ability
to bind with the BACE-1
active site. Hydrophobic

interactions and hydrogen
bonds allow achieving

selective BACE-1 inhibition
by the compound.

[56]

Proroberberine
alkaloids: berberine,

palmatine,
jateorrhizine,

epiberberine, coptisine,
groenlandicine, and

eporphine
alkaloid-magnoflorine
from Coptidis Rhizoma

1. BACE-1 inhibitory
assay based on
manufacturer
protocol

The activity of epiberberine
and groenlandicine is

closely related with the
presence of the

methylenedioxy group in
the D ring that is

responsible for the BACE-1
inhibitory activity of

protoberberine alkaloids.

Among the compounds,
only epiberberine and

groenlandicine revealed
good, non-competitive

BACE-1 inhibitory
activities, with IC50 = 8.55
and 19.68 µM, respectively.

[57]

In Vivo and Ex Vivo Studies towards BACE-1 Inhibition

Compound Animal Models/Type of
Study/Methodology

Mechanism of Action Studies Results/Comment References

Berberine
(isoquinoline alkaloid)

New Zealand white rabbits.
Lesion (pro-Alzheimer’s
disease) was induced by

aluminum-maltol injection
into intraventricular fissure.

The mechanism of CNS cell
damage prevention by
berberine was based on

BACE-1 inhibition, as well
as its antioxidant,

Results indicated that
berberine chloride has a

preventative effect on the
degeneration of the

hippocampus, along with

[58]
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Table 2. Cont.

In Vivo and Ex Vivo Studies towards BACE-1 Inhibition

Compound Animal Models/Type of
Study/Methodology

Mechanism of Action Studies Results/Comment References

Berberine chloride
(50 mg/kg) was

administered
intragastrically once daily

for 14 days.
Histopatological

examinations (brain tissue)
were performed. BACE-1
activity was detectable by

RP-HPLC.

anti-inflammatory, and
AChE inhibitory activities.

the ability to decrease the
activity of BACE-1.

Berberine prevented the
increase in enzyme activity

in 40% of all cases, as
compared with the

control group.

2,2′,4′-
Trihydroxychalcone

(TDC) from
Glycyrrhiza glabra

APP-PS1 double transgenic
mice model (B6C3-Tg

(APPswe, PS1dE9)). The
studied substance was

administered i.p. by
100 days to two groups

with different doses
(9 mg/kg/day and

3 mg/kg/day). The mice
were applied to the MWM

spatial memory test.
Additionally, Western blot

analysis for BACE-1
was conducted.

This is a specific
non-competitive BACE-1

inhibitor. Taking into
account the low molecular
weight of TDC, it is highly

probable that the
compound is able to cross

the blood–brain barrier
in vivo.

Administration of TDC
(9 mg/kg/day) caused

significant decreasing of
Aβ production and senile

plaque formation. The
activity resulted in memory
improvement, as observed
in the Morris water maze

test. It was also determined
that the level of BACE-1 in
TDC-treated Tg mice was
almost kept unchanged, as
compared with those in the

vehicle-treated Tg mice.

[59]

Gallic acid Male B6.Cg-Tg(APPswe,
PSEN1dE9) 85Dbo/Mmjax

mice (bearing ‘Swedish’
APPK595N/M596L and

PS1 exon 9-deleted mutant
human transgenes) on a

congenic C57BL/6J
background (designated
APP/PS1 mice). GA was

administered with
20 mg/kg/day for

6 months. Two behavioral
tests were conducted:
Y-maze and RAWM.

The activity of gallic acid
towards BACE-1 inhibition
led to nonamyloidogenic

APP metabolic effects. GA
is able to inhibit the

enzyme activity
post-translationally.

Gallic acid demonstrated
the ability to mitigate
impaired learning and
memory and reduce

cerebral amyloidosis. A
6 month oral therapy based

on GA completely
remediated behavioral

deficits, ameliorated
cerebral amyloidosis, and

reduced amyloid
abundance.

[60]

Anatabine Measurement of BACE-1
expression by RT-qPCR

according to SHSY-5Y cells.
Pharmacokinetic studies of
anatabine were performed
using 43-week-old B6/SJL

F1 mice. The studied
substance was

administered i.p. at
dosages of 0.5 and

2.0 mg/kg/day over
4 days.

Mechanism of Aβ
reduction was based on the

impact of anatabine on
BACE-1 transcription. The

compound was able to
reduce BACE-1 protein

levels in human
neuronal-like
SHSY-5Y cells.

Reduction was indicated of
two forms of amyloid

(soluble-40% reduction and
insoluble-30% inhibition)

after 4 days of drug
administration at a dosage

of 2 mg/kg.

[61]

4. α-Synuclein Inhibition

Research results provide scientific evidence confirming the correlation of neuronal
mitochondrial dysfunction with the pathogenesis of neurodegenerative diseases, includ-
ing AD [62]. Abnormal accumulation of α-synuclein induces an alteration of normal
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mitochondrial function, leading to neuronal degeneration and strong oxidative stress [63].
This low molecular weight protein can activate microglia and release proinflammatory
cytokines such as NO and ROS, resulting in microglial activation, neuronal death, and
further inflammation [64].

Synucleinopathic disorders involve the accumulation of inclusions rich inα-sunuclein [65,66].
Different types of aggregates, e.g., fibrils, protofibrils, and oligomers, are produced during
aggregation of these protein in synucleinopathies. Some aggregated species might be
neurotoxic and lead to neurodegeneration [67]. For this reason, targeting neuronal accumu-
lation of α-synuclein is appealing as a promising approach to delaying the progression of
AD [68,69].

Limited amounts of research have been published thus far on inhibiting α-synuclein
aggregation by natural compounds [70]. Ehrnhoefer et al. [71], however, demonstrated that
epigallocatechin-3-gallate (EGCG) inhibits the fibrillogenesis of these protein by directly
binding to natively unfolded polypeptides and preventing their conversion into toxic ag-
gregation intermediates. Moreover, computational molecular docking analysis showed that
this plant compound preferentially bound the C-terminus of α-synuclein. Other studies
have revealed that epigallocatechin-3-gallate promotes the production of unstructured, non-
toxic α-synuclein. These phenomena suggest its favorable effect on aggregation pathways
in AD. In addition, the results of studies conducted by Hornedo-Ortega et al. [72] showed
that protocatechuic acid (doses 10, 20, 50, and 100 µmol/L) inhibits Aβ and α-synuclein
aggregation. What is more, protocatechuic acid disturbs the stability of prefabricated fibrils
and inhibits Aβ- and α-synuclein-induced PC12 cell death.

5. MAO Inhibition

Monoamine oxidase (MAO) is an enzyme bound with the mitochondria that catalyzes
the oxidative deamination of a range of neurotransmitters e.g., serotonin, tyramine, nore-
pinephrine, and dopamine. This process produces (during the biochemical reaction) several
harmful side compounds, including peroxides, ammonia, and aldehydes. This enzyme
occurs in MAO-A and MAO-B isoforms. They show remarkable sequence similarity but
differ in their substrate-inhibitor recognition sites and presence within the tissues. MAOs
catalyze the oxidative deamination of several monoamines and play important roles in
metabolism-released neurotransmitters [73]. Both isoforms MAO-A and MAO-B possess
73% sequence similarity; however, in the central nervous system, the MAO-A form is
present mostly in catecholaminergic neurons, whereas the MAO-B form is mostly found in
serotonergic neurons and in the glia [74].

In many neurodegenerative diseases, including AD, amended levels of neurotransmit-
ters are observed [75]. Activated MAO causes amyloid beta aggregation by two successive
cleft b-secretase and g-secretase effects upon the amyloid precursor protein. Moreover, this
enzyme participates in cognitive damage through the destruction of cholinergic neurons, as
well as through disturbance of the cholinergic system. MAOs also regulate mood control,
motor function, and brain and motivational functions [76–78]. MAO enzyme inhibition
causes an anti-AD effect as a result of oxidative stress decrease prompted by MAO. Inhibitors
of MAO can block the catalytic activity of the enzyme and slow down the catabolism process
of various monoamines. They also increase the production of the monoamine neurotrans-
mitters that are accumulated in the nerve terminals. Inhibitors of this enzyme are applied
as medicines in diseases where MAO is over-expressed. These drugs halt the production of
neurotoxic side substances and thus prevent neuronal damage [79].

Radioenzymatic screening in brain autopsy has revealed that the alterations in MAO-A
and MAO-B in the prefrontal cortex are present from the beginning of AD and remain
constant in the later AD stages. In addition, levels of MAO-A and MAO-B and/or mRNA
may rise in various brain areas, including in the frontal lobe of the neocortex and also in
the parietal, temporal, occipital, and frontal cortices [73]. Studies using immunostaining
demonstrate that in AD, the MAO-B level is significantly increased in the hippocampus
and in the cortical areas, whereas MAO-A activity is enhanced in the frontal pole and
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hypothalamus [80]. This indicates that cell loss and substantial gliosis in these brain areas
has occurred. The presence of MAO-A in the neurons is implicated in the pathology of AD
as a predisposing factor, and activation of MAO occurs during AD cognitive dysfunction.

Monoamine neurotransmitter systems play significant roles in cognition at the biomolecu-
lar level, especially in memory, attention, paranoid thinking, behavior, and emotion, as well
as orientation [73,81]. Oxidative stress related to MAO is a well-recognized cause of neuro-
transmitter dysfunction in AD [82]. Indeed, neuroinflammation participates significantly in
cognitive loss and in oxidative stress, and in AD, MAO may have pro-inflammatory effects,
as activated MAO increases levels of monoamine in the brain. Moreover, research indicates
that MAO alters other neurotransmitter systems resulting in cogitative impairments [83].
In addition, changes in the concentration of dopamine and serotonin acid metabolites
(homovanillic acid and 5-hydroxyindole-3-acetic acid), mediated by MAO and established
via AD-related mouse models pathology, are known to be related to cognitive deficits [84].

Amyloid plaques are also produced through MAO activation. High oxidative stress
in AD patients results in amyloid plaque formation, and an increased level (>3-fold)
was notably found in sensitive astrocytes around plaques (amyloid-beta). In astrocytes,
this increasing level of MAO-B is hypothesized to result in excessive deamination of
monoamines and the release of large amounts of oxygen radicals; hence, it could contribute
to the progress of AD. Research on AD mice demonstrates that MAO-B is firmly related
with the formation of GABA (gamma-aminobutyric acid) in sensitive astrocytes, and this
effect brings about memory deterioration [85].

Many natural substances are used in medicine, such as MAO-A and MAO-B inhibitors,
in the treatment of neurodegenerative diseases, including AD. MAO-B inhibitors not only
enhance dopaminergic neurotransmission, but they also reduce the radical production
from toxins. Larit et al. [86] isolated quercetin and myricetin from Hypericum afrum, as well
as genistein and chrysin from Cytisus villosus, and evaluated their effect upon recombinant
hMAO-A and hMAO-B in in vitro studies. Therein, quercetin, myricetin, and chrysin
induced MAO-A inhibition activity with IC50 values of 9.93, 1.52, and 0.25 µM, respectively,
whereas genistein was found to be a most effective potent inhibitor of MAO-B, with an IC50
value of 0.65 µM. In addition, computational docking and dynamic simulation showed
its ability to effectuate neuroprotection and MAO-A and MAO-B binding affinity at the
molecular level [86].

Baek et al. [87] obtained bisdemethoxycurcumin and demethoxycurcumin from Cur-
cuma longa. These compounds were tested for MAO-A and -B inhibitory activity. Both
compounds were found to be potential inhibitors against the MAO-B enzyme, with high
IC50 values [87]. This study suggests that the investigated curcumin derivatives could be
potent inhibitors for the treatment of MAO related disorders. Other research [88] isolated
alternariol monomethyl ether (AME) from Alternaria brassicae. In these experiments, AME
exhibited high and selective hMAO-A inhibition. However, this compound was found
to be less effective for MAO-B inhibition. Chaurasiya et al. [89], in turn, isolated acacetin
7-methyl ether from Turnera diffusa and analyzed its in vitro inhibitory activity against re-
combinant hMAO-A and hMAO-B. This compound was discovered to be a potent selective
MAO-B inhibitor, with an IC50 value of 198 nM. Furthermore, the molecular docking and
molecular dynamic experiments showed that the compound displayed selectivity stable
and strong inhibition of the MAO-B enzyme.

Mohamed et al. [90] isolated 14 compounds from Zanthoxylum flavum stems and
evaluated their recombinant human MAO inhibition. The results of the study revealed
that compound 3-sesamin exhibited potent selective MAO-B impediment (IC50 value of
1.45 µM). The promising MAO-B inhibitory activity of sesamin inclined the authors to
explore its kinetic properties, binding mode, and the mechanism of MAO-B restriction.
Detailed investigation substantiated reversible binding and mixed MAO-B catalytic func-
tion constraint by sesamin. This study provided promising findings for further in vivo
investigation to confirm the therapeutic potential of sesamin.
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Rauhamäki et al. [91] designed and synthesized numerous 3-phenylcoumarin derivatives
and subsequently screened them for MAO-B inhibitory activity. They found 24 coumarin
derivatives that are promising inhibitors of selected MAO-B (IC50 in the range 100 nM–1 µM).
This study also researched the best ligand lipophilicity efficiency. This work indicates that
in the future, 3-phenylcoumarin derivative drug development can be developed into being
pharmacologically more active inhibitors. Yang et al. [92], in turn, synthesized and studied the
in vitro activity of 3-arylcoumarin derivatives. In the work, most of these substances exhibited
good activity against MAO, AChE, and BuChE enzymes; thus, potentially, they could become
anti-AD drugs. The optimal compound was particularly noted to be a very effective inhibitor
of MAO (IC50 = 27.03 µM).

Other studies have synthesized new derivatives of hydroxypyridinone-coumarin
and developed their potential towards AD. These compounds display potential MAO-B
inhibitory activity as demonstrated under in vitro assay. Herein, 1-((7-((3-fluorobenzyl)oxy)-
2-oxo-2H-chromen-3-yl) methyl)-3-hydroxy-2-methylpyridin-4(1H)-one hydrochloride ex-
hibited the highest active anti-MAO-B (IC50 = 14.7 nM). Molecular docking shows that
this compound is a potential drug for AD treating because it can bind both substrate and
entrance cavity of MAO-B [93].

To discover different inhibitors, Xie et al. developed novel coumarin-dithiocarbamate
derivatives. They explored the options for treating AD by restriction of selective MAO-B iso-
forms. Compound 3-((3-chloro-4-methyl-2-oxo-2H-chromen-7-yl)oxy)propyl2,6-dimethyl-
piperidine-1 carbodithioate evidenced the strongest MAO-B (IC50 = 0.101 µM). It also did
not show any critical toxicity in mice in therapeutic doses, and, according to the researchers,
prevented cognitive dysfunction in the AD-infected mice [94]. Repsold et al. [95] produced
multitargeted directed ligands based on a coumarin scaffold that demonstrated inhibitory
activities at two main enzymes (MAO-B and AChE) for the treatment of AD. Biological
assay indicated that one of the coumarin-morpholine ether conjugates was a most promis-
ing hMAO-B inhibitor, while one of the coumarin-piperidine conjugates was an effective
AChE inhibitor.

Overall, a significant number of structurally distinct synthetic and natural compounds
can inhibit both MAO-A and MAO-B isoforms with different degree of potency and
selectivity. However, it is not easy to categorize the chemical structures for their affinity
towards the MAO-A and MAO-B isoform.

6. Anti NFTs Accumulation

The tau proteins play an important role in cell integrity. They are predominantly found
in neurons, but small amounts of tau are also located in the astrocytes and oligodendrocytes.
The different tau isoforms are encoded by the microtubule-associated gene on human
chromosome 17q21 [6]. The microtubule-associated protein tau is disordered and shows
high flexibility and lack of a stable conformation. The major hallmark of the tau hypothesis
of AD pathogenesis is the formation of NFTs, which are aggregates of abnormal tau
proteins. In AD patients, the density of NFTs is related to the degree of cognitive deficit [96],
and therefore, tau needs to be detached from microtubules and then transferred into
abnormal aggregates before a patient develops AD. This modification is probably caused
by a series of post-translational processes, e.g., phosphorylation, glycosylation, nitration,
acetylation, ubiquitination, and methylation. Abnormal phosphorylation is the most
important modification. In AD, both the total and phosphorylated tau levels increase, along
with the disease progression. It has been revealed that tau is 3–4 times more phosphorylated
in the brains of AD patients compared to healthy brains [97].

Tau protein hyperphosphorylation causes the dissociation of tau from microtubules
and induces abnormal tau aggregation. Approaches to blocking tau-mediated neurotoxicity
includes primarily restricting tau post-translational modifications and directly inhibiting
tau aggregation. Tau protein dephosphorylation is mainly brought about by protein phos-
phatase 2A (PP2A). This phosphatase has reduced activity in the AD brain and is a difficult
target for drugs [98]. Moreover, research suggests that inhibition of PP2A could induce tau



Int. J. Mol. Sci. 2022, 23, 1212 15 of 27

hyperphosphorylation [6]. This fact indicates that PP2A might regulate normal tau protein
phosphorylation by preventing excessive activation of tau kinases. It is believed that tau
phosphorylation could be the result of equilibrium between tau protein phosphatases and
kinases. Therefore, protein kinase inhibitors are usually targeted towards other kinases
(rather than directly on PP2A) to impede tau hyperphosphorylation or reduce tau aggrega-
tion [99]. When this enzymatic equilibrium is disturbed, tau hyperphosphorylation occurs.
This process will lead to NFT formation and cognitive deficits.

In AD animal models, some plant compounds and products have been shown to
constrain tau hyperphosphorylation through modulating the activity of glycogen syn-
thase kinase-3 (GSK3) or cyclin-dependent kinase-5 (CDK5), or directly through PP2A
control [100]. ‘Tongmai Yizhi’, a decoction derived from Chinese medicine, has been
demonstrated to significantly decrease CDK5 and CDK5 expression in the hippocampus
of model rats [101]. This decoction contains plants such as Daemonorops draco (Willd.),
Panax ginseng C.A. Meyer, Rehmannia glutinosa Libosch, Alpinia oxyphylla Miq., Gastrodia
elata Blume, and Whitmania pigra Whitman. Multidrug compatibility is regarded as the
essence of Tongmai Yizhi decoction activity. However, due to the complex components and
numerous targets involved, fully elucidating its mechanism is challenging [102].

Safflower yellow is one of the traditional Chinese medicines extracted from safflower
(Carthamus tinctorius), which is suggested to have therapeutic potential for neurodegener-
ative disorders. Data obtained by Ma et al. [103] indicate that this extract can serve as a
therapeutic candidate for AD. They have found that safflower yellow inhibits the GSK-3
activation and GSK-5 signaling pathways so as to protect against tau hyperphosphorylation
by Aβ1–42, and in this way improves learning and memory functions in AD model rats.

It is known that ginsenoside Rd (Rd), one of the main active ingredients in Panax
ginseng, increases PP2A activity and decreases okadaic acid-induced neurotoxicity, as well
as tau hyperphosphorylation in vitro and in vivo [104]. Zhang et al. [105] investigated
whether Rd could reduce tau phosphorylation and sequential cognition impairment af-
ter ischemic stroke. The results of the study demonstrated that Rd treatment reduces
ischemia-induced enhancement of tau phosphorylation and ameliorated behavior impair-
ment. Moreover, Rd inhibits the activity of GSK-3β but enhances the activity of protein
kinase B (PKB/AKT), an important kinase suppressing GSK-3β activity. The authors also
concluded that LY294002, an antagonist for the phosphatidylinositol 3-kinase (PI3K)/AKT
signaling pathway, significantly decreases the inhibitory effect of Rd on GSK-3β activ-
ity. These findings provide evidence that Rd may reduce cerebral ischemia-induced tau
phosphorylation via the PI3K/AKT/GSK-3β pathway.

Epigallocatechin-3-gallate is an active plant metabolite that has therapeutic potential
against various disorders, including inhibition of tau aggregation. EGCG interacts with
full-length tau protein at several residues with unstable interactions. This compound
restricts aggregation of tau and dissolves tau fibrils and oligomers. It is likely that EGCG
forms higher-order structures and degrades them without allowing the formation of mature
aggregates [106].

Many of the tau aggregation inhibitors are natural plant compounds with antioxidant
activity. Crocin from Crocus sativus can interfere with tau protein nucleation and inhibit tau
protein filament formation in vitro [100]. In vitro, the aqueous extract of Glycyrrhiza inflata
can improve the growth of the repeat domain and axons in mutant tau protein to prevent
tau aggregation. This extract is also able to upregulate unfolded protein response-mediated
chaperones to reduce tau misfolding. Cornel iridoid glycoside is the main compound
extracted from Cornus officinalis. The findings obtained by Yang et al. [107] suggest that it
may be used as a promising anti-AD drug. The results presented by the authors provide
novel insights into how cornel iridoid glycoside constrains tau hyperphosphorylation.
Among other approaches, this compound impedes GSK-3β activity through promoting
the phosphatidylinositol 3-kinase/AKT signaling pathway. Moreover, it can elevate PP2A
activity via constraining PME-1-induced PP2A catalytic C subunit demethylation, and,
subsequently, limiting GSK-3β activity. In this way, cornel iridoid glycoside regulates the
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crosstalk between GSK-3β and PP2A signaling and, consequently, inhibits tau hyperphos-
phorylation.

Sonawane et al. [108] screened the potency of baicalein, a polyphenol from the Scutel-
laria baicalensis Georgi, against in vitro tau aggregation and tau filaments dissolution. Their
study suggests the potency of baicalein against two pathological tau activities, namely, this
plant metabolite efficiently inhibits tau formation by promoting off pathway oligomers, as
well as by dissolving tau filaments. This research highlights the potential of baicalein in
ameliorating multifactorial neurodegenerative pathologies.

Curcumin works in a similar way as baicalein. Studies indicate that curcumin in-
hibits the oligomerization of tau and could disaggregate tau filaments [109]. Another
plant compound able to constrain tau protein aggregation is resveratrol, which inhibits the
aggregation of the repeat domain of tau (and shows several other neuroprotective mecha-
nisms) [110]. Two more are folic acid, which slows down tau aggregation via stabilizing its
native state [111], and purpurin, which counteracts tau fibrillization and breaks down the
pre-formed fibrils [112].

7. Neuroinflammation

A significant factor attributable to neurodegeneration is neuroinflammation. This
is a cellular and biochemical response that increases inflammatory mediators (cytokines,
chemokines) and activates glia cells and leukocyte invasion of brain tissue [113]. A signifi-
cant side effect of the process is increased permeability of the BBB (blood–brain barrier).
It is known that this neuroinflammation is strictly connected with innate (the first line of
defense) and adaptive immune responses. In the case of Alzheimer’s disease, neuroin-
flammatory contribution to pathogenesis equals that of senile plaques and NFTs [114].
The following neuroinflammatory landscapes that are associated with AD are the most
intensive studied:

• Microglia: the resident phagocytes of central nervous system. In the case of AD, the
structure binds to soluble Aβ oligomers and Aβ fibrils via the following receptors:
SCARA1, CD36, CD14, α6β1 integrin, CD47, and Toll-like receptors. Binding of Aβ
with CD36, TLR4, and TLR6 leads to activation of microglia and the production of
proinflammatory cytokines and chemokines [114,115].

• Astroglia: accumulates around senile plaques. The structures release cytokines, in-
terleukins, nitric oxide, and other potentially cytotoxic molecules. ApoE is needed
for astrocyte-mediated clearance of Aβ, and astrocyte-dependent lipidation of ApoE
increases the capability of microglia to clear Aβ [114].

There are many factors that contribute to neuroinflammation. Besides typical pro-
neuroinflammatory factors such as senile plaques, there are numerous linkage with phe-
nomena such as (1) systematic inflammation, for which studies revealed explicit correlation
with inflammatory changes in the brain [116]; (2) obesity, which is characterized by white
fat having a high level of activated macrophages that constantly secrete proinflammatory
cytokines [117]; (3) traumatic brain injury leading to microglia activation, which can persist
for months or years after traumatic brain injury [118]; and (4) locus coeruleus degeneration
being strictly connected with loss of noradrenaline, which is due to compromised microglial
migration and Aβ phagocytosis [119].

One of the most often administered tests towards determining anti-inflammatory
activity is the carrageenan-induced rat paw edema test. This was applied for assessing
the activity of extracts of Acalypha hispida (Euphorbiaceae) leaves, which are rich in ellagic
acid, gallic acid, and rutin [120]. The basis of the test is a marked edema formation that is
mediated by histamine, serotonin, and bradykinins (first phase), as well as the release of
prostaglandins and nitric oxide (second phase). The study results revealed that extracts of
Acalypha hispida significantly decreased edema formation and histamine-induced rat paw
edema. The most probable mechanism is based on antihistaminic activity, but inhibition of
carrageenan-induced inflammatory responses was also noted; hence, the main components
of the studied extract might follow several inflammatory pathways. The compound that is
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likely to be responsible for the activity is ellagic acid, which is known to constrain COX-2
and NO synthase expression [121].

A well-known and commonly administered secondary plant metabolite is lycopene, a
hydrocarbon carotenoid. The compound has demonstrated a variety of biological activities,
including high antioxidant activity. In rat model studies, lycopene and human amniotic
epithelial cells (HAECs) were used as therapeutic agents for assessing immunomodulatory
effects at the choroid plexus. Here, the results revealed that lycopene administration has a
significant impact on the level of proinflammatory mediators such as TNF-α and IL-1β. In
addition, the metabolite was found to increase the anti-inflammatory mediators IL-10 and
TGF-β1 in the cerebro-spinal fluid and hippocampal tissues. Additional analysis revealed
that lycopene can positively affect upregulation of Toll-like receptor 4, leading to reversion
of Aβ [122].

Terpenes are another group of secondary plant metabolites revealing rich biolog-
ical activity. The group consists of over 55,000 compounds that are well diversified
in terms of structure and effect. Among them are triterpenoids that demonstrate anti-
neuroinflammatory activity. For example, interesting results were obtained for novel
triterpenoids derived from seeds of Quercus serrata Thunb (acorns). Here, studies based on
NO production restriction induced by LPS in microglia cells revealed the potent inhibitory
impact of triterpenoids on the mRNA expression of iNOS and COX-2 in LPS-induced
BV-2 cells [123].

As mentioned previously, nitric oxide is one of the most studied promoters of neu-
roinflammation. The phenomenon results from the fact that localization of NOSs (NO
synthases) allow for the synthesis of nitric oxide in macrophages microglia, neurons, and
endothelial cells, leading to immunomodulation and neuroinflammation [124]. Lignans
and neolignans are among the compounds revealing NO-inhibiting activity. These can
counteract neuroinflammation and NO production by reducing the expression of PGE2,
TNF-α, IL-1β, and COX2, as well as by downregulating the MAPK, ERK, and JNK path-
ways. Among them, the most intensively studied are balanophonin [125], chaenomiside
A [126], sambucuside [127], melongenamide C, and cannabisin F [128].

The polyphenols revealed similarly high anti-neuroinflammatory and NO generation
inhibitory activity. Gingerol, a compound isolated from Zingiber officinale, is commonly
recognized as an anti-neurodegeneration agent. It is known that the polyphenol is able to in-
hibit NO production and pro-inflammatory cytokines via the NF-κB pathway. Additionally,
other ingredients of Zingiber officinale (i.e., zingerone, 6-gingerol) inhibit NO production,
IL-6, IL-1β, TNF-α, and mRNA levels in BV2 microglial cells activated by LPS [124]. Related
activity was also observed for coumarins. Here, omphalocarpin obtained from Toddaliae asi-
aticae (Rutaceae) revealed an impact on the expression of proinflammatory mediators, such
as NO, TNF-α, and IL-1β, and fostered the downregulation of COX-2 and NOS expression
in LPS-stimulated BV2 cells [124,129].

8. The Influence of Iron Ions on Neurodegeneration Process

What are deemed ‘essential metals’ play crucial roles in the maintaining good health.
Among the metals, the most important are iron, zinc, copper, chromium, and manganese.
These are responsible for a number of crucial processes in our body, including enzymatic
reactions (catalase, hydrogenase) and cellular activities [4]. Nevertheless, there is a thin
line between the beneficial and harmful role of the elements. Numerous studies reveal the
effects of excessive levels of trace metal ions with regard to mitochondrial dysfunctions,
endoplasmic reticulum stress, oxidative stress, and autophagy dysregulation. One of the
most important metals in this regard is iron and its ions. These have been intensively
studied towards their influence on neurodegeneration processes, including AD [130].
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A critical factor leading to various cellular changes is oxidative stress. The basis of
free radical creation is the Haber–Weiss reaction, which is the source of the most dangerous
hydroxyl radical:

Haber–Weiss reaction : O2
•− + H2O2

Fe2+/Fe3+
−−−−−−→ •OH + OH− + O2

Here, acting as catalysts, Fe2+/Fe3+ drive the reaction via the Fenton reaction, in which
Fe2+ reacts with H2O2, leading to the generation of Fe3+, which is subsequently reduced
with O2

•− [131].
Similarly to the free redox active form of iron, heme-iron plays an important role in

oxidative stress generation. An overload of free heme is toxic due to their pro-oxidant
activity resulting from their being part of the prosthetic group in proteins [132].

In addition to oxidative stress involving iron ions, the metal is engaged in Aβ creation
(Figure 1). Intensive studies have revealed the explicit correlation between senile plaque
deposition and the level of iron ions. Detailed molecular docking simulations indicate that
His6, His13, and His14 amino acid residues of amyloid β are able to interact with iron ions.
An additional factor promoting the reaction of iron–Aβ interactions is the reductive brain
environment, as well as the high level of metal ions in this organ [133]. The mechanism of
the Aβ formation with iron ion participation can be controlled by intracellular iron via the
iron regulatory element RNA stem loop in the 5′ unsaturated region of the APP transcript.
The element was found to physiologically bind with iron response protein 1 and not with
iron response protein 2 in human neuronal cells [134].
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An equally significant mechanism of Aβ generation to which iron contributes is
explained by furin and secretase activity, both of which are engaged in nonamyloidogenic
and amyloidogenic changes in APP. Silvestri et al. revealed the explicit dependency
between level of cellular iron and furin level, namely, that the protein level decreased
along with an excess of the former, and simultaneously, iron content supported enhanced
β-secretase activity and the development of the amyloidogenic pathway [135].

The presence of intraneuronal neurofibrillary tangles (NFTs) is an equally important
factor contributing to neurodegeneration and Alzheimer’s disease. Herein, detailed and
long-lasting studies have revealed a clear correlation between Fe3+ and the aggregation
of hyperphosphorylated tau. The mechanism of the process is explained by iron metal
participation in tau-tau interactions and dimerization [136]. Additionally, scientists indi-
cated phosphorylation as an agent in metal interactions. NMR analysis confirmed strong
interactions between Fe(III) and His residue of tau [137].

Proposed solutions to the negative influence of excessive levels of iron ions upon
the organism include metal ion reduction (Fe3+) and metal ion chelation (Fe2+/3+). Both
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approaches are thought to allow for the keeping of an appropriate level of the metal ions
in the body, while counteracting neurodegeneration development. Intense studies, both
in vitro and in vivo, have revealed the ability of natural compounds to reduce and/or
chelate iron ions. The most interesting and promising results are presented below.

Phenols, a rich group of secondary plant metabolites, have been intensive studied
towards iron ion reduction and chelation activity. The phenomenon results from the
rich biological activities of the compounds, as well as their structures. The catechol
(1,2-dihydroxybenzene) nucleus, for example, has an affinity for metal ion. Moreover,
the keto groups and their nearby hydroxyl groups in the flavonoids, also contribute to-
wards iron ion reduction [138].

Studies performed for 3-hydroxyflavone, 5,7-dihydroxyflavone, and 4′-dihydroxyflav-
one demonstrate the positive influence of the moieties on phenol metal binding. Here,
stability constant analysis reveals that 3′,4′-hydroxy substitutions at the catecholic site are
most significant for ferric complexation [139].

As mentioned above, iron ions take part in ROS generation via Fenton reaction.
The impact of polyphenols on the process was analyzed in terms of the participation in
an inhibitory way (via formation of inert metal complexes) and in a stimulatory/pro-
oxidant manner. Interesting study results have been obtained, for example, for quercetin,
a well-known phenolic present in numerous fruits and vegetables. In this study, the iron-
binding ability of the compound was analyzed by means of NMR and EPR spectroscopies.
The resulting binding constant analysis explicitly indicated that quercetin can bind Fe(II)
stronger that ferrozine, a well-known Fe(II) chelator. The researchers concluded that the
high ability of quercetin to chelate Fe(II) can completely inhibit the Fenton reaction, leading
to significantly improvement of oxidative stress [140].

Besides catechol moiety, combinations of hydroxyl and carbonyl groups play pivotal
roles. In this case, the metal binding site is defined by their assemblage. Polyphenols can
be divided into the following groups: (1) ‘one-metal binding site’, having one potential
chelator site—these include the curcuminoids, lignans, stilbenes, isoflavonoids, flavanols,
and anthocyanins; (2) ‘two-metal binding site’, having two potential chelator sites, among
others, the flavones and flavonones; (3) ‘three-metal binding site’, having three potential
chelator sites—these embrace the flavonols, flavanols, and tannins; and (4) compounds
having four or more metal chelator sites [141] (Figure 2).
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A further aspect of iron ions binding by phenols is the difference in kinetic reaction in
Fe(II) and Fe(III) binding. In order to expand knowledge in this direction, researchers per-
formed studies based on gallic acid, caffeic acid, catechin, and rutin. Accordingly, affinity
of the common phenols for iron ions turned out to be different. However, assessment of
metal-polyphenol interactions and the redox process is difficult due to sensitivity of metal
autoxidation processes and redox potentials to pH. This was overcome by performing the
experiments in neutral phosphate buffer. The outcome of the work established that (1) spec-
tral changes following Fe(II) addition are much faster and more intense than with Fe(III);
(2) Fe(II)-polyphenol binding does not provide protection to Fe(II) against autoxidation; and
(3) Fe(II)-polyphenol binding is faster than autoxidation of free Fe(II) [138]. Conclusions
drawn on the basis of the conducted research indicate that the common polyphenols can
bind Fe(II) and Fe(III), but the second is captured more slowly. The mechanism of the
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reaction is explained by electrons transfer from Fe(II) with the concomitant formation of
Fe(III)-phenol complexes (Figure 3). The reaction could also take place starting from Fe(III)-
phenol complexes; however, the slow preliminary step of Fe(III) reduction by phenols
hampers it.
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Another important and well-known phenol is chlorogenic acid. Similarly to other
secondary plant metabolites, the compound reveals a variety of biological activities. Studies
were performed to ascertain the ability of the phenol to chelate Fe(II), to determine hydroxyl
radical generation as influenced by the compound during iron release, and to understand
the impact of chlorogenic acid on iron-involved polymerization. The outcome of such
work revealed that chlorogenic acid can interact with Fe(III) to form complexes that can
interact with ferritin via hydrogen bonds. Additionally, the generation of hydroxyl radicals
is significantly reduced by the phenol during ion release. Moreover, chlorogenic acid can
also promote the rates of ion oxidative deposition and ion release from ferritin [142].

Reduction or chelation of iron ions by natural compounds such as phenols was con-
firmed repeatedly in studies based on essential oils rich in these compounds. In most of
these studies, correlation between high ability of essential oils to bind iron ions and content
of phenols, terpenes, or other secondary plant metabolites indicate that the high biological
activity can be related to the main components of the essential oils [143].

Activity of secondary plant metabolites towards regulating organism levels of iron ions
by their reduction and chelation was confirmed in in vivo studies using rat models. Both
an acute and a long-term study using rat models have indicated the significant influence
of the polyphenol on iron level. In the acute study, duodenal mucosa to quercetin was
found to increase apical iron intake and to decrease subsequent basolateral iron efflux in
the circulation. The probable mechanism of action is thought to be based on the chelation
ability of quercetin in binding iron between 3-hydroxyl and 4-carbonyl groups and by
methylation of the 3-hydroxyl group. In the case of the long-term study, assessment of
the positive influence of quercetin was based on recapitulation in Caco-2 cells exposed to
quercetin. Here, reporter assays in Caco-2 cell suggested that the repression of FPN by
quercetin was not a transcriptional event but might be mediated by miRNA interaction
with the FPN 3′UTR [144].

Another natural compound revealing excellent biological activity is tannic acid. Be-
sides reduction and chelation activity in vitro, the compound has revealed an ability to
counteract iron overload by its chelator activity. The obtained research results were similar
to that of the control substance (desirox-a standard iron chelator). Additionally, it is proba-
ble that tannic acid might modulate DMT-1, block L-type calcium channels, and reverse
iron overload in the organism [145].

Epigallocatechin-3-gallate (EGCG) is a similarly important and well-known natural
compound. Detailed analysis has demonstrated the ability of EGCG to decrease cellular
assimilation of heme iron, along with the ability to limit its basolateral efflux. The data
confirmed that the polyphenol constrains heme iron absorption by reducing basolateral
iron exit, rather than by decreasing apical heme iron uptake in intestinal cells [146].

9. Conclusions

Although not fully understood, the pathological processes associated with AD are
influenced by many factors. Many in vitro and in vivo studies have demonstrated that nat-
ural plant products and phytochemicals exhibit neuroprotective effects. Among the many
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mechanisms are activity targeting cholinergic neurotransmission and neuroinflammation;
generating an imbalance of iron in the organism; inhibiting α-synuclein, as well as BACE
and MAO; affecting Aβ accumulation and aggregation; and reducing tau phosphorylation,
as well as inducing anti-inflammatory and antioxidant effects.

The plant metabolites and their combinations are a valuable collection of natural prod-
ucts that should be tested to prevent and effective treat AD. These naturally based drugs
will surely have fewer side effects than the currently available pharmacological treatments.
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Abbreviations

Ach acetylcholine
AChE acetylcholinesterase
AME alternariol monomethyl ether
Apo E apolipoprotein E
APP amyloid precursor protein
BACE β-secretase
BDNF brain-derived neurotrophic factor
BuChE butyrylcholinesterase
ChAT choline O-acetyltransferase
CDK5 cyclin-dependent kinase 5
COX cyclooxygenase
CRP C-reactive protein
EGCG epigallocatechin-3-gallate
GPx glutathione peroxidase
GSH glutathione
GSK glycogen synthase kinase
iNOS inducible nitric oxide synthase
LDH lactate dehydrogenase
LXR liver X receptor
MAO monoamine oxidase
MDA malondialdehyde
MCP-1 monocyte chemoattractant protein-1
MMP mitochondrial membrane potential
NF-κB nuclear factor kappa-B
NGF nerve growth factor
NO nitric oxide
PI3K phosphatidylinositol 3-kinase
PKB protein kinase B
PPAR-γ peroxisome proliferator-activated receptor gamma
PP2A protein phosphatase 2A
ROS reactive oxygen species
r.t. room temperature
SOD superoxide dismutase
TBARS thiobarbituric acid reactive substances
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